1
|
Tu S, Zhang L, Zhang W, Feng J. Waterborne Recoatable Transparent Superhydrophobic Coatings with Excellent Self-Cleaning and Anti-Dust Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410171. [PMID: 39828594 DOI: 10.1002/smll.202410171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer. When the coating is damaged, it can be easily repaired and recoated using WRSH coatings without the need to remove the damaged superhydrophobic layer, providing a sustainable and environmentally friendly solution for maintaining a superhydrophobic surface. The coating exhibits good mechanical properties with the WRSH coating maintaining mechanical stability even after abrasion with 2000 mesh sandpaper for 20 m or impact from 100 g of sand. Additionally, the visible light transmittance of WRSH coating glass reaches as high as ≈94.0%, which is superior to the bare glass of ≈91.7%. Moreover, the WRSH coatings exhibit excellent self-cleaning performance and anti-dust performance when applied on solar panels.
Collapse
Affiliation(s)
- Shuhua Tu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lele Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weizhen Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Song Y, Sun W, Shi X, Qin Z, Wu Q, Yin S, Liang S, Liu Z, Sun H. Bio-inspired e-skin with integrated antifouling and comfortable wearing for self-powered motion monitoring and ultra-long-range human-machine interaction. J Colloid Interface Sci 2025; 679:1299-1310. [PMID: 39427584 DOI: 10.1016/j.jcis.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Electronic skin (e-skin) inspired by the sensory function of the skin demonstrates broad application prospects in health, medicine, and human-machine interaction. Herein, we developed a self-powered all-fiber bio-inspired e-skin (AFBI E-skin) that integrated functions of antifouling, antibacterial, biocompatibility and breathability. AFBI E-skin was composed of three layers of electrospun nanofibrous films. The superhydrophobic outer layer Poly(vinylidene fluoride)-silica nanofibrous films (PVDF-SiO2 NFs) possessed antifouling properties against common liquids in daily life and resisted bacterial adhesion. The polyaniline nanofibrous films (PANI NFs) were used as the electrode layer, and it had strong "static" antibacterial capability. Meanwhile, the inner layer Polylactic acid nanofibrous films (PLA NFs) served as a biocompatible substrate. Based on the triboelectric nanogenerator principle, AFBI E-skin not only enabled self-powered sensing but also utilized the generated electrical stimulation for "dynamic" antibacterial. The "dynamic-static" synergistic antibacterial strategy greatly enhanced the antibacterial effect. AFBI E-skin could be used for self-powered motion monitoring to obtain a stable signal output even when water was splashed on its surface. Finally, based on AFBI E-skin, we constructed an ultra-long-range human-machine interaction control system, enabling synchronized hand gestures between human hand and robotic hand in any internet-covered area worldwide theoretically. AFBI E-skin exhibited vast application potential in fields like smart wearable electronics and intelligent robotics.
Collapse
Affiliation(s)
- Yudong Song
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Wuliang Sun
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xinjian Shi
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Qianqian Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
3
|
Liu K, Zhang S, He J. Preparation of Robust, Antireflective and Superhydrophobic Hierarchical Coatings on PMMA Substrates via Mechanical Locking and Chemical Bonding. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4044-4054. [PMID: 39748337 DOI: 10.1021/acsami.4c19793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Antireflection (AR) coatings with mechanical robustness and superhydrophobic properties have wide potential applications in optical, electronic, and automotive fields. However, the fabrication of large-sized, robust, and multifunctional AR coatings on plastic/polymer substrates has been a challenging problem. In this study, we developed a bottom-up approach to produce mechanically robust, enhanced transmittance, and superhydrophobic coatings on poly(methyl methacrylate) (PMMA) substrate. Their AR structure is composed of two layers: acid-catalyzed silica and base-catalyzed silica nanoparticles to construct a three-dimensional porous structure as the top layer; the connecting layer consists of monolayer mesoporous silica nanoparticles (MSNs) that are partially embedded in the PMMA substrate. The lower part of mesoporous silica nanoparticles is mechanically locked in the PMMA substrate by organic vapor phase treatment, while the upper part is chemically bonded to the top layer, forming a solid double-layer structure. Finally, the AR structure surface is treated by chemical vapor deposition of hexamethyldisilazane (HMDS). The obtained double-layer coating exhibits outstanding light transmission (Tave: 98.96% in the wavelength range of 400-800 nm), superhydrophobicity (water contact angle (WCA): 157.6°, rolling angle (RA): 3.3°), mechanical robustness (pencil hardness: 4H), and weather resistance (3 months of outdoor exposure). This work offers a novel approach to the synthesis of multifunctional coatings on polymer substrates with robust mechanical properties.
Collapse
Affiliation(s)
- Kai Liu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sainan Zhang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Li H, Wu Y, Tu H, Chen M, Zhou S, Wu L. Dragonfly-Inspired Transparent Superhydrophobic Coatings with Low Haze and High Mechanical Robustness. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70138-70145. [PMID: 39652830 DOI: 10.1021/acsami.4c19177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Transparent superhydrophobic coatings hold significant potential for applications such as windows and reflectors. However, issues such as fragility and high haze have limited their practicality. Drawing inspiration from dragonfly structures, we developed a transparent superhydrophobic coating by etching the polystyrene microsphere array semiembedded on a silicon oxide matrix and subsequently depositing the methyltrichlorosilane-derived nanofilaments. The resulting coating features silicon oxide craters and nanofilaments inspired by dragonfly wings. Due to the coating's small, multiscale nanostructures, it has a high average visible light transmittance of 90.4% and a low average haze of 4.0%, comparable to the substrate glass. It also exhibits exceptional superhydrophobic properties, with a contact angle of 161.5° and a sliding angle of 1.5°. Notably, the coating retains its superhydrophobicity even after withstanding impacts from 5 kg of water and 500 g of sand, thanks to its robust wing vein-inspired protected structure. Additionally, it shows strong resistance to acids, alkalis, and temperatures up to 400 °C. The coating maintains a high transmittance and low haze after 67 days of UV irradiation or 300 days of outdoor exposure. The combination of low haze and robustness in this transparent superhydrophobic coating highlights its promising potential for applications in related fields.
Collapse
Affiliation(s)
- Hang Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, China
| | - Yi Wu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Hongyi Tu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, China
| | - Shuxue Zhou
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Duan J, Long G, Xu X, Liu W, Li C, Chen L, Zhang J, Xiao J. Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser. MICROMACHINES 2024; 15:1304. [PMID: 39597116 PMCID: PMC11596805 DOI: 10.3390/mi15111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity's influence mechanisms of structural height, duty cycle, and size are experimentally elucidated. The average reflectivity of the silicon surface in the visible light band is reduced to 3.0% under the optimal parameters, and the surface exhibits a large contact angle of 172.3 ± 0.8° and a low sliding angle of 4.2 ± 1.4°. Finally, the durability of the anti-reflection and superhydrophobicity is also confirmed. This study deepens our understanding of the principles of anti-reflection and superhydrophobicity and expands the design and preparation methods for self-cleaning and anti-reflective surfaces.
Collapse
Affiliation(s)
- Junyu Duan
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.D.); (G.L.); (J.Z.)
| | - Gui Long
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.D.); (G.L.); (J.Z.)
| | - Xu Xu
- Hubei Jiuzhiyang Infrared System Co., Ltd., Wuhan 430223, China
- Wuhan National Laboratory for Optoelectronics, Huazhong Institute of Electro-Optics, Wuhan 430223, China
| | - Weiming Liu
- China Ship Development and Design Center, Wuhan 430064, China; (W.L.); (C.L.)
| | - Chuankun Li
- China Ship Development and Design Center, Wuhan 430064, China; (W.L.); (C.L.)
| | - Liang Chen
- State Key Laboratory of High-End Heavy-Load Robots, Midea Group, Foshan 528300, China;
- Midea Corporate Research Center, Foshan 528311, China
| | - Jianguo Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.D.); (G.L.); (J.Z.)
| | - Junfeng Xiao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.D.); (G.L.); (J.Z.)
| |
Collapse
|
6
|
Chen X, Yang G, Cao X, Zhu X, Wang X, Chen S, Cui Y, Ge H, Li Y. Bioinspired Hierarchical T Structures for Tunable Wettability and Droplet Manipulation by Facile and Scalable Nanoimprinting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54807-54817. [PMID: 39166707 DOI: 10.1021/acsami.4c10416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Developing surfaces that effectively repel low-surface-tension liquids with tunable adhesive properties remains a pivotal challenge. Micronano hierarchical re-entrant structures emerge as a promising solution, offering a robust structural defense against liquid penetration, minimizing area fraction, and creating narrow gaps that generate substantial upward Laplace pressure. However, the absence of an efficient, scalable, and tunable construction method has impeded their widespread applications. Here, drawing inspiration from springtail epidermal structures, octopus suckers, and rose petals, we present a scalable manufacturing strategy for artificial micronano hierarchical T-shaped structures. This strategy employs double-transfer UV-curing nanoimprint lithography to form nanostructures on microstructured surfaces, offering high structural tunability. This approach enables precise control over topography, feature size, and arrangement of nano- and microscale sections, resulting in superamphiphobic surfaces that exhibit high contact angles (>150°) and tunable adhesive forces for low-surface-energy liquids. These surfaces can be applied to droplet-based microreactors, programmable droplet-transfer systems, and self-cleaning surfaces suitable for various liquids, particularly those with low surface tension. Remarkably, we have also succeeded in fabricating the hierarchical structures on flexible and transparent substrates. We demonstrate the advantages of this strategy in the fabrication of hierarchical micronanostructures, opening up a wide range of potential applications.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Guiyan Yang
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Xinhe Cao
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Xinyue Zhu
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Xinyu Wang
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Si Chen
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Yushuang Cui
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Haixiong Ge
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China
| | - Yang Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
- State Key Laboratory of Materials-Orient Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
7
|
Xiao H, Yu Z, Liang J, Ding L, Zhu J, Wang Y, Chen S, Xin JH. Wetting Behavior-Induced Interfacial transmission of Energy and Signal: Materials, Mechanisms, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407856. [PMID: 39032113 DOI: 10.1002/adma.202407856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Wetting behaviors can significantly affect the transport of energy and signal (E&S) through vapor, solid, and liquid interfaces, which has prompted increased interest in interfacial science and technology. E&S transmission can be achieved using electricity, light, and heat, which often accompany and interact with each other. Over the past decade, their distinctive transport phenomena during wetting processes have made significant contributions to various domains. However, few studies have analyzed the intricate relationship between wetting behavior and E&S transport. This review summarizes and discusses the mechanisms of electrical, light, and heat transmission at wetting interfaces to elucidate their respective scientific issues, technical characteristics, challenges, commonalities, and potential for technological convergence. The materials, structures, and devices involved in E&S transportation are also analyzed. Particularly, harnessing synergistic advantages in practical applications and constructing advanced, multifunctional, and highly efficient smart systems based on wetted interfaces is the aim to provide strategies.
Collapse
Affiliation(s)
- Haoyuan Xiao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zilin Yu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiechang Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Ding
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingshuai Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiguo Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - John H Xin
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
8
|
Zhang L, Xu J, Hu Z, Wang P, Shang J, Zhou J, Ren L. Antireflective Superhydrophobic and Robust Coating Based on Chitin Nanofibers and Methylsilanized Silica for Outdoor Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38690-38701. [PMID: 38988275 DOI: 10.1021/acsami.4c05778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Antireflective coatings with superhydrophobicity have many outdoor applications, such as solar photovoltaic panels and windshields. In this study, we fabricated an omnidirectional antireflective and superhydrophobic coating with good mechanical robustness and environmental durability via the spin coating technique. The coating consisted of a layer of phytic acid (PA)/polyacrylamide (PAM)/calcium ions (Ca2+) (referred to as Binder), an antireflective layer composed of chitin nanofibers (ChNFs), and a hydrophobic layer composed of methylsilanized silica (referred to as Mosil). The transmittance of a glass slide with the Binder/ChNFs/Mosil coating had a 5.2% gain at a wavelength of 550 nm, and the antireflective coating showed a water contact angle as high as 160° and a water sliding angle of 8°. The mechanical robustness and environmental durability of the coating, including resistance to peeling, dynamic impact, chemical erosion, ultraviolet (UV) irradiation, and high temperature, were evaluated. The coating retained excellent antireflective capacity and self-cleaning performance in the harsh conditions. The increase in voltage per unit area of a solar panel with a Binder/ChNFs/Mosil coating reached 0.4 mV/cm2 compared to the solar panel exposed to sunlight with an intensity of 54.3 × 103 lx. This work not only demonstrates that ChNFs can be used as raw materials to fabricate antireflective superhydrophobic coatings for outdoor applications but also provides a feasible and efficient approach to do so.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jian Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhiqing Hu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Peizhuang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
9
|
Guo Q, Ma J, Yin T, Jin H, Zheng J, Gao H. Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application. Molecules 2024; 29:2098. [PMID: 38731589 PMCID: PMC11085871 DOI: 10.3390/molecules29092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Multiscale nano/micro-structured surfaces with superhydrophobicity are abundantly observed in nature such as lotus leaves, rose petals and butterfly wings, where microstructures typically reinforce mechanical stability, while nanostructures predominantly govern wettability. To emulate such hierarchical structures in nature, various methods have been widely applied in the past few decades to the manufacture of multiscale structures which can be applied to functionalities ranging from anti-icing and water-oil separation to self-cleaning. In this review, we highlight recent advances in nano/micro-structured superhydrophobic surfaces, with particular focus on non-metallic materials as they are widely used in daily life due to their lightweight, abrasion resistance and ease of processing properties. This review is organized into three sections. First, fabrication methods of multiscale hierarchical structures are introduced with their strengths and weaknesses. Second, four main application areas of anti-icing, water-oil separation, anti-fog and self-cleaning are overviewed by assessing how and why multiscale structures need to be incorporated to carry out their performances. Finally, future directions and challenges for nano/micro-structured surfaces are presented.
Collapse
Affiliation(s)
- Qi Guo
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (Q.G.); (J.M.); (T.Y.); (H.J.); (J.Z.)
| | - Jieyin Ma
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (Q.G.); (J.M.); (T.Y.); (H.J.); (J.Z.)
| | - Tianjun Yin
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (Q.G.); (J.M.); (T.Y.); (H.J.); (J.Z.)
| | - Haichuan Jin
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (Q.G.); (J.M.); (T.Y.); (H.J.); (J.Z.)
| | - Jiaxiang Zheng
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (Q.G.); (J.M.); (T.Y.); (H.J.); (J.Z.)
| | - Hui Gao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (Q.G.); (J.M.); (T.Y.); (H.J.); (J.Z.)
- Ningbo Institute of Technology, Beihang University, Ningbo 315100, China
| |
Collapse
|
10
|
Gao X, Gao Y, Cao H, Zhang J. Eco-Friendly Sustainable and Responsive High-Performance Benzotriazole-Metal Organic Frameworks/Silica Composite Coating with Active/Passive Corrosion Protection on Copper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7639-7652. [PMID: 38552104 DOI: 10.1021/acs.langmuir.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Coatings with only passive protection cannot offer long-term anticorrosion on metals. Eco-friendly sustainable and responsive coating for active/passive corrosion protection is desirable to extend the service life of metals. Here, benzotriazole (BTA)-metal organic frameworks (Cu-MOFs, UiO-66) were embedded in silica (SiO2) coating by one-step electrodeposition on copper. Combined with passive capability of MOFs and active protection of BTA inhibitor, the composite coating (BTA-MOF/SiO2) exhibited high and stable corrosion resistance, confirmed by microstructure characterizations and electrochemical tests. As a result, the as-prepared composite coating exhibited superhydrophobicity with a water contact angle of 154.2°. With loading of BTA-MOF in SiO2 coating, the impedance modulus at 0.01 Hz increased by ∼10-fold and the corrosion current density decreased to 3.472 × 10-9 A·cm-2. Immersion and salt spray tests confirmed the long-term protection of the composite coating. The responsive release of BTA inhibitor endows the coating with a responsively anticorrosive behavior. The active-passive ability makes the coating a good candidate for protection on metals used in highly salty environments.
Collapse
Affiliation(s)
- Xu Gao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yan Gao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaijie Cao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junxi Zhang
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
11
|
Xia L, Yang Z, Chen F, Liu T, Tian Y, Zhang D. Droplet impacting on pillared hydrophobic surfaces with different solid fractions. J Colloid Interface Sci 2024; 658:61-73. [PMID: 38100977 DOI: 10.1016/j.jcis.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
HYPOTHESIS The solid fraction of the substrate is expected to influence the bouncing behavior of an impinging droplet, thereby affecting spreading and contact time. Hence, it should be possible to alter the velocity and pressure distribution of impacting droplet, and also affect the impact velocity for droplet penetration right upon impact. SIMULATIONS We systematically investigate the impact dynamics of water droplets on pillared hydrophobic surfaces with different solid fractions using phase-field simulations. The velocity and pressure distributions of impacting droplets on pillared hydrophobic surfaces with varied Weber numbers and solid fractions are studied. In addition, the influences of the solid fraction on the bouncing behaviors of the impinging droplet, such as the maximum wetting spreading, the maximum impacting depth, and the contact time, are also investigated to further understand the impact event. FINDINGS We show that a three-peak pressure profile appears on the top of the pillared hydrophobic surface during droplet impact by varying the solid fraction of the surface. The first peak is generated by the impact of the droplet itself, while the second peak arises from the droplet recoil impact associated with the dynamic properties of the jet. Moreover, we identify a hitherto unknown third pressure peak related to the hydrodynamic singularity that emerges due to the convergence of the fluid during the droplet rebound. This solid fraction-dependent impacting behavior reveals the intricate interplay between droplet dynamics and the underlying surface characteristics, providing valuable insights into the design and optimization of micro/nano structured hydrophobic surfaces for various applications.
Collapse
Affiliation(s)
- Lei Xia
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhen Yang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China.
| | - Teng Liu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7DL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
12
|
Li M, Guo Q, Wen J, Zhan F, Shi M, Zhou N, Huang C, Wang L, Mao H. Oriented bouncing of droplets with a small Weber number on inclined one-dimensional nanoforests. NANOSCALE 2024; 16:5343-5351. [PMID: 38375552 DOI: 10.1039/d3nr05449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Asymmetric superhydrophobic structures with anisotropic wettability can achieve directional bouncing of droplets and thus can have applications in directional self-cleaning, liquid transportation, and heat transfer. To achieve convenient large-scale preparation of asymmetric superhydrophobic surfaces, inclined nanoforests are prepared in this work using a technique of competitive ablation polymerization, which allows the control of the inclined angles, diameters, and heights of the nanostructures. In this study, such asymmetric structures with the smallest dimension (230 nm diameter) known are achieved by a simple etching method to guide droplet unidirectional bouncing. With such nanoforests, the mechanism of droplet bouncing on their surface is investigated, and controllable droplet bouncing over a long distance is achieved using droplets with a low Weber number. The proposed structure has a promising future in directional self-cleaning, liquid transportation and heat transfer.
Collapse
Affiliation(s)
- Mao Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiming Guo
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Meng Shi
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Zhou
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Lee H, Ma S, Oh S, Tan J, Lee CU, Son J, Park YS, Yun J, Jang G, Moon J. Chirality-Induced Spin Selectivity of Chiral 2D Perovskite Enabling Efficient Spin-Dependent Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304166. [PMID: 37282813 DOI: 10.1002/smll.202304166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Indexed: 06/08/2023]
Abstract
The sluggish and complex multi-step oxygen evolution reaction remains an obstacle to bias-free photoelectrochemical water-splitting systems. Several theoretical studies have suggested that spin-aligned intermediate radicals can significantly enhance the kinetic rates for oxygen generation. Herein, it is reported that the chirality-induced spin selectivity phenomena can become an impressive approach by adopting chiral 2D organic-inorganic hybrid perovskites as a spin-filtering layer on the photoanode. This chiral 2D perovskite-based water-splitting device achieves enhanced oxygen evolution performance with a reduced overpotential of 0.14 V, high fill factor, and 230% increased photocurrent compared to a device without a spin-filtering layer. Moreover, combined with a superhydrophobic patterning strategy, this device realizes excellent operational stability by sustaining ≈90% of the initial photocurrent, even after 10 h.
Collapse
Affiliation(s)
- Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sunihl Ma
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Seungtae Oh
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Seobuk-gu, Cheonan-si, Chungcheongnam-do, 31056, Republic of Korea
| | - Jeiwan Tan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan Uk Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaehyun Son
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Sun Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Juwon Yun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
14
|
Chen Q, Ying D, Chen Y, Xie H, Zhang H, Chang C. Highly transparent, hydrophobic, and durable anisotropic cellulose films as electronic screen protectors. Carbohydr Polym 2023; 311:120735. [PMID: 37028870 DOI: 10.1016/j.carbpol.2023.120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 03/11/2023]
Abstract
Cellulose films have attracted extensive interest in the field of burgeoning electronic devices. However, it remains a challenge to simultaneously address the difficulties including facile methodology, hydrophobicity, optical transparency, and mechanical robustness. Herein, we reported a coating-annealing approach to fabricate highly transparent, hydrophobic, and durable anisotropic cellulose films, where poly(methyl methacrylate)-b-poly(trifluoroethyl methacrylate) (PMMA-b-PTFEMA) as low surface energy chemicals was coated onto regenerated cellulose films via physical (hydrogen bonds) and chemical (transesterification) interactions. The resultant films with nano-protrusions and low surface roughness exhibited high optical transparency (92.3 %, 550 nm) and good hydrophobicity. Moreover, the tensile strength of the hydrophobic films was 198.7 MPa and 124 MPa in dry and wet states, respectively, which also showed excellent stability and durability under various conditions, such as hot water, chemicals, liquid foods, tape peeling, finger pressing, sandpaper abrasion, ultrasonic treatment, and water jet. This work provided a promising large-scale production strategy for the preparation of transparent and hydrophobic cellulose-based films for electronic device protection as well as other emerging flexible electronics.
Collapse
Affiliation(s)
- Qianqian Chen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Daofa Ying
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yiwen Chen
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center and Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan 430072, China
| | - Hongxia Xie
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Huaran Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
15
|
Jiao Z, Wang Z, Wang Z, Han Z. Multifunctional Biomimetic Composite Coating with Antireflection, Self-Cleaning and Mechanical Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1855. [PMID: 37368285 DOI: 10.3390/nano13121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Antireflective and self-cleaning coatings have attracted increasing attention in the last few years due to their promising and wider applications such as stealth, display devices, sensing, and other fields. However, existing antireflective and self-cleaning functional material are facing problems such as difficult performance optimization, poor mechanical stability, and poor environmental adaptability. Limitations in design strategies have severely restricted coatings' further development and application. Fabrication of high-performance antireflection and self-cleaning coatings with satisfactory mechanical stability remain a key challenge. Inspired by the self-cleaning performance of nano-/micro-composite structure on natural lotus leaves, SiO2/PDMS/matte polyurethane biomimetic composite coating (BCC) was prepared by nano-polymerization spraying technology. The BCC reduced the average reflectivity of the aluminum alloy substrate surface from 60% to 10%, and the water contact angle (CA) was 156.32 ± 0.58°, illustrating the antireflective and self-cleaning performance of the surface was significantly improved. At the same time, the coating was able to withstand 44 abrasion tests, 230 tape stripping tests, and 210 scraping tests. After the test, the coating still showed satisfactory antireflective and self-cleaning properties, indicating its remarkable mechanical stability. In addition, the coating also displayed excellent acid resistance, which has important value in aerospace, optoelectronics, industrial anti-corrosion, etc.
Collapse
Affiliation(s)
- Zhibin Jiao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
| | - Zhaozhi Wang
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
16
|
Wu J, Tu J, Yu S, Wu H, Xie Y, Yang Y, Xv Z, Zhang Q. Hollow core-shell nanocoatings with gradient refractive index structure for enhanced photovoltaic performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
17
|
Li X, Yang K, Yuan Z, Liu S, Du J, Li C, Meng S. Recent Advances on the Abrasion Resistance Enhancements and Applications of Superhydrophobic Materials. CHEM REC 2023; 23:e202200298. [PMID: 36779511 DOI: 10.1002/tcr.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Indexed: 02/14/2023]
Abstract
Researches on superhydrophobicity have been overwhelming and have shown great advantages in various fields. However, the abrasion resistance of superhydrophobic structures was usually poor, and they were easily damaged by external force or harsh environment, which greatly limited the applications of superhydrophobic surfaces. Much attention has been paid to improving the abrasion resistance of superhydrophobic materials by researchers. In this review, aimed at the advances on improving the abrasion resistance of superhydrophobic surfaces, it was summarized and compared three enhancement strategies including the reasonably design of micro-nano structures, the adoption of adhesives, and the preparation of self-healing surface. Finally, the applications of typical superhydrophobic materials with abrasion resistance were reviewed in various fields. In order to broaden the application fields of superhydrophobic materials, the abarasion resistance should be further improved. Therefore, we proposed the ideas for the future development of superhydrophobic materials with higher abrasion resistance. We hope that this review will provide a new approach to the preparation and development of stable superhydrophobic surfaces with higher abrasion resistance.
Collapse
Affiliation(s)
- Xinyi Li
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Kangli Yang
- Department of Teaching, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Zhiqing Yuan
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Shujuan Liu
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Juan Du
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Cancheng Li
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Shoutong Meng
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
18
|
Sol–gel-derived bayberry-like SiO2@TiO2 multifunctional antireflective coatings for enhancing photovoltaic power generation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Kim JH, Cho JW, Jeon I, Jeong KT, Kang HJ, Choi DG, Kim JH, Kim SK. Synergistically designed antireflective cover for improving wide-angle photovoltaic efficiencies. OPTICS EXPRESS 2022; 30:42406-42414. [PMID: 36366695 DOI: 10.1364/oe.476007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated that a well-designed nanopatterned cover improves photovoltaic efficiency across a wide range of incident angles (θ). A nanopatterned cover was created using an integrated ray-wave optics simulation to maximize the light absorption of the surface-textured Si photovoltaic device. A hexagonally arranged nanocone array with a 300 nm pitch was formed into a polymer using nanoimprinting, and the nanostructured polymer was then attached to a glass cover with an index-matching adhesive. Angle-resolved current density-voltage measurements on Si photovoltaic devices showed that the nanopatterned glass cover yielded a 2-13% enhancement in power conversion efficiency at θ = 0-60°, which accounted for its broadband antireflective feature. We performed all-season-perspective simulations based on the results of the integrated ray-wave optics simulations and solar altitude database of South Korea, which validated the sustainability of the developed nanopatterned cover during significant seasonal fluctuations.
Collapse
|