1
|
Wang T, Zhang Y, Liu H, Wu J. FOXM1 derived from triple-negative breast cancer exosomes promotes cancer progression by activating IDO1 transcription in macrophages to suppress ferroptosis and induce M2 polarization of tumor-associated macrophages. Genes Genet Syst 2025; 100:n/a. [PMID: 39428479 DOI: 10.1266/ggs.24-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
To explore the oncogenic mechanism of FOXM1 in the tumor microenvironment (TME) regarding triple-negative breast cancer (TNBC) promotion, the mRNA and protein levels of target genes in TNBC cells and their exosomes were detected by RT-qPCR and western blot. A co-culture model of TNBC cells and THP-1/M0 macrophages was established to detect the impact of co-culture on FOXM1 expression and the direction of macrophage polarization. A bioinformatics website was used to predict FOXM1 binding sites in the IDO1 promoter, which were further validated using dual-luciferase reporter and chromatin immunoprecipitation assays. Next, after erastin-induced ferroptosis, we conducted cell viability assays, apoptosis assays and other experiments to investigate whether the FOXM1/IDO1 axis regulates M2 macrophage polarization through ferroptosis. We found that FOXM1 was abundant in exosomes derived from TNBC cells, and that TNBC cells upregulated FOXM1 expression in THP-1 cells through exosomes to promote M2 macrophage polarization. Furthermore, FOXM1 upregulated IDO1 in M2-type tumor-associated macrophages (TAMs) by stimulating its transcription. Finally, FOXM1/IDO1 inhibited ferroptosis, promoting M2 macrophage polarization, thereby advancing TNBC progression. In conclusion, FOXM1 carried by TNBC cell-derived exosomes activated IDO1 transcription in TAMs to inhibit ferroptosis, promoting M2 polarization of TAMs and exerting carcinogenic effects.
Collapse
Affiliation(s)
- Tielin Wang
- Center of Breast and Thyroid Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and the Second Affiliated Hospital of Chengdu, Chongqing Medical University
| | - Yan Zhang
- Center of Breast and Thyroid Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and the Second Affiliated Hospital of Chengdu, Chongqing Medical University
| | - Hong Liu
- Center of Breast and Thyroid Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and the Second Affiliated Hospital of Chengdu, Chongqing Medical University
| | - Jian Wu
- Center of Breast and Thyroid Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and the Second Affiliated Hospital of Chengdu, Chongqing Medical University
| |
Collapse
|
2
|
He H, Wang L, Ma M. MOGAN for LUAD Subtype Classification by Integrating Three Omics Data Types. CANCER INNOVATION 2025; 4:e160. [PMID: 40026873 PMCID: PMC11868734 DOI: 10.1002/cai2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 03/05/2025]
Abstract
Background Lung adenocarcinoma (LUAD) is a highly heterogeneous cancer type with a poor prognosis. Accurate subtype identification can help guide its treatment. The traditional subtype identification methods using a single-omics approach make it difficult to comprehensively characterize the molecular features of LUAD. Identification of subtypes through multi-omics association strategies can effectively supplement the shortcomings of single-omics information. Methods In this study, we used the Generative Adversarial Network (GAN) to mine transcriptomic, proteomic, and epigenomic information and generate an integrated data set. The newly integrated data were then used to identify LUAD immune subtypes. In the improved GAN (MOGAN) method, we not only integrated multiple omics datasets but also included the interactions between proteins and genes and between methylation and genes. Thus, we achieved effective complementarity of multi-omics information. Results Two subtypes, MOGANTPM_S1 and MOGANTPM_S2, were identified using immune cell infiltration analysis and the integrated multi-omics data. MOGANTPM_S1 patients displayed higher immune cell infiltration, better prognosis, and sensitivity to immune checkpoint inhibitors (ICIs), while MOGANTPM_S2 had lower immune cell infiltration, poorer prognosis, and were insensitive to ICIs. Therefore, immunotherapy was more suitable for MOGANTPM_S1 patients in clinical practice. In addition, this study developed a LUAD subtype diagnostic model using the transcriptomic and proteomic features of five genes, which can be used to guide clinical subtype diagnosis. Conclusions In summary, the MOGAN method was applied to integrate three omics data types and successfully identify two LUAD immune subtypes with significant survival differences. This classification method may be useful for LUAD treatment decisions.
Collapse
Affiliation(s)
- Haibin He
- Chongqing Key Laboratory of Big Data for Bio IntelligenceChongqing University of Posts and TelecommunicationsChongqingChina
| | - Longxing Wang
- Chongqing Key Laboratory of Big Data for Bio IntelligenceChongqing University of Posts and TelecommunicationsChongqingChina
| | - Mingyue Ma
- Chongqing Key Laboratory of Big Data for Bio IntelligenceChongqing University of Posts and TelecommunicationsChongqingChina
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Tang Q, Li J, Zhang L, Zeng S, Bao Q, Hu W, He L, Huang G, Wang L, Liu Y, Zhao X, Yang S, Hu C. Orlistat facilitates immunotherapy via AKT-FOXO3a-FOXM1-mediated PD-L1 suppression. J Immunother Cancer 2025; 13:e008923. [PMID: 40139835 PMCID: PMC11951015 DOI: 10.1136/jitc-2024-008923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/02/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The immunotherapy targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death ligand-1 (PD-L1) has achieved significant breakthroughs, but further improvements are still needed in cancer treatment. METHODS We investigated orlistat, a drug approved by the Food and Drug Administration for the treatment of obesity and found that it can enhance the efficacy of CTLA-4 blockade immunotherapy. We conducted both in vivo and in vitro experiments to explore the mechanism by which orlistat increased antitumor immunity. RESULTS Orlistat enhances the efficacy of anti-CTLA-4 immunotherapy by suppressing tumor cell PD-L1 protein expression and boosting the transcription of interferon-stimulated genes (ISGs) and MHC-I. Mechanistically, orlistat inhibits AKT activity and subsequent phosphorylation of forkhead box O3a (FOXO3a) at its threonine (T) 32, serine (S) 253, thereby downregulating Forkhead box M1 (FOXM1) expression, which ultimately suppresses PD-L1 transcription. Specifically, inhibition of FOXM1 leads to FOXO3a accumulation through impaired AKT activity. FOXM1 activates protein kinase B (AKT) via acting as a scaffold to facilitate 3-phosphoinositide-dependent protein kinase 1 (PDK1) and AKT and interaction. In addition, orlistat enhances phosphorylated signal transducer and activator of transcription 1 (p-STAT1) at tyrosine (Y) 701, resulting in upregulation of ISGs and MHC-I. CONCLUSIONS Orlistat plays a crucial role in modulating the immune response and supporting the combination with CTLA-4 blockade to promote antitumor immunotherapy.
Collapse
Affiliation(s)
- Qingyun Tang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lianhua Zhang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shuo Zeng
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Qiyu Bao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Guiping Huang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Liting Wang
- Army Military Medical University, Chongqing, China
| | - Yunyi Liu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Xiaoyan Zhao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Changjiang Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| |
Collapse
|
4
|
Kong Z, Zhou P, Xu J, Zhang Y, Wang Y. RFX2 downregulates RASSF1 expression and YAP phosphorylation through Hippo signaling to promote immune escape in lung adenocarcinoma. Cell Div 2025; 20:7. [PMID: 40069841 PMCID: PMC11895337 DOI: 10.1186/s13008-025-00147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE Regulatory Factor X (RFX) transcription factors have been implicated in different cancers. Ras association domain family (RASSF) has been shown clinical significance in lung cancer. This paper was to investigate the interaction of RFX2 and RASSF1 in lung adenocarcinoma (LUAD). METHODS The transcriptome differences of LUAD patients in GSE32863, GSE43458, and GSE21933 datasets were analyzed. A-549 and NCI-H358 cell lines after overexpression of RFX2 were co-cultured with activated CD8+ T cells, and the release of IFN-γ, GZMB, PRF1 by CD8+ T cells, and PD-L1 in the LUAD cells were detected. Cell viability, invasion, and apoptosis were analyzed by CCK-8, Transwell, and TUNEL assays. Dual-luciferase assay and ChIP were conducted to detect the interaction between RFX2 and RASSF1 promoter. An in vivo tumor model was constructed to monitor tumor growth. YAP protein levels and phosphorylation were measured. A-549 and NCI-H358 cells treated with DMSO or PY-60 after RFX2 overexpression were co-cultured with activated CD8+ T cells. RESULTS RFX2 was notably downregulated in LUAD. RFX2 overexpression increased infiltrating CD8+ T cells within transplanted tumors and inhibited immune escape, proliferation, and invasion of LUAD cells. RFX2 was enriched in the RASSF1 promoter, and RFX2 activated RASSF1 transcription by binding to the RASSF1 promoter. RASSF1 knockdown reversed the ability of RFX2 overexpression to inhibit immune escape. RFX2 depletion downregulated RASSF1, which reduced YAP phosphorylation, thus affecting the Hippo pathway to promote the immune escape. CONCLUSION RFX2 Loss in LUAD downregulates RASSF1 expression and YAP phosphorylation, thereby promoting immune escape through Hippo signaling.
Collapse
Affiliation(s)
- Zhenzhen Kong
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Ping Zhou
- Department of Medical Laboratory, Xuzhou Mining Group General Hospital, Xuzhou, 221011, Jiangsu, People's Republic of China
| | - Jiahao Xu
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Ying Zhang
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Yong Wang
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China.
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Li Z, Chen L, Wei Z, Liu H, Zhang L, Huang F, Wen X, Tian Y. A novel classification method for LUAD that guides personalized immunotherapy on the basis of the cross-talk of coagulation- and macrophage-related genes. Front Immunol 2025; 16:1518102. [PMID: 40018029 PMCID: PMC11866059 DOI: 10.3389/fimmu.2025.1518102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Purpose The coagulation process and infiltration of macrophages affect the progression and prognosis of lung adenocarcinoma (LUAD) patients. This study was designed to explore novel classification methods that better guide the precise treatment of LUAD patients on the basis of coagulation and macrophages. Methods Weighted gene coexpression network analysis (WGCNA) was applied to identify M2 macrophage-related genes, and TAM marker genes were acquired through the analysis of scRNA-seq data. The MSigDB and KEGG databases were used to obtain coagulation-associated genes. The intersecting genes were defined as coagulation and macrophage-related (COMAR) genes. Unsupervised clustering analysis was used to evaluate distinct COMAR patterns for LUAD patients on the basis of the COMAR genes. The R package "limma" was used to identify differentially expressed genes (DEGs) between COMAR patterns. A prognostic risk score model, which was validated through external data cohorts and clinical samples, was constructed on the basis of the COMAR DEGs. Results In total, 33 COMAR genes were obtained, and three COMAR LUAD subtypes were identified on the basis of the 33 COMAR genes. There were 341 DEGs identified between the three COMAR subtypes, and 60 prognostic genes were selected for constructing the COMAR risk score model. Finally, 15 prognosis-associated genes (CORO1A, EPHA4, FOXM1, HLF, IFIH1, KYNU, LY6D, MUC16, PPARG, S100A8, SPINK1, SPINK5, SPP1, VSIG4, and XIST) were included in the model, which was efficient and robust in predicting LUAD patient prognosis and clinical outcomes in patients receiving anti-PD-1/PD-L1 immunotherapy. Conclusions LUAD can be classified into three subtypes according to COMAR genes, which may provide guidance for precise treatment.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling Chen
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Lu Zhang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fujing Huang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Wen
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Tian
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Jiang J, Shen T, Chen D, Dai Z, Wang X, Meng Q, Yang Z, Zhang D, Guo X, Xu J, Gu J, Wang C. FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer. Cell Biochem Biophys 2025:10.1007/s12013-024-01653-7. [PMID: 39899193 DOI: 10.1007/s12013-024-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.
Collapse
Affiliation(s)
- Jian Jiang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianci Shen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zihao Dai
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuelong Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhuo Yang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China
| | - Di Zhang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyi Guo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, Liaoning, China
| | - Jiangning Gu
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China.
| | - Changmiao Wang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Li J, Wang Y, Wei S, Xu S, Dai S, Zhang L, Tian Z, Zhao L, Lv H. NEK2 Promotes ESCC Malignant Progression by Inhibiting Cellular Senescence via the FOXM1/c-Myc/p27 Signaling Pathway. Mol Carcinog 2025; 64:244-259. [PMID: 39503194 DOI: 10.1002/mc.23839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 01/15/2025]
Abstract
Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is a crucial serine-threonine kinase involved in the process of cell mitosis. However, the precise relationship between NEK2 and esophageal squamous cell carcinoma (ESCC) remains inadequately understood. NEK2 expression in ESCC tissues was assessed through bioinformatics analysis, reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry, revealing a correlation with ESCC patient prognosis. Cultured ESCC cells and human normal esophageal epithelial cells (HEEC) were used to investigate the effects of NEK2 knockdown on the development and progression of ESCC by integrated confluence algorithm, colony formation, wound-healing, transwell, and ESCC xenograft tumor model, in vitro and in vivo. In ESCC tissues, NEK2 was found to be significantly upregulated, and its expression correlated with poor prognosis in ESCC patients. NEK2 may facilitate ESCC development by regulating cell proliferation, migration, and invasion. Additionally, results from in vivo experiments suggested that NEK2 knockdown can inhibit tumor growth. Moreover, forkhead box M1 (FOXM1) was identified as a potential downstream target of NEK2 in the regulation of ESCC, with its overexpression reversing the effects of NEK2 knockdown on ESCC. Mechanistic studies also indicated that NEK2 may promote the malignant progression of ESCC by inhibiting cellular senescence through the activation of the FOXM1/c-Myc/p27 signaling pathways, which may provide a novel perspective for the management of ESCC.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaojie Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention, and Therapy of Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention, and Therapy of Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shi Xu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention, and Therapy of Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li Zhang
- Department of Geriatric, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention, and Therapy of Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huilai Lv
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Zhang L, Wei F, Sun Q, Huang X, Zou Q, Jiang M, Su Y, Li S, Li X, Xie K, He J. FOXM1-Driven CKS1B Upregulation Promotes Pancreatic Cancer Progression and Therapeutic Resistance. Int J Biol Sci 2025; 21:1047-1064. [PMID: 39897042 PMCID: PMC11781179 DOI: 10.7150/ijbs.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with limited treatment options. Investigating novel therapeutic targets and understanding mechanisms of chemoresistance are crucial for improving patient outcomes. This study investigated the role of CKS1B in PDAC carcinogenesis, stemness and chemoresistance, and explores the underlying mechanisms driving its upregulation. The findings may provide novel therapeutic insights and potential strategies for the treatment of PDAC. Methods: CKS1B expression was analyzed in PDAC tissues and cell lines, its impact on cell proliferation, migration, apoptosis, stemness and chemosensitivity were evaluated by using in vitro and in vivo models, and its underlying mechanistic connection to transcription factor FOXM1 was explored by using molecular biology methods. Results: CKS1B was significantly upregulated in PDAC tissues and correlated with poor patient survival. CKS1B promoted PDAC cell proliferation, migration, and inhibited apoptosis. Expression of CKS1B enhanced the stemness properties of pancreatic cancer. CKS1B knockdown sensitized PDAC cells to the treatment of gemcitabine and oxaliplatin. Mechanistically, CKS1B is transcriptionally regulated by FOXM1, establishing a novel FOXM1-CKS1B signaling axis that regulates carcinogenesis, proliferation, migration, stemness, apoptosis, and drug resistance in PDAC. Conclusions: Our findings strongly suggest that CKS1B plays a critical role in PDAC progression, stemness and chemoresistance. Targeting the FOXM1-CKS1B axis represents a promising therapeutic strategy for PDAC patients.
Collapse
Affiliation(s)
- Liuxi Zhang
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Fang Wei
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Qihui Sun
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Xinyan Huang
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Qi Zou
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Mengmeng Jiang
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Yuling Su
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Shu Li
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Keping Xie
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Jie He
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
9
|
Chen T, Ni M, Wang H, Xue F, Jiang T, Wu X, Li C, Liang S, Hong L, Wu Q. The Reparative Effect of FOXM1 in Pulmonary Disease. Lung 2024; 203:1. [PMID: 39601876 DOI: 10.1007/s00408-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
FOXM1, a key member of the FOX transcription factor family, maintains cell homeostasis by accurately controlling diverse biological processes, such as proliferation, cell cycle progression, differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, redox signaling, and drug resistance. In recent years, an increasing number of studies have focused on the role of FOXM1 in the occurrence of multiple diseases and various pathophysiological processes. In the field of pulmonary diseases, FOXM1 has a certain reparative effect by promoting cell proliferation, regulating cell cycle, antifibrosis, participating in inflammation regulation, and synergizing with other signaling pathways. On the basis of the repair properties of FOXM1, this review explores its therapeutic potential in acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, lung cancer, and other lung diseases, with the goal of providing a new perspective for the analysis of FOXM1-related mechanism of action and the expansion of clinical treatment strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Ming Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Hao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Fei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Xuanpeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Chenxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Shuhao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Leyu Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
10
|
Dilmac S, Hamurcu Z, Ozpolat B. Therapeutic Landscape of FOXM1 in Triple-Negative Breast Cancer and Aggressive Solid Cancers. Cancers (Basel) 2024; 16:3823. [PMID: 39594778 PMCID: PMC11593102 DOI: 10.3390/cancers16223823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer, lacking common treatment targets such as estrogen (ER), progesterone (PR), and HER2 receptors. This subtype is associated with significant heterogeneity, chemoresistance, early recurrence, metastasis, and poor patient survival. FOXM1 is a cancer-promoting transcription factor that plays a critical role in TNBC and other highly aggressive cancers by driving cell proliferation, invasion, metastasis, and drug resistance. In TNBC, mutations in the TP53 gene-detected in approximately 80% of patients-lead to the overexpression of FOXM1, making it a promising therapeutic target. Beyond TNBC, FOXM1 is implicated in other solid cancers, such as brain (glioblastoma), lung, and pancreatic cancers, and is considered an Achilles' heel of aggressive cancers. Despite its potential as a therapeutic target, there are currently no FDA-approved FOXM1 inhibitors, and none have advanced to clinical trials. This review explores the role of FOXM1 in cancer progression and highlights the current status of efforts to develop effective FOXM1 inhibitors.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri 38030, Turkey;
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| |
Collapse
|
11
|
Xu B, Zhang L, Lin L, Lin Y, Lai F. Development of a novel disulfidptosis-correlated m6A/m1A/m5C/m7G gene signature to predict prognosis and therapeutic response for lung adenocarcinoma patients by integrated machine-learning. Discov Oncol 2024; 15:635. [PMID: 39520644 PMCID: PMC11550309 DOI: 10.1007/s12672-024-01530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) represents a significant global health burden, necessitating advanced prognostic tools for improved patient management. RNA modifications (m6A, m1A, m5C, m7G), and disulfidptosis, a novel cell death mechanism, have emerged as promising biomarkers and therapeutic targets in cancer. METHODS We systematically compiled disulfidptosis-correlated genes and RNA modification-related genes from existing literature. A novel disulfidptosis-correlated m6A/m1A/m5C/m7G riskscore was computed using integrated machine-learning algorithms. Transcriptomic data from TCGA and GEO databases were downloaded analyzed. Single-cell RNA-sequencing data from the TISCH database was processed using the Seurat package. Genes' protein-protein interaction network was constructed using the String database. Functional phenotype analysis was performed using GSVA, ClusterProfiler, and IOBR packages. Consensus clustering divided patients into two distinct groups. Drug sensitivity predictions were obtained from the GDSC1 database and predicted using the Oncopredict package. RESULTS The disulfidptosis-correlated m6A/m1A/m5C/m7G risk score effectively stratified LUAD patients into prognostically distinct groups, demonstrating superior predictive accuracy compared to conventional clinical parameters. Patients in different risk groups exhibited significant molecular and clinical differences. Subsequent analyses identified two molecular subtypes associated with RNA modification and disulfidptosis, revealing differences in immune infiltration and prognosis. Functional enrichment analyses highlighted pathways involving RNA modification and disulfidptosis, underscoring their roles in LUAD pathogenesis. Single-cell analysis revealed distinct features between high- and low-risk status cells. CONCLUSION This study introduces a novel disulfidptosis-correlated m6A/m1A/m5C/m7G risk score as a robust prognostic tool for LUAD, integrating insights from RNA modifications and cell death mechanisms. The risk score enhances prognostic stratification and identifies potential targets for personalized therapeutic strategies in LUAD. This comprehensive approach emphasizes the critical roles of RNA modifications and disulfidptosis in LUAD biology, paving the way for future research and clinical applications aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Bilin Xu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Liangyu Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Lijie Lin
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfeng Lin
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Fancai Lai
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
12
|
Zhao Z, Cheng J, Hou Q, Zhu J, Chen T, Lu S, Wu G, Lv H, Wu X. Role of FOXM1 and AURKB in regulating keratinocyte function in psoriasis. Open Med (Wars) 2024; 19:20241049. [PMID: 39381423 PMCID: PMC11459273 DOI: 10.1515/med-2024-1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Objective This study investigated the effect of forkhead box M1 (FOXM1) and Aurora kinase B (AURKB) on the epidermal function of keratinocytes. Methods Bioinformatics analysis was used to analyze the co-expression network of FOXM1 and its correlation with AURKB. The expression of FOXM1 and AURKB in tissues and cells was detected by immunofluorescence and real-time quantitative polymerase chain reaction, respectively. HaCaT cells were transfected with si-FOXM1 to knock down FOXM1. Cell proliferation was detected by cell counting kit-8 assay. Cell migration was detected by scratch assay. Cell invasion was detected by the Transwell invasion assay. Cell apoptosis and cell cycle were detected by flow cytometry. Results FOXM1 and AURKB were positively correlated and highly expressed in psoriatic lesions. After transfection of si-FOXM1, the expression levels of FOXM1 and AURKB genes significantly decreased. The proliferation of HaCaT cells decreased, the apoptosis rate increased significantly, and the proportion of cells in the G1 phase increased significantly, while the proportion of cells in the S phase decreased significantly. The scratch closure of HaCaT cells was reduced, and the number of cell invasions decreased significantly. Conclusion FOXM1 and AURKB may affect the progression of psoriasis by regulating the proliferation, cell cycle, migration, and invasion of keratinocytes.
Collapse
Affiliation(s)
- Zhaofeng Zhao
- Central Laboratory, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Jie Cheng
- Department of Urology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Qiang Hou
- Department of Dermatology, Xuhui District Dahua Hospital,
Shanghai, 200237, P.R. China
| | - Jian Zhu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Tu Chen
- Department of Dermatology, Changqiao Street Community Health Service Center,
Shanghai, 200231, P.R. China
| | - Sheng Lu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Guiju Wu
- Department of Dermatology, Xuhui District Dahua Hospital,
Shanghai, 200237, P.R. China
| | - Hongli Lv
- Department of Dermatology, Jia Ding Central Hospital,
No. 01, Dingcheng Road, Jiading District, Shanghai, 201899, P.R. China
| | - Xiujuan Wu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, No. 366, Longchuan North Road, Xuhui District, Shanghai, 200031, P.R. China
| |
Collapse
|
13
|
Lingo JJ, Voigt E, Quelle DE. Linking FOXM1 and PD-L1 to CDK4/6-MEK targeted therapy resistance in malignant peripheral nerve sheath tumors. Oncotarget 2024; 15:638-643. [PMID: 39347707 PMCID: PMC11441412 DOI: 10.18632/oncotarget.28650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, Ras-driven sarcomas characterized by loss of the NF1 tumor suppressor gene and hyperactivation of MEK and CDK4/6 kinases. MPNSTs lack effective therapies. We recently demonstrated remarkable efficacy of dual CDK4/6-MEK inhibition in mice with de novo MPNSTs, which was heightened by combined targeting of the immune checkpoint protein, PD-L1. The triple combination therapy targeting CDK4/6, MEK, and PD-L1 led to extended MPNST regression and improved survival, although most tumors eventually acquired drug resistance. Here, we consider the immune activation phenotype caused by CDK4/6-MEK inhibition in MPNSTs that uniquely involved intratumoral plasma cell accumulation. We discuss how PD-L1 and FOXM1, a tumor-promoting transcription factor, are functionally linked and may be key mediators of resistance to CDK4/6-MEK targeted therapies. Finally, the role of FOXM1 in suppressing anti-tumor immunity and potentially thwarting immune-based therapies is considered. We suggest that future therapeutic strategies targeting the oncogenic network of CDK4/6, MEK, PD-L1, and FOXM1 represent exciting future treatment options for MPNST patients.
Collapse
Affiliation(s)
- Joshua J. Lingo
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Luo X, Huang W, Li S, Sun M, Hu D, Jiang J, Zhang Z, Wang Y, Wang Y, Zhang J, Wu Z, Ji X, Liu D, Chen X, Zhang B, Liang H, Li Y, Liu B, Wang S, Xu X, Nie Y, Wu K, Fan D, Xia L. SOX12 Facilitates Hepatocellular Carcinoma Progression and Metastasis through Promoting Regulatory T-Cells Infiltration and Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310304. [PMID: 39072947 PMCID: PMC11423149 DOI: 10.1002/advs.202310304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Despite the success of immunotherapy in treating hepatocellular carcinoma (HCC), HCC remains a severe threat to health. Here, a crucial transcription factor, SOX12, is revealed that induces the immunosuppression of liver tumor microenvironment. Overexpressing SOX12 in HCC syngeneic models increases intratumoral regulatory T-cell (Treg) infiltration, decreases CD8+T-cell infiltration, and hastens HCC metastasis. Hepatocyte-specific SOX12 knockout attenuates DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SOX12 knock-in accelerates these effects. Mechanistically, SOX12 transcriptionally activates C-C motif chemokine ligand 22 (CCL22) expression to promote the recruitment and suppressive activity of Tregs. Moreover, SOX12 transcriptionally upregulates CD274 expression to suppress CD8+T-cell infiltration. Either knockdown of CCL22 or PD-L1 dampens SOX12-mediated HCC metastasis. Blocking of CC chemokine receptor 4 (CCR4), a receptor for CCL22, by inhibitor C-021 or Treg-specific knockout of CCR4 inhibits SOX12-mediated HCC metastasis. Transforming growth factor-β1 (TGF-β1)/TGFβR1-Smad2/3/4 is identified as a key upstream signaling for SOX12 overexpression in HCC cells. Combining C-021 or TGFβR1 inhibitor galunisertib with anti-PD-L1 exhibits an enhanced antitumor effect in two HCC models. Collectively, the findings demonstrate that SOX12 contributes to HCC immunosuppression through the CCL22/CCR4-Treg and PD-L1-CD8+T axes. Blocking of CCR4 or TGFβR1 improves the efficacy of anti-PD-L1 in SOX12-mediated HCC.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenjie Huang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Siwen Li
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengyu Sun
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dian Hu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Junqing Jiang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zerui Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yijun Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yufei Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiaqian Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhangfan Wu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ji
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Danfei Liu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoping Chen
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Bixiang Zhang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Huifang Liang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Limin Xia
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| |
Collapse
|
15
|
Zheng Q, Zou T, Wang W, Zhang C, Hu S, Cheng X, Liu R, Wang G, Sun P, Zhou X, Yang B, Xu J, Gao Y, Gu J. Necroptosis-Mediated Synergistic Photodynamic and Glutamine-Metabolic Therapy Enabled by a Biomimetic Targeting Nanosystem for Cholangiocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309203. [PMID: 38837691 PMCID: PMC11304281 DOI: 10.1002/advs.202309203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 06/07/2024]
Abstract
Targeted delivery of glutamine metabolism inhibitors holds promise for cholangiocarcinoma therapy, yet effective delivery vehicles remain a challenge. This study reports the development of a biomimetic nanosystem, termed R-CM@MSN@BC, integrating mesoporous organosilicon nanoparticles with reactive oxygen species-responsive diselenide bonds for controlled release of the glutamine metabolism inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) and the photosensitizer Ce6. Erythrocyte membrane coating, engineered with Arg-Gly-Asp (RGD) peptides, not only enhanced biocompatibility but also improved tumor targeting and tissue penetration. Upon laser irradiation, R-CM@MSN@BC executed both photodynamic and glutamine-metabolic therapies, inducing necroptosis in tumor cells and triggering significant immunogenic cell death. Time-of-flight mass cytometry analysis revealed that R-CM@MSN@BC can remodel the immunosuppressive tumor microenvironment by polarizing M1-type macrophages, reducing infiltration of M2-type and CX3CR1+ macrophages, and decreasing T cell exhaustion, thereby increasing the effectiveness of anti-programmed cell death ligand 1 immunotherapy. This strategy proposed in this study presents a viable and promising approach for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Qichang Zheng
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tianhao Zou
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Weimin Wang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chen Zhang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaobo Hu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiang Cheng
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ran Liu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guoliang Wang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ping Sun
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xing Zhou
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bing Yang
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianjun Xu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yang Gao
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jinyang Gu
- Center for Liver TransplantationUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory of Organ TransplantationMinistry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubei430022China
| |
Collapse
|
16
|
Chen Y, Wu S, Han Y, Shi H, Yuan J, Cui W. LncRNA SH3PXD2A-AS1 facilitates cisplatin resistance in non-small cell lung cancer by regulating FOXM1 succinylation. BMC Cancer 2024; 24:848. [PMID: 39020302 PMCID: PMC11256434 DOI: 10.1186/s12885-024-12624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Forkhead Box Protein M1/metabolism
- Forkhead Box Protein M1/genetics
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Drug Resistance, Neoplasm/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Animals
- Mice
- Sirtuins/metabolism
- Sirtuins/genetics
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Yunfeng Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Siyan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Yu Han
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Hai Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Jieqing Yuan
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China.
| | - Wenjie Cui
- Cancer Institute, Xuzhou Medical University, No. 206, Tongshan Road, Xuzhou, Jiangsu, 221116, China.
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
17
|
Peng H, Ye T, Deng L, Yang X, Li Q, Tong J, Guo J. Activin and Hepatocyte Growth Factor Promotes Colorectal Cancer Stemness and Metastasis through FOXM1/SOX2/CXCR4 Signaling. Gut Liver 2024; 18:476-488. [PMID: 37458065 PMCID: PMC11096902 DOI: 10.5009/gnl220531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023] Open
Abstract
Background/Aims Cancer stem cells (CSCs) are believed to drive tumor development and metastasis. Activin and hepatocyte growth factor (HGF) are important cytokines with the ability to induce cancer stemness. However, the effect of activin and HGF combination treatment on CSCs is still unclear. Methods In this study, we sequentially treated colorectal cancer cells with activin and HGF and examined CSC marker expression, self-renewal, tumorigenesis, and metastasis. The roles of forkhead box M1 (FOXM1) and sex-determining region Y-box 2 (SOX2), two stemness-related transcription factors, in activin/HGF-induced aggressive phenotype were explored. Results Activin and HGF treatment increased the expression of CSC markers and enhanced sphere formation in colorectal cancer cells. The tumorigenic and metastatic capacities of colorectal cancer cells were enhanced upon activin and HGF treatment. Activin and HGF treatment preferentially promoted stemness and metastasis of CD133+ subpopulations sorted from colorectal cancer cells. FOXM1 was upregulated by activin and HGF treatment, and the knockdown of FOXM1 blocked activin/HGF-induced stemness, tumorigenesis, and metastasis of colorectal cancer cells. Similarly, SOX2 was silencing impaired sphere formation of activin/HGF-treated colorectal cancers. Overexpression of SOX2 rescued the stem cell-like phenotype in FOXM1-depleted colorectal cancer cells with activin and HGF treatment. Additionally, the inhibition of FOXM1 via thiostrepton suppressed activin/HGF-induced stemness, tumorigenesis and metastasis. Conclusions Sequential treatment with activin and HGF promotes colorectal cancer stemness and metastasis through activation of the FOXM1/SOX2 signaling. FOXM1 could be a potential target for the treatment of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Hong Peng
- Department of Gastroenterology and Hepatology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Lei Deng
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiaofang Yang
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Qingling Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology and Hepatology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Zhang Y, Jia Q, Li F, Luo X, Wang Z, Wang X, Wang Y, Zhang Y, Li M, Bian L. Identification of molecular subtypes and a prognostic signature based on m6A/m5C/m1A-related genes in lung adenocarcinoma. Sci Rep 2024; 14:7543. [PMID: 38555384 PMCID: PMC10981664 DOI: 10.1038/s41598-024-57910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Lung cancer, specifically the histological subtype lung adenocarcinoma (LUAD), has the highest global occurrence and fatality rate. Extensive research has indicated that RNA alterations encompassing m6A, m5C, and m1A contribute actively to tumorigenesis, drug resistance, and immunotherapy responses in LUAD. Nevertheless, the absence of a dependable predictive model based on m6A/m5C/m1A-associated genes hinders accurately predicting the prognosis of patients diagnosed with LUAD. In this study, we collected patient data from The Cancer Genome Atlas (TCGA) and identified genes related to m6A/m5C/m1A modifications using the GeneCards database. The "ConsensusClusterPlus" R package was used to produce molecular subtypes by utilizing genes relevant to m6A/m5C/m1A identified through differential expression and univariate Cox analyses. An independent prognostic factor was identified by constructing a prognostic signature comprising six genes (SNHG12, PABPC1, IGF2BP1, FOXM1, CBFA2T3, and CASC8). Poor overall survival and elevated expression of human leukocyte antigens and immune checkpoints were correlated with higher risk scores. We examined the associations between the sets of genes regulated by m6A/m5C/m1A and the risk model, as well as the immune cell infiltration, using algorithms such as ESTIMATE, CIBERSORT, TIMER, ssGSEA, and exclusion (TIDE). Moreover, we compared tumor stemness indices (TSIs) by considering the molecular subtypes related to m6A/m5C/m1A and risk signatures. Analyses were performed based on the risk signature, including stratification, somatic mutation analysis, nomogram construction, chemotherapeutic response prediction, and small-molecule drug prediction. In summary, we developed a prognostic signature consisting of six genes that have the potential for prognostication in patients with LUAD and the design of personalized treatments that could provide new versions of personalized management for these patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Qiuye Jia
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Fangfang Li
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Xuan Luo
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Zhiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Yinglin Zhang
- Wenshan People's Hospital, Yunnan, Yunnan Province, China
| | - Muye Li
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China.
| |
Collapse
|
19
|
Tian M, Li J, Wu H, Wu Y. FOXM1 promotes the progression of non-small cell lung cancer by inhibiting miR-509-5p expression via binding to the miR-509-5p promoter region. Heliyon 2024; 10:e27147. [PMID: 38495135 PMCID: PMC10943339 DOI: 10.1016/j.heliyon.2024.e27147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Background Forkhead box M1 (FOXM1) functions as a transcription factor and is consistently overexpressed in various cancers, including non-small-cell lung-, breast-, cervical-, and colorectal cancer. Its overexpression is associated with poor prognosis in patients with non-small-cell lung cancer, although the detailed mechanisms by which FOXM1 promotes the development of non-small-cell lung cancer remain unclear. Objective The mechanism of FOXM1 in migration, invasion, apoptosis, and viability of lung cancer cells was investigated. Methods Transwell assay, scratch test, and flow cytometry were employed to study the effects of FOXM1 on migration, invasion, and apoptosis in A549 cells. A quantitative polymerase chain reaction was used to determine the impact of FOXM1 on miR-509-5p expression in A549 cells. Dual-luciferase reporter gene assay and chromatin immunoprecipitation were adopted to investigate the molecular mechanisms of FOXM1 on miR-509-5p expression. Results FDI-6 (a FOXM1 inhibitor) reduced the protein abundance of FOXM1, thereby increasing the expression of miR-509-5p in A549 cells. Moreover, FDI-6 treatment significantly reduced migration, invasion, and viability of A549 cells while promoting cell apoptosis. Furthermore, miR-509-5p inhibitor obviously alleviated the biological effects of FDI-6 on A549 cells, suggesting that FOXM1 primarily exerted its cancer promoting effect by regulating miR-509-5p. Mechanistically, FOXM1 directly bound to the miR-509-5p promoter to inhibit miR-509-5p expression. Conclusion FOXM1 directly binds to the promoter region of miR-509-5p to form a negative feedback loop, thereby inhibiting miR-509-5p expression and promoting the development of non-small-cell lung cancer. This study is expected to complement research on the pathogenesis of non-small-cell lung cancer and promote the development of novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Mengcha Tian
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Jiaming Li
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Huihui Wu
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Yuying Wu
- Department of General Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
20
|
Ziman B, Yang Q, Zheng Y, Sheth M, Nam C, Zhao H, Zhang L, Hu B, Bhowmick NA, Sinha UK, Lin DC. Epigenomic analyses identify FOXM1 as a key regulator of anti-tumor immune response in esophageal adenocarcinoma. Cell Death Dis 2024; 15:152. [PMID: 38373993 PMCID: PMC10876663 DOI: 10.1038/s41419-024-06488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Unlike most cancer types, the incidence of esophageal adenocarcinoma (EAC) has rapidly escalated in the western world over recent decades. Using whole genome bisulfite sequencing (WGBS), we identify the transcription factor (TF) FOXM1 as an important epigenetic regulator of EAC. FOXM1 plays a critical role in cellular proliferation and tumor growth in EAC patient-derived organoids and cell line models. We identify ERBB2 as an upstream regulator of the expression and transcriptional activity of FOXM1. Unexpectedly, gene set enrichment analysis (GSEA) unbiased screen reveals a prominent anti-correlation between FOXM1 and immune response pathways. Indeed, syngeneic mouse models show that FOXM1 inhibits the infiltration of CD8+ T cells into the tumor microenvironment. Consistently, FOXM1 suppresses CD8+ T cell chemotaxis in vitro and antigen-dependent CD8+ T cell killing. This study characterizes FOXM1 as a significant EAC-promoting TF and elucidates its novel function in regulating anti-tumor immune response.
Collapse
Affiliation(s)
- Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA, 90089, USA
- Department of Otolaryngology Head and Neck, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Qian Yang
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 127S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Yueyuan Zheng
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 127S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Megha Sheth
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA, 90089, USA
| | - Chehyun Nam
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA, 90089, USA
| | - Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA, 90089, USA
| | - Le Zhang
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 127S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Boyan Hu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA, 90089, USA
| | - Neil A Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 127S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Uttam K Sinha
- Department of Otolaryngology Head and Neck, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA.
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA, 90089, USA.
- Department of Otolaryngology Head and Neck, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
22
|
Zhao Z, Yua Y. Antibiotic adoption effects on nutrition and quality of life in lung cancer patients undergoing radiotherapy and chemotherapy: A meta-analysis. Technol Health Care 2024; 32:4515-4536. [PMID: 39520156 PMCID: PMC11612965 DOI: 10.3233/thc-240660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Lung cancer (LC) is one of the leading causes of death worldwide. Treatment methodologies such as chemotherapy and radiotherapy have improved patient survival rates. Nevertheless, these treatments can also lead to adverse reactions and impact patients' nutritional status and quality of life (QOL). Antibiotics are commonly used for treating infections, but there is still controversy regarding their potential adverse effects on LC patients. OBJECTIVE This work aimed to investigate the impact of antibiotic adoption on the nutritional status and QOL of LC patients undergoing radiotherapy or chemotherapy, providing valuable insights for the clinical management of LC. METHODS A meta-analysis approach was employed to comprehensively evaluate the relationship by synthesizing relevant literature. Published studies were identified through searches in databases such as PubMed, EMBASE, Cochrane Library, Web of Science, and CNKI. The inclusion criteria encompassed randomized controlled trials, cohort studies, and cross-sectional studies. Assessment indicators included patient weight, BMI, hemoglobin levels, and QOL. Meta-analysis was conducted using software such as the Cochrane Collaboration and RevMan5.3. Heterogeneity was evaluated using the Higgins I2 index, where values between 25% and 50% indicate moderate heterogeneity, and values greater than 50% indicate substantial heterogeneity. RESULTS 12 eligible studies involving 1,917 patients were finally included. LC patients who received antibiotics during radiotherapy or chemotherapy were found to have a higher risk of malnutrition. The antibiotic group exhibited a more significant decrease in body mass index (BMI) (P< 0.05) and lower serum albumin levels (P< 0.05) versus the control (C) group. Additionally, the overall QOL scores in the antibiotic group were dramatically lower than those in the C group, showing a significant difference with P< 0.05. Sensitivity analysis indicated that the overall conclusions of this work were robust and unbiased. CONCLUSION Antibiotics in LC patients undergoing radiotherapy or chemotherapy may increase the risk of malnutrition and decrease their QOL. Hence, physicians should carefully consider antibiotics and take necessary preventive measures and supportive treatments to improve LC patients' nutritional status and QOL.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiangzhaung, Hebei, China
| | - Yadong Yua
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiangzhaung, Hebei, China
| |
Collapse
|
23
|
Ji W, Jin Y, Jiang W. Foxm1-Mediated Transcriptional Inactivation of NLRP3 Inflammasome Promotes Immunosuppression in Cervical Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:35-45. [PMID: 39180206 DOI: 10.1615/critreveukaryotgeneexpr.2024053577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Foxm1 functions as an oncogene in multiple human malignancies, including cervical cancer. However, the potential of Foxm1 in the tumor microenvironment (TME) is still unknown. The purpose of the present study is to investigate the role of Foxm1 in CD8+ T cell anti-tumor immunity. RT-qPCR is conducted to calculate mRNA levels. JASPAR is used to predict the binding sites between Foxm1 and NLRP3. ChIP assay is performed to verify the occupancy of Foxm1 on the promoter of NLRP3. Modulatory relationship between Foxm1 and NLRP3 is verified by luciferase assay. In vivo assays are conducted to further verify the role of Foxm1/NLRP3 axis in cervical cancer. HE staining assay is applied for histological analysis. Flow cytometry is conducted to determine the functions of immune cells. We found that Foxm1 knockdown decreases tumor burden and suppresses tumor growth of cervical cancer. Foxm1 knock-down promotes the infiltration of CD8+ T cells. Foxm1 deficiency inhibits the exhaustion of CD8+ T cells and facilitates the maintenance of CD8+ effector and stem-like T cells. Moreover, Foxm1 transcriptionally inactivates NLRP3 and suppresses the expression of innate cytokines IL-1β and IL-18. However, inhibition of NLRP3 inflammasome or neutralizing IL-1β and IL-18 inhibits anti-tumor immunity and promoted tumor growth in Foxm1 deficiency in CD8+ T cells. In summary, targeting Foxm1 mediates the activation of NLRP3 inflammasome and stimulates CD8+ T cell anti-tumor immunity in cervical cancer.
Collapse
Affiliation(s)
- Weipeng Ji
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Wen Jiang
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University
| |
Collapse
|
24
|
Fei W, Yan Y, Liu G, Peng B, Liu Y, Chen Q. High-risk histological subtype-related FAM83A hijacked FOXM1 transcriptional regulation to promote malignant progression in lung adenocarcinoma. PeerJ 2023; 11:e16306. [PMID: 37904848 PMCID: PMC10613442 DOI: 10.7717/peerj.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Background According to the histopathology, lung adenocarcinoma (LUAD) could be divided into five distinct pathological subtypes, categorized as high-risk (micropapillary and solid) group, intermediate-risk (acinar and papillary) group, and low-risk (lepidic) group. Despite this classification, there is limited knowledge regarding the role of transcription factors (TFs) in the molecular regulation of LUAD histology patterns. Methods Publish data was mined to explore the candidate TFs associated with high-risk histopathology in LUAD, which was validated in tissue samples. Colony formation, CCK8, EdU, transwell, and matrigel assays were performed to determine the biological function of FAM83A in vitro. Subcutaneous tumor-bearing in BALB/c nude mice and xenograft perivitelline injection in zebrafish were utilized to unreal the function of FAM83A in vivo. We also performed chromatin immunoprecipitation (ChIP), dual-luciferase reporter, and rescue assays to uncover the underline mechanism of FAM83A. Immunohistochemistry (IHC) was performed to confirm the oncogenic role of FAM83A in clinical LUAD tissues. Results Screening the transcriptional expression data from TCGA-LUAD, we focus on the differentially expressed TFs across the divergent pathological subtypes, and identified that the expression of FAM83A is higher in patients with high-risk groups compared with those with intermediate or low-risk groups. The FAM83A expression is positively correlated with worse overall survival, progression-free survival, and advanced stages. Gain- and loss-of-function assays revealed that FAM83A promoted cell proliferation, invasion, and migration of tumor cell lines both in vivo and in vitro. Pathway enrichment analysis shows that FAM83A expression is significantly enriched in cell cycle-related pathways. The ChIP and luciferase reporter assays revealed that FAM83A hijacks the promoter of FOXM1 to progress the malignant LUAD, and the rescue assay uncovered that the function of FAM83A is partly dependent on FOXM1 regulation. Additionally, patients with high FAM83A expression positively correlated with higher IHC scores of Ki-67 and FOXM1, and patients with active FAM83A/FOXM1 axis had poor prognoses in LUAD. Conclusions Taken together, our study revealed that the high-risk histological subtype-related FAM83A hijacks FOXM1 transcriptional regulation to promote malignant progression in lung adenocarcinoma, which implies targeting FAM83A/FOXM1 is the therapeutic vulnerability.
Collapse
Affiliation(s)
- Wei Fei
- Department of Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Yan
- Department of Cardiovascular Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guangjun Liu
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Bo Peng
- Department of Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qiang Chen
- Department of Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Jia R, Che X, Jia J, Guo J. FOXM1a Isoform of Oncogene FOXM1 Is a Tumor Suppressor Suppressed by hnRNP C in Oral Squamous Cell Carcinoma. Biomolecules 2023; 13:1331. [PMID: 37759731 PMCID: PMC10526205 DOI: 10.3390/biom13091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
FOXM1 is an oncogenic transcriptional factor and includes several isoforms generated by alternative splicing. Inclusion of alternative exon 9 produces FOXM1a, a transcriptionally inactive isoform. However, the role of FOXM1a in tumorigenesis remains unknown. In addition, the regulatory mechanisms of exon 9 splicing are also unclear. In the present study, we found that overexpression of FOXM1a significantly reduced cell proliferation and colony formation of oral squamous cell carcinoma (OSCC) cell proliferation in vitro. Importantly, OSCC cells with FOXM1a overexpression showed significantly slower tumor formation in nude mice. Moreover, we identified a U-rich exonic splicing suppressor (ESS) which is responsible for exon 9 skipping. Splicing factor heterogeneous nuclear ribonucleoprotein C (hnRNP C) can bind to the ESS and suppress exon 9 inclusion and FOXM1a expression. Silence of hnRNP C also significantly suppresses OSCC cell proliferation. HnRNP C is significantly co-expressed with FOXM1 in cancers. Our study uncovered a novel regulatory mechanism of oncogene FOXM1 expression in OSCC.
Collapse
Affiliation(s)
- Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (R.J.); (X.C.)
| | - Xiaoxuan Che
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (R.J.); (X.C.)
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (R.J.); (X.C.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (R.J.); (X.C.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Fortis SP, Batsaki P, Stokidis S, Moschandreou D, Grouzi E, Baxevanis CN, Gritzapis AD, Goulielmaki M. A Blood-Based Immune Gene Signature with Prognostic Significance in Localized Prostate Cancer. Cancers (Basel) 2023; 15:3697. [PMID: 37509358 PMCID: PMC10377824 DOI: 10.3390/cancers15143697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common male cancers worldwide and one of the deadliest if unsuccessfully treated. Τhe need for reliable, easily accessible immune-related molecular biomarkers that could be combined with clinically defined criteria, including PSA and Gleason score, to accurately predict PCa patients' clinical outcomes is emerging. Herein, we describe for the first time a blood-identified immune-related gene signature comprising eight upregulated multi-functional genes associated with poor prognosis. Next-generation sequencing (NGS) analysis of PCa patients' peripheral blood samples revealed a more than three-fold upregulation of each of the eight genes as compared to samples originating from healthy donors. The construction of gene and protein interaction networks revealed different extents of the functional implications of these genes in the regulation of cell proliferation and immune responses. Analysis of the available data from The Cancer Genome Atlas (TCGA) regarding gene expression and survival of prostate adenocarcinoma (PRAD) and pan-cancer (PANCAN) patients revealed that intra-tumoral upregulation of this eight-gene signature (8-GS) was associated with poor 5-year progression-free intervals in PCa patients, even in those with high Gleason scores, and also with an unfavorable prognosis for cancer patients irrespective of the cancer type and even in the early stages. These observations suggest that further investigation of the 8-GS prospectively in randomized clinical trials, in which clinical benefit in terms of evaluating time to disease progression can be assessed, is warranted.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Dimitra Moschandreou
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| |
Collapse
|
27
|
Yi J, Li H, Chu B, Kon N, Hu X, Hu J, Xiong Y, Kaniskan HU, Jin J, Gu W. Inhibition of USP7 induces p53-independent tumor growth suppression in triple-negative breast cancers by destabilizing FOXM1. Cell Death Differ 2023; 30:1799-1810. [PMID: 37291217 PMCID: PMC10307817 DOI: 10.1038/s41418-023-01180-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Although numerous studies indicate that inhibition of USP7 suppresses tumor growth by activating p53, the precise mechanism by which USP7 contributes to tumor growth through the p53-independent manner is not well understood. p53 is frequently mutated in most triple-negative breast cancers (TNBC), characterized as the very aggressive form of breast cancers with limited treatment options and poor patient outcomes. Here, we found that the oncoprotein Forkhead Box M1 (FOXM1) acts as a potential driver for tumor growth in TNBC and, surprisingly, through a proteomic screen, we identified USP7 as a major regulator of FOXM1 in TNBC cells. USP7 interacts with FOXM1 both in vitro and in vivo. USP7 stabilizes FOXM1 through deubiquitination. Conversely, RNAi-mediated USP7 knockdown in TNBC cells, dramatically reduced the levels of FOXM1. Moreover, based upon the proteolysis targeting chimera (PROTAC) technology, we generated PU7-1 (protein degrader for USP7-1), as a USP7 specific degrader. PU7-1 induces rapid USP7 degradation at low nanomolar concentrations in cells but shows no obvious effect on other USP family proteins. Strikingly, the treatment of TNBC cells with PU7-1 significantly abrogates FOXM1 functions and effectively suppresses cell growth in vitro. By using xenograft mouse models, we found that PU7-1 markedly represses tumor growth in vivo. Notably, ectopic overexpression of FOXM1 can reverse the tumor growth suppressive effects induced by PU7-1, underscored the specific effect on FOXM1 induced by USP7 inactivation. Together, our findings indicate that FOXM1 is a major target of USP7 in modulating tumor growth in a p53-independent manner and reveals the USP7 degrader as a potential therapeutic tool for the treatment of triple-negative breast cancers.
Collapse
Affiliation(s)
- Jingjie Yi
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Huan Li
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Bo Chu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ning Kon
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Umit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:210. [PMID: 37217462 PMCID: PMC10203321 DOI: 10.1038/s41392-023-01480-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Over decades, researchers have focused on the epigenetic control of DNA-templated processes. Histone modification, DNA methylation, chromatin remodeling, RNA modification, and noncoding RNAs modulate many biological processes that are crucial to the development of cancers. Dysregulation of the epigenome drives aberrant transcriptional programs. A growing body of evidence suggests that the mechanisms of epigenetic modification are dysregulated in human cancers and might be excellent targets for tumor treatment. Epigenetics has also been shown to influence tumor immunogenicity and immune cells involved in antitumor responses. Thus, the development and application of epigenetic therapy and cancer immunotherapy and their combinations may have important implications for cancer treatment. Here, we present an up-to-date and thorough description of how epigenetic modifications in tumor cells influence immune cell responses in the tumor microenvironment (TME) and how epigenetics influence immune cells internally to modify the TME. Additionally, we highlight the therapeutic potential of targeting epigenetic regulators for cancer immunotherapy. Harnessing the complex interplay between epigenetics and cancer immunology to develop therapeutics that combine thereof is challenging but could yield significant benefits. The purpose of this review is to assist researchers in understanding how epigenetics impact immune responses in the TME, so that better cancer immunotherapies can be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Xu Z, Pei C, Cheng H, Song K, Yang J, Li Y, He Y, Liang W, Liu B, Tan W, Li X, Pan X, Meng L. Comprehensive analysis of FOXM1 immune infiltrates, m6a, glycolysis and ceRNA network in human hepatocellular carcinoma. Front Immunol 2023; 14:1138524. [PMID: 37234166 PMCID: PMC10208224 DOI: 10.3389/fimmu.2023.1138524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Background Forkhead box M1 (FOXM1) is a member of the Forkhead box (Fox) transcription factor family. It regulates cell mitosis, cell proliferation, and genome stability. However, the relationship between the expression of FOXM1 and the levels of m6a modification, immune infiltration, glycolysis, and ketone body metabolism in HCC has yet to be fully elucidated. Methods Transcriptome and somatic mutation profiles of HCC were downloaded from the TCGA database. Somatic mutations were analyzed by maftools R package and visualized in oncoplots. GO, KEGG and GSEA function enrichment was performed on FOXM1 co-expression using R. We used Cox regression and machine learning algorithms (CIBERSORT, LASSO, random forest, and SVM-RFE) to study the prognostic value of FOXM1 and immune infiltrating characteristic immune cells in HCC. The relationship between FOXM1 and m6A modification, glycolysis, and ketone body metabolism were analyzed by RNA-seq and CHIP-seq. The competing endogenous RNA (ceRNA) network construction relies on the multiMiR R package, ENCORI, and miRNET platforms. Results FOXM1 is highly expressed in HCC and is associated with a poorer prognosis. At the same time, the expression level of FOXM1 is significantly related to the T, N, and stage. Subsequently, based on the machine learning strategies, we found that the infiltration level of T follicular helper cells (Tfh) was a risk factor affecting the prognosis of HCC patients. The high infiltration of Tfh was significantly related to the poor overall survival rate of HCC. Besides, the CHIP-seq demonstrated that FOXM1 regulates m6a modification by binding to the promoter of IGF2BP3 and affects the glycolytic process by initiating the transcription of HK2 and PKM in HCC. A ceRNA network was successfully obtained, including FOXM1 - has-miR-125-5p - DANCR/MIR4435-2HG ceRNA network related to the prognosis of HCC. Conclusion Our study implicates that the aberrant infiltration of Tfh associated with FOXM1 is a crucial prognostic factor for HCC patients. FOXM1 regulates genes related to m6a modification and glycolysis at the transcriptional level. Furthermore, the specific ceRNA network can be used as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ziwu Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan University, Changsha, China
| | - Chaozhu Pei
- College of Biology, Hunan University, Changsha, China
| | - Haojie Cheng
- College of Biology, Hunan University, Changsha, China
| | - Kaixin Song
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Junting Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yue He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wenxuan Liang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Biyuan Liu
- School of Medical, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Tan
- Department of Pathology, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, China
| | - Xia Li
- Department of General Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Xue Pan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lei Meng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|