1
|
Wang H, Chen L, Mao Z, Liu S, Huang R, He R, Zhang Y, Wei J. Boosting Energy Deprivation via Synchronous Interventions of Oxidative Phosphorylation and Glycolysis for Cancer Therapy with 1,8-Naphthyridine-Piperazine-Dithiocarbamate Ruthenium(II) Polypyridyl Complexes. J Med Chem 2025; 68:10203-10215. [PMID: 40353767 DOI: 10.1021/acs.jmedchem.5c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bioenergetic therapy targeting mitochondrial bioenergy is a promising therapeutic strategy for cancer. However, its clinical efficacy is limited by the metabolic adaptability of tumor cells, as they can switch between glycolytic and oxidative phosphorylation metabolic phenotypes to maintain energy homeostasis. In this study, we discovered 1,8-naphthyridine-piperazine-dithiocarbamate ruthenium(II) polypyridyl complexes (RuL1) that enhanced energy deprivation by inhibiting the activity of mitochondrial complex I and III, thereby disrupting oxidative phosphorylation. Simultaneously, RuL1 inhibits glycolysis while unexpectedly activating antitumor immunity. This dual metabolic-immunological targeting resulted in enhanced anticancer activity against MGC-803 cells. To the best of our knowledge, RuL1 is the first ruthenium polypyridyl complex reported to achieve high anticancer activity through dual metabolic inhibition.
Collapse
Affiliation(s)
- Huiling Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Lei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Zhichen Mao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Shuangqiang Liu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Ruijie He
- Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guilin 541006, China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Jianhua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001 Guangxi, China
| |
Collapse
|
2
|
Lai SY, Zhu XJ, Sun WD, Bi SZ, Zhang CY, Liu A, Li JH. Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets. Biomolecules 2025; 15:719. [PMID: 40427612 PMCID: PMC12109476 DOI: 10.3390/biom15050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, remains a global health challenge with limited therapeutic options and high mortality rates. Despite advances in understanding its molecular pathogenesis, the role of metabolic reprogramming in HCC progression and therapy resistance demands further exploration. Nicotinamide N-methyltransferase (NNMT), a metabolic enzyme central to NAD+ and methionine cycles, has emerged as a critical regulator of tumorigenesis across cancers. However, its tissue-specific mechanisms in HCC-particularly in the context of viral hepatitis and methionine cycle dependency-remain understudied. This review systematically synthesizes current evidence on NNMT's dual role in HCC: (1) driving NAD+ depletion and homocysteine (Hcy) accumulation via metabolic dysregulation, (2) promoting malignant phenotypes (proliferation, invasion, metastasis, and drug resistance), and (3) serving as a prognostic biomarker and therapeutic target. We highlight how NNMT intersects with epigenetic modifications, immune evasion, and metabolic vulnerabilities unique to HCC. Additionally, we critically evaluate NNMT inhibitors, RNA-based therapies, and non-pharmacological strategies (e.g., exercise) as novel interventions. By bridging gaps between NNMT's molecular mechanisms and clinical relevance, this review provides a roadmap for advancing NNMT-targeted therapies and underscores the urgency of addressing challenges in biomarker validation, inhibitor specificity, and translational efficacy. Our work positions NNMT not only as a metabolic linchpin in HCC but also as a promising candidate for precision oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (S.-Y.L.); (X.-J.Z.); (W.-D.S.); (S.-Z.B.); (C.-Y.Z.); (A.L.)
| |
Collapse
|
3
|
Wang Y, Zhang G, Zhang Z, Zhang M, Chen J, Wang K, Liu L, Bao J, Chen M, Qi X, Gao M. Plasma DNMT1 Activity for Assessing Tumor Burden and Predicting Neoadjuvant Therapy Response in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501064. [PMID: 40317882 DOI: 10.1002/advs.202501064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Indexed: 05/07/2025]
Abstract
DNA methylation is mediated by DNA methyltransferases (DNMTs), and the stability of their activity is essential for cellular fate. DNMT1 is considered one of the most promising targets for research. However, current detection techniques are limited in accurately quantifying its activity in peripheral blood. Here, a reaction system is developed known as DNMT1 Identification by Variable Activity (DIVA) for the highly sensitive detection of DNMT1 activity in the peripheral blood of breast cancer patients. DIVA can detect DNMT1 at levels as low as 10-7 U mL-1, with minimal time and cost. This method is applied to analyze 271 clinical samples, successfully evaluating tumor burden in patients staged I-IV. Finally, this method is utilized to assess the prognosis of 22 patients undergoing neoadjuvant therapy, demonstrating good consistency with ultrasound imaging results. It is believed that DIVA could serve as an effective auxiliary technique for both the early detection of breast cancer and evaluation of neoadjuvant therapy.
Collapse
Affiliation(s)
- Yingran Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Guozhi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Zhizhao Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Mengsi Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jiao Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Ke Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Lu Liu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jing Bao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| |
Collapse
|
4
|
Dai J, Lu X, Zhang C, Qu T, Li W, Su J, Guo R, Yin D, Wu P, Han L, Zhang E. NNMT promotes acquired EGFR-TKI resistance by forming EGR1 and lactate-mediated double positive feedback loops in non-small cell lung cancer. Mol Cancer 2025; 24:79. [PMID: 40089784 PMCID: PMC11909984 DOI: 10.1186/s12943-025-02285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are remarkably effective for treating EGFR-mutant non-small cell lung cancer (NSCLC). However, patients inevitably develop acquired drug resistance, resulting in recurrence or metastasis. It is important to identify novel effective therapeutic targets to reverse acquired TKI resistance. RESULTS Bioinformatics analysis revealed that nicotinamide N-methyltransferase (NNMT) was upregulated in EGFR-TKI resistant cells and tissues via EGR1-mediated transcriptional activation. High NNMT levels were correlated with poor prognosis in EGFR-mutated NSCLC patients, which could promote resistance to EGFR-TKIs in vitro and in vivo. Mechanistically, NNMT catalyzed the conversion of nicotinamide to 1-methyl nicotinamide by depleting S-adenosyl methionine (the methyl group donor), leading to a reduction in H3K9 trimethylation (H3K9me3) and H3K27 trimethylation (H3K27me3) and subsequent epigenetic activation of EGR1 and ALDH3A1. In addition, ALDH3A1 activation increased lactic acid levels, which further promoted NNMT expression via p300-mediated histone H3K18 lactylation on its promoter. Thus, NNMT mediates the formation of a double positive feedback loop via EGR1 and lactate, EGR1/NNMT/EGR1 and NNMT/ALDH3A1/lactate/NNMT. Moreover, the combination of a small-molecule inhibitor for NNMT (NNMTi) and osimertinib exhibited promising potential for the treatment of TKI resistance in an NSCLC osimertinib-resistant xenograft model. CONCLUSIONS The combined contribution of these two positive feedback loops promotes EGFR-TKI resistance in NSCLC. Our findings provide new insight into the role of histone methylation and histone lactylation in TKI resistance. The pivotal NNMT-mediated positive feedback loop may serve as a powerful therapeutic target for overcoming EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tianyu Qu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jun Su
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Pingping Wu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, Jiangsu, PR China.
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Lin Z, Wang F, Yin R, Li S, Bai Y, Zhang B, Sui C, Cao H, Su D, Xu L, Wang H. Single-cell RNA sequencing and immune microenvironment analysis reveal PLOD2-driven malignant transformation in cervical cancer. Front Immunol 2025; 15:1522655. [PMID: 39840054 PMCID: PMC11747275 DOI: 10.3389/fimmu.2024.1522655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Background Cervical cancer is the fourth most common cancer in women globally, and the main cause of the disease has been found to be ongoing HPV infection. Cervical cancer remains the primary cause of cancer-related death despite major improvements in screening and treatment approaches, especially in low- and middle-income nations. Therefore, it is crucial to investigate the tumor microenvironment in advanced cervical cancer in order to identify possible treatment targets. Materials and methods In order to better understand malignant cervical cancer epithelial cells (EPCs), this study used bulk RNA-seq data from UCSC in conjunction with single-cell RNA sequencing data from the ArrayExpress database. After putting quality control procedures into place, cell type identification and clustering analysis using the Seurat software were carried out. To clarify functional pathways, enrichment analysis and differential gene expression were carried out. The CIBERSORT and ESTIMATE R packages were used to evaluate the immune microenvironment characteristics, and univariate and multivariate Cox regression analyses were used to extract prognostic features. Furthermore, assessments of drug sensitivity and functional enrichment were carried out. Results Eight cell types were identified, with EPCs showing high proliferative and stemness features. Five EPC subpopulations were defined, with C1 NNMT+ CAEPCs driving tumor differentiation. A NNMT CAEPCs Risk Score (NCRS) model was developed, revealing a correlation between elevated NCRS scores and adverse patient outcomes characterized by immune evasion. In vitro experiments validated that the prognostic gene PLOD2 significantly enhances proliferation, migration, and invasion of cervical cancer cells. Conclusion This investigation delineated eight cell types and five subpopulations of malignant EPCs in cervical cancer, establishing the C1 NNMT+ CAEPCs as a crucial therapeutic target. The NCRS model demonstrated its prognostic capability, indicating that higher scores are associated with poorer clinical outcomes. The validation of PLOD2 as a prognostic gene highlights its therapeutic potential, underscoring the critical need for integrating immunotherapy and targeted treatment strategies to enhance diagnostic and therapeutic approaches in cervical cancer.
Collapse
Affiliation(s)
- Zhiheng Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengxin Wang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Renwu Yin
- Department of Urology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengnan Li
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuquan Bai
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baofang Zhang
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenlin Sui
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hengjie Cao
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dune Su
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lianwei Xu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honghong Wang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
7
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): A key enzyme in cancer metabolism and therapeutic target. Int Immunopharmacol 2024; 142:113208. [PMID: 39312861 DOI: 10.1016/j.intimp.2024.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Emerging research has positioned Nicotinamide N-methyltransferase (NNMT) as a key player in oncology, with its heightened expression frequently observed across diverse cancers. This increased presence is tightly linked to tumor initiation, proliferation, and metastasis. The enzymatic function of NNMT is centered on the methylation of nicotinamide (NAM), utilizing S-adenosylmethionine (SAM) as the methyl donor, which results in the generation of S-adenosyl-L-homocysteine (SAH) and methyl nicotinamide (MNAM). This metabolic process reduces the availability of NAM, necessary for Nicotinamide adenine dinucleotide (NAD+) synthesis, and generates SAH, precursor to homocysteine (Hcy). These alterations are theorized to foster the resilience, expansion, and invasiveness of cancer cells. Furthermore, NNMT is implicated in enhancing cancer malignancy by affecting multiple signaling pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), cancer-associated fibroblasts (CAFs) and 5-Methyladenosine (5-MA), epithelial-mesenchymal transition (EMT), and epigenetic mechanisms. Upregulation of NNMT metabolism plays a key role in the formation and maintenance of the tumour microenvironment. While the use of small molecule inhibitors and RNA interference (RNAi) to target NNMT has shown therapeutic promise, the full extent of NNMT's influence on cancer is not yet fully understood, and clinical evidence is limited. This article systematically describes the relationship between the functional metabolism of NNMT enzymes and the cancer and tumour microenvironments, describing the mechanisms by which NNMT contributes to cancer initiation, proliferation, and metastasis, as well as targeted therapies. Additionally, we discuss the future opportunities and challenges of NNMT in targeted anti-cancer treatments.
Collapse
Affiliation(s)
- Wei-Dong Sun
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jing-Jing Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Ya-Zhong Mei
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wen-Song Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
8
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
9
|
Jiang J, Ye P, Sun N, Zhu W, Yang M, Yu M, Yu J, Zhang H, Gao Z, Zhang N, Guo S, Ji Y, Li S, Zhang C, Miao S, Chai M, Liu W, An Y, Hong J, Wei W, Zhang S, Qiu H. Yap methylation-induced FGL1 expression suppresses anti-tumor immunity and promotes tumor progression in KRAS-driven lung adenocarcinoma. Cancer Commun (Lond) 2024; 44:1350-1373. [PMID: 39340215 PMCID: PMC12015977 DOI: 10.1002/cac2.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite significant strides in lung cancer immunotherapy, the response rates for Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven lung adenocarcinoma (LUAD) patients remain limited. Fibrinogen-like protein 1 (FGL1) is a newly identified immune checkpoint target, and the study of related resistance mechanisms is crucial for improving the treatment outcomes of LUAD patients. This study aimed to elucidate the potential mechanism by which FGL1 regulates the tumor microenvironment in KRAS-mutated cancer. METHODS The expression levels of FGL1 and SET1 histone methyltransferase (SET1A) in lung cancer were assessed using public databases and clinical samples. Lentiviruses were constructed for transduction to overexpress or silence FGL1 in lung cancer cells and mouse models. The effects of FGL1 and Yes-associated protein (Yap) on the immunoreactivity of cytotoxic T cells in tumor tissues were evaluated using immunofluorescence staining and flow cytometry. Chromatin immunoprecipitation and dual luciferase reporter assays were used to study the SET1A-directed transcriptional program. RESULTS Upregulation of FGL1 expression in KRAS-mutated cancer was inversely correlated with the infiltration of CD8+ T cells. Mechanistically, KRAS activated extracellular signal-regulated kinase 1/2 (ERK1/2), which subsequently phosphorylated SET1A and increased its stability and nuclear localization. SET1A-mediated methylation of Yap led to Yap sequestration in the nucleus, thereby promoting Yap-induced transcription of FGL1 and immune evasion in KRAS-driven LUAD. Notably, dual blockade of programmed cell death-1 (PD-1) and FGL1 further increased the therapeutic efficacy of anti-PD-1 immunotherapy in LUAD patients. CONCLUSION FGL1 could be used as a diagnostic biomarker of KRAS-mutated lung cancer, and targeting the Yap-FGL1 axis could increase the efficacy of anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Pengfei Ye
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Ningning Sun
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Weihua Zhu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Manman Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Jingjing Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Hui Zhang
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Zijie Gao
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ningjie Zhang
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Shijie Guo
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Yuru Ji
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Siqi Li
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Cuncun Zhang
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Sainan Miao
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Mengqi Chai
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Wenmin Liu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Yue An
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Jian Hong
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Shihao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti‐Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti‐Inflammatory and Immune MedicineHefeiAnhuiP. R. China
| | - Huan Qiu
- School of Nursing, Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
10
|
Ji X, Zhang T, Sun J, Song X, Ma G, Xu L, Cao X, Jing Y, Xue F, Zhang W, Sun S, Wan Q, Liu Y. UBASH3B-mediated MRPL12 Y60 dephosphorylation inhibits LUAD development by driving mitochondrial metabolism reprogramming. J Exp Clin Cancer Res 2024; 43:268. [PMID: 39343960 PMCID: PMC11441236 DOI: 10.1186/s13046-024-03181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Metabolic reprogramming plays a pivotal role in tumorigenesis and development of lung adenocarcinoma (LUAD). However, the precise mechanisms and potential targets for metabolic reprogramming in LUAD remain elusive. Our prior investigations revealed that the mitochondrial ribosomal protein MRPL12, identified as a novel mitochondrial transcriptional regulatory gene, exerts a critical influence on mitochondrial metabolism. Despite this, the role and regulatory mechanisms underlying MRPL12's transcriptional activity in cancers remain unexplored. METHODS Human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD mouse models, LUAD patient-derived organoids (PDO), and LUAD cell lines were used to explored the expression and function of MRPL12. The posttranslational modification of MRPL12 was analyzed by mass spectrometry, and the oncogenic role of key phosphorylation sites of MRPL12 in LUAD development was verified in vivo and in vitro. RESULTS MRPL12 was upregulated in human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD tissues in mice, LUAD PDO, and LUAD cell lines, correlating with poor patient survival. Overexpression of MRPL12 significantly promoted LUAD tumorigenesis, metastasis, and PDO formation, while MRPL12 knockdown elicited the opposite phenotype. Additionally, MRPL12 deletion in a Tp53fl/fl;KrasG12D-driven mouse LUAD model conferred a notable survival advantage, delaying tumor onset and reducing malignant progression. Mechanistically, we discovered that MRPL12 promotes tumor progression by upregulating mitochondrial oxidative phosphorylation. Furthermore, we identified UBASH3B as a specific binder of MRPL12, dephosphorylating tyrosine 60 in MRPL12 (MRPL12 Y60) and inhibiting its oncogenic functions. The decrease in MRPL12 Y60 phosphorylation impeded the binding of MRPL12 to POLRMT, downregulating mitochondrial metabolism in LUAD cells. In-depth in vivo, in vitro, and organoid models validated the inhibitory effect of MRPL12 Y60 mutation on LUAD. CONCLUSION This study establishes MRPL12 as a novel oncogene in LUAD, contributing to LUAD pathogenesis by orchestrating mitochondrial metabolism reprogramming towards oxidative phosphorylation (OXPHOS). Furthermore, it confirms Y60 as a specific phosphorylation modification site regulating MRPL12's oncogenic functions, offering insights for the development of LUAD-specific targeted drugs and clinical interventions.
Collapse
Affiliation(s)
- Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tianyi Zhang
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojia Song
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guoyuan Ma
- Department of Thoracic Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Li Xu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueru Cao
- Department of Pulmonary and Critical Care Medicine, Heze Municipal Hospital, Heze, Shandong, 274000, China
| | - Yongjian Jing
- Department of Pulmonary and Critical Care Medicine, the First People's Hospital of Pingyuan, Dezhou, Shandong, 253000, China
| | - Fuyuan Xue
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Weiying Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Sun
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qiang Wan
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
11
|
Dai W, Zhou J, Chen T. Unraveling the extracellular vesicle network: insights into ovarian cancer metastasis and chemoresistance. Mol Cancer 2024; 23:201. [PMID: 39285475 PMCID: PMC11404010 DOI: 10.1186/s12943-024-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Ovarian cancer (OC) is one of the most prevalent and lethal gynecological malignancies, with high mortality primarily due to its aggressive nature, frequent metastasis, and resistance to standard therapies. Recent research has highlighted the critical role of extracellular vesicles (EVs) in these processes. EVs, secreted by living organisms and carrying versatile and bioactive cargoes, play a vital role in intercellular communication. Functionally, the transfer of cargoes orchestrates multiple processes that actively affect not only the primary tumor but also local and distant pre-metastatic niche. Furthermore, their unique biological properties position EVs as novel therapeutic targets and promising drug delivery systems, with potential profound implications for cancer patients.This review summarizes recent progress in EV biology, delving into the intricate mechanisms by which EVs contribute to OC metastasis and drug resistance. It also explores the latest advances and therapeutic potential of EVs in the clinical context of OC. Despite the progress made, EV research in OC remains in its nascent stages. Consequently, this review presents existing research limitations and suggests avenues for future investigation. Altogether, the review aims to elucidate the critical roles of EVs in OC and spotlight their promising potential in this field.
Collapse
Affiliation(s)
- Wei Dai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China.
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
12
|
Wei W, Lu Y, Zhang M, Guo J, Zhang H. Identifying polyamine related biomarkers in diagnosis and treatment of ulcerative colitis by integrating bulk and single-cell sequencing data. Sci Rep 2024; 14:18094. [PMID: 39103474 PMCID: PMC11300856 DOI: 10.1038/s41598-024-69322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, and its pathogenesis remains unclear. Polyamine metabolic enzymes play a crucial role in UC. In this study, we aimed to identify pivotal polyamine-related genes (PRGs) and explore the underlying mechanism between PRGs and the disease status and therapeutic response of UC. We analyzed mRNA-sequencing data and clinical information of UC patients from the GEO database and identified NNMT, PTGS2, TRIM22, TGM2, and PPARG as key PRGs associated with active UC using differential expression analysis and weighted gene co-expression network analysis (WCGNA). Receiver operator characteristic curve (ROC) analysis confirmed the accuracy of these key genes in UC and colitis-associated colon cancer (CAC) diagnosis, and we validated their relationship with therapeutic response in external verification sets. Additionally, single-cell analysis revealed that the key PRGs were specific to certain immune cell types, emphasizing the vital role of intestinal tissue stem cells in active UC. The results were validated in vitro and in vivo experiments, including the colitis mice model and CAC mice model. In conclusion, these key PRGs effectively predict the progression of UC patients and could serve as new pharmacological biomarkers for the therapeutic response of UC.
Collapse
Affiliation(s)
- Wanhui Wei
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JinKun Guo
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
He L, Lin J, Lu S, Li H, Chen J, Wu X, Yan Q, Liu H, Li H, Shi Y. CKB Promotes Mitochondrial ATP Production by Suppressing Permeability Transition Pore. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403093. [PMID: 38896801 PMCID: PMC11336976 DOI: 10.1002/advs.202403093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Creatine kinases are essential for maintaining cellular energy balance by facilitating the reversible transfer of a phosphoryl group from ATP to creatine, however, their role in mitochondrial ATP production remains unknown. This study shows creatine kinases, including CKMT1A, CKMT1B, and CKB, are highly expressed in cells relying on the mitochondrial F1F0 ATP synthase for survival. Interestingly, silencing CKB, but not CKMT1A or CKMT1B, leads to a loss of sensitivity to the inhibition of F1F0 ATP synthase in these cells. Mechanistically, CKB promotes mitochondrial ATP but reduces glycolytic ATP production by suppressing mitochondrial calcium (mCa2+) levels, thereby preventing the activation of mitochondrial permeability transition pore (mPTP) and ensuring efficient mitochondrial ATP generation. Further, CKB achieves this regulation by suppressing mCa2+ levels through the inhibition of AKT activity. Notably, the CKB-AKT signaling axis boosts mitochondrial ATP production in cancer cells growing in a mouse tumor model. Moreover, this study also uncovers a decline in CKB expression in peripheral blood mononuclear cells with aging, accompanied by an increase in AKT signaling in these cells. These findings thus shed light on a novel signaling pathway involving CKB that directly regulates mitochondrial ATP production, potentially playing a role in both pathological and physiological conditions.
Collapse
Affiliation(s)
- Le He
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Jianghua Lin
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Shaojuan Lu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Hao Li
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Jie Chen
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xinyi Wu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Qixin Yan
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Hailiang Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123China
| | - Hui Li
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Yufeng Shi
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationTongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
14
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
15
|
Huang H, Su L, Zhang R, Wu D, Ding C, Chen C, Zhu G, Cao P, Li X, Li Y, Liu H, Chen J. Pan-cancer analysis combined with experiments predicts NNMT as a therapeutic target for human cancers. Discov Oncol 2024; 15:196. [PMID: 38809277 PMCID: PMC11136932 DOI: 10.1007/s12672-024-01052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
The identification of effective therapeutic targets plays a pivotal role in advancing cancer treatment outcomes. We employed a comprehensive pan-cancer analysis, complemented by experimental validation, to explore the potential of Nicotinamide N-methyltransferase (NNMT) as a promising therapeutic strategy for human cancers. By analyzing large-scale transcriptomic datasets across various cancer types, we consistently observed upregulated expression of NNMT. Furthermore, elevated NNMT expression correlated with inferior overall survival in multiple cancer cohorts, underscoring its significance as a prognostic biomarker. Additionally, we investigated the relationship between NNMT expression and the tumor immune microenvironment, which plays a crucial role in regulating anti-tumor immune responses. To confirm the malignant functions of NNMT in tumor cells, we conducted a series of cell-based experiments, revealing that NNMT promotes cancer cell proliferation and invasion, indicative of its oncogenic properties. The integration of computational analysis and experimental validation in our study firmly establishes NNMT as a potential therapeutic target for human cancers. Specifically, targeting NNMT holds promise for the development of innovative and effective cancer treatments. Further investigations into NNMT's role in cancer pathogenesis could potentially pave the way for groundbreaking advancements in cancer treatment.
Collapse
Affiliation(s)
- Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Lianchun Su
- Department of Thoracic Surgery, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Ruihao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Di Wu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ding
- Department of Thoracic Surgery, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Thoracic Surgery, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Huang F, Wu X, Du Q, Lin J, Ma W, Liu J. Systematic Characterization of DNA Methyltransferases Family in Tumor Progression and Antitumor Immunity. Technol Cancer Res Treat 2024; 23:15330338241260658. [PMID: 38847740 PMCID: PMC11162131 DOI: 10.1177/15330338241260658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Objective: DNA methylation is an essential epigenetic marker governed by DNA methyltransferases (DNMTs), which can influence cancer onset and progression. However, few studies have provided an integrated analysis of the relevance of DNMT family genes to cell stemness, the tumor microenvironment (TME), and immunotherapy biomarkers across diverse cancers. Methods: This study investigated the impact of five DNMTs on transcriptional profiles, prognosis, and their association with Ki67 expression, epithelial-mesenchymal transition signatures, stemness scores, the TME, and immunological markers across 31 cancer types from recognized public databases. Results: The results indicated that DNMT1/DNMT3B/DNMT3A expression increased, whereas TRDMT1/DNMT3L expression decreased in most cancer types. DNMT family genes were identified as prognostic risk factors for numerous cancers, as well as being prominently associated with immune, stromal, and ESTIMATE scores, as well as with immune-infiltrating cell levels. Expression of the well-known immune checkpoints, PDCD1 and CILA4, was noticeably related to DNMT1/DNMT3A/DNMT3B expression. Finally, we validated the role of DNMT1 in MCF-7 and HepG2-C3A cell lines through its knockdown, whereafter a decrease in cell proliferation and migration ability in vitro was observed. Conclusion: Our study comprehensively expounded that DNMT family genes not only behave as promising prognostic factors but also have the potential to serve as therapeutic targets in cancer immunotherapy for various types of cancer.
Collapse
Affiliation(s)
- Fengru Huang
- Department of Pharmacy, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Qiong Du
- Department of Pharmacy, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianghua Lin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Wencong Ma
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Liu Y, Zhao S, Chen Y, Ma W, Lu S, He L, Chen J, Chen X, Zhang X, Shi Y, Jiang X, Zhao K. Vimentin promotes glioma progression and maintains glioma cell resistance to oxidative phosphorylation inhibition. Cell Oncol (Dordr) 2023; 46:1791-1806. [PMID: 37646965 DOI: 10.1007/s13402-023-00844-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
PURPOSE Glioma has been demonstrated as one of the most malignant intracranial tumors and currently there is no effective treatment. Based on our previous RNA-sequencing data for oxidative phosphorylation (OXPHOS)-inhibition resistant and OXPHOS-inhibition sensitive cancer cells, we found that vimentin (VIM) is highly expressed in the OXPHOS-inhibition resistant cancer cells, especially in glioma cancer cells. Further study of VIM in the literature indicates that it plays important roles in cancer progression, immunotherapy suppression, cancer stemness and drug resistance. However, its role in glioma remains elusive. This study aims to decipher the role of VIM in glioma, especially its role in OXPHOS-inhibition sensitivity, which may provide a promising therapeutic target for glioma treatment. METHODS The expression of VIM in glioma and the normal tissue has been obtained from The Cancer Genome Atlas (TCGA) database, and further validated in Human Protein Atlas (HPA) and Chinese Glioma Genome Atlas (CGGA). And the single-cell sequencing data was obtained from TISCH2. The immune infiltration was calculated via Tumor Immune Estimation Resource (TIMER), Estimation of Stromal and Immune Cells in Malignant Tumors using Expression Data (ESTIMATE) and ssGSEA, and the Immunophenoscore (IPS) was calculated via R package. The differentiated expressed genes were analyzed including GO/KEGG and Gene Set Enrichment Analysis (GSEA) between the VIM-high and -low groups. The methylation of VIM was checked at the EWAS and Methsurv. The correlation between VIM expression and cancer stemness was obtained from SangerBox. We also employed DepMap data and verified the role of VIM by knocking down it in VIM-high glioma cell and over-expressing it in VIM-low glioma cells to check the cell viability. RESULTS Vim is highly expressed in the glioma patients compared to normal samples and its high expression negatively correlates with patients' survival. The DNA methylation in VIM promoters in glioma patients is lower than that in the normal samples. High VIM expression positively correlates with the immune infiltration and tumor progression. Furthermore, Vim is expressed high in the OXPHOS-inhibition glioma cancer cells and low in the OXPHOS-inhibition sensitive ones and its expression maintains the OXPHOS-inhibition resistance. CONCLUSIONS In conclusion, we comprehensively deciphered the role of VIM in the progression of glioma and its clinical outcomes. Thus provide new insights into targeting VIM in glioma cancer immunotherapy in combination with the current treatment.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shu Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Chen
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Wencong Ma
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shiping Lu
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Le He
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xi Chen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoling Zhang
- National Joint Engineering Laboratory for Human Disease Animal Models, Key Laboratory of Organ Regeneration and Transplantation, First Hospital of Jilin University, Changchun, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuan Jiang
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
18
|
Liu Y, Chen Y, Wang F, Lin J, Tan X, Chen C, Wu LL, Zhang X, Wang Y, Shi Y, Yan X, Zhao K. Caveolin-1 promotes glioma progression and maintains its mitochondrial inhibition resistance. Discov Oncol 2023; 14:161. [PMID: 37642765 PMCID: PMC10465474 DOI: 10.1007/s12672-023-00765-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Glioma is a lethal brain cancer and lacking effective therapies. Challenges include no effective therapeutic target, intra- and intertumoral heterogeneity, inadequate effective drugs, and an immunosuppressive microenvironment, etc. Deciphering the pathogenesis of gliomas and finding out the working mechanisms are urgent and necessary for glioma treatment. Identification of prognostic biomarkers and targeting the biomarker genes will be a promising therapy. METHODS From our RNA-sequencing data of the oxidative phosphorylation (OXPHOS)-inhibition sensitive and OXPHOS-resistant cell lines, we found that the scaffolding protein caveolin 1 (CAV1) is highly expressed in the resistant group but not in the sensitive group. By comprehensive analysis of our RNA sequencing data, Whole Genome Bisulfite Sequencing (WGBS) data and public databases, we found that CAV1 is highly expressed in gliomas and its expression is positively related with pathological processes, higher CAV1 predicts shorter overall survival. RESULTS Further analysis indicated that (1) the differentiated genes in CAV1-high groups are enriched in immune infiltration and immune response; (2) CAV1 is positively correlated with tumor metastasis markers; (3) the methylation level of CAV1 promoters in glioma group is lower in higher stage than that in lower stage; (4) CAV1 is positively correlated with glioma stemness; (5) higher expression of CAV1 renders the glioma cells' resistant to oxidative phosphorylation inhibitors. CONCLUSION Therefore, we identified a key gene CAV1 and deciphered its function in glioma progression and prognosis, proposing that CAV1 may be a therapeutic target for gliomas.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Chen
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Fei Wang
- Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, 201399, China
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiaoling Zhang
- National Joint Engineering Laboratory for Human Disease Animal Models, First Affiliated Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, First Hospital of Jilin University, Changchun, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Xiaoli Yan
- Laboratory of Immunology and Pathogen Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
19
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|