1
|
De Salvo G, Merkens S, Körner A, Fritsch B, Malgaretti P, Hutzler A, Chuvilin A. A workflow for modeling radiolysis in chemically, physically, and geometrically complex scenarios. iScience 2025; 28:112374. [PMID: 40352727 PMCID: PMC12063123 DOI: 10.1016/j.isci.2025.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/03/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Radiation-based techniques contribute significantly to characterizing nanoscale samples across materials research but are frequently hampered by radiation-induced damage, particularly radiolysis in liquid media. The deep understanding and accurate modeling of radiation chemistry are crucial for interpreting experimental observations but are rarely sufficiently addressed in practice. We introduce a comprehensive workflow for numerically modeling radiolysis reaction kinetics in chemically, physically, and geometrically complex scenarios. The workflow streamlines the automatic composition of validated reaction networks from database files in a Python-based environment (AuRaCh tool) and their transfer to finite element computation environments (COMSOL Multiphysics software) for geometric and physical expansion. Its applicability is demonstrated in the context of liquid-phase electron microscopy but extends to other fields involving complex reaction networks. Model complexity is scrutinized, and potential simplifications are explored using characteristic numbers in experimentally relevant parameter regimes. The reported approach improves computational modeling and correlative experimental methods by promoting cross-community approaches.
Collapse
Affiliation(s)
- Giuseppe De Salvo
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Stefan Merkens
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Chemical and Biological Engineering, Immerwahrstraße 2a, 91058 Erlangen, Germany
| | - Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| | - Paolo Malgaretti
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| | - Andrey Chuvilin
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
2
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415728. [PMID: 39981755 PMCID: PMC11962711 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| | - Serin Lee
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Körner
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergImmerwahrstraße 2a91054ErlangenGermany
| | | | - Frances M. Ross
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| |
Collapse
|
3
|
Wu H, Sun H, Oerlemans RAJF, Li S, Shao J, Wang J, Joosten RRM, Lou X, Luo Y, Zheng H, Abdelmohsen LKEA, Garza HHP, van Hest JCM, Friedrich H. Understanding, Mimicking, and Mitigating Radiolytic Damage to Polymers in Liquid Phase Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402987. [PMID: 39548916 DOI: 10.1002/adma.202402987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Advances in liquid phase transmission electron microscopy (LP-TEM) have enabled the monitoring of polymer dynamics in solution at the nanoscale, but radiolytic damage during LP-TEM imaging limits its routine use in polymer science. This study focuses on understanding, mimicking, and mitigating radiolytic damage observed in functional polymers in LP-TEM. It is quantitatively demonstrated how polymer damage occurs across all conceivable (LP-)TEM environments, and the key characteristics and differences between polymer degradation in water vapor and liquid water are elucidated. Importantly, it is shown that the hydroxyl radical-rich environment in LP-TEM can be approximated by UV light irradiation in the presence of hydrogen peroxide, allowing the use of bulk techniques to probe damage at the polymer chain level. Finally, the protective effects of commonly used hydroxyl radical scavengers are compared, revealing that the effectiveness of graphene's protection is distance-dependent. The work provides detailed methodological guidance and establishes a baseline for polymer degradation in LP-TEM, paving the way for future research on nanoscale tracking of shape transitions and drug encapsulation of polymer assemblies in solution.
Collapse
Affiliation(s)
- Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Roy A J F Oerlemans
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Siyu Li
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Xianwen Lou
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Hongkui Zheng
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | | | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
4
|
Wei W, Sun X, Sun J, Hao C. Shape-Controlled Growth and In Situ Characterization of CdS Nanocrystals via Liquid Cell Transmission Electron Microscopy. Molecules 2024; 29:5342. [PMID: 39598731 PMCID: PMC11596350 DOI: 10.3390/molecules29225342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Controlling the growth, structure, and shape of CdS nanocrystals is crucial for harnessing their unique physicochemical properties across diverse applications. This control can be achieved by introducing chemical additives into the synthesis reaction mixture. However, precise manipulation of nanocrystal synthesis necessitates a thorough understanding of the formation mechanisms under various chemical conditions, a task that remains challenging. In this study, we employed in situ liquid cell transmission electron microscopy (TEM) to investigate the growth mechanisms of CdS nanocrystals in a reaction solution of cadmium chloride and thiourea, with sodium citrate serving as a structure-directing agent. We observed that CdS nanocrystals evolve through two distinct growth modes: (1) in the absence of sodium citrate, spherical nanocrystals isotropically transform into CdS nanocubes, and (2) in the presence of sodium citrate, cuboid nanocrystals preferentially extend along the {011} direction and anisotropically into CdS triangular nanoplates. Theoretical analysis has confirmed that the adsorption energy of sodium citrate on different crystal facets significantly influences the morphology of the CdS nanocrystals. Our findings not only provide a method for synthesizing CdS nanocrystals based on electron beam induction but also elucidate the intricate nanoscale growth mechanisms, offering insights that could inform the future rational design of nanocrystals with tailored morphologies.
Collapse
Affiliation(s)
- Wei Wei
- School of Information Technology, Jiangsu Open University, Nanjing 210036, China; (X.S.); (J.S.); (C.H.)
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Sun
- School of Information Technology, Jiangsu Open University, Nanjing 210036, China; (X.S.); (J.S.); (C.H.)
| | - Jun Sun
- School of Information Technology, Jiangsu Open University, Nanjing 210036, China; (X.S.); (J.S.); (C.H.)
| | - Cen Hao
- School of Information Technology, Jiangsu Open University, Nanjing 210036, China; (X.S.); (J.S.); (C.H.)
| |
Collapse
|
5
|
Gnanasekaran K, Rosenmann ND, Dos Reis R, Gianneschi NC. Extent of Radiolytic Damage from Liquid Cell TEM Experiments on Metal-Organic Frameworks via Post-Mortem 4D-STEM. NANO LETTERS 2024; 24:10161-10168. [PMID: 39105722 DOI: 10.1021/acs.nanolett.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a systematic analysis of electron beam damage of the zeolitic imidazolate framework (ZIF-8) during liquid cell transmission electron microscopy (LCTEM). Our analysis reveals ZIF-8 morphology is strongly affected by solvent used (water vs dimethylformamide), electron flux applied, and imaging mode (i.e., TEM vs STEM), while ZIF-8 crystallinity is primarily affected by accumulated electron fluence. Our observations indicate that the stability of ZIF-8 morphology is higher in dimethylformamide (DMF) than in water. However, in situ electron diffraction indicates that ZIF-8 nanocrystals lose crystallinity at critical fluence of ∼80 e-Å-2 independent of the presence of solvent. Furthermore, 4D-STEM analysis as a post-mortem method reveals the extent of electron beam damage beyond the imaging area and indicates that radiolytic reactions are more pronounced in TEM mode than in STEM mode. These results illustrate the significance of radiolysis occurring while imaging ZIF-8 and present a workflow for assessing damage in LCTEM experiments.
Collapse
Affiliation(s)
- Karthik Gnanasekaran
- Materials and Structural Analysis, Thermo Fisher Scientific Inc., 5350 NE Dawson Creek Drive Hillsboro, Oregon 97124, United States
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan D Rosenmann
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Smith JW, Carnevale LN, Das A, Chen Q. Electron videography of a lipid-protein tango. SCIENCE ADVANCES 2024; 10:eadk0217. [PMID: 38630809 PMCID: PMC11023515 DOI: 10.1126/sciadv.adk0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Lauren N. Carnevale
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Aditi Das
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Fritsch B, Malgaretti P, Harting J, Mayrhofer KJJ, Hutzler A. Precision of Radiation Chemistry Networks: Playing Jenga with Kinetic Models for Liquid-Phase Electron Microscopy. PRECISION CHEMISTRY 2023; 1:592-601. [PMID: 39473579 PMCID: PMC11503811 DOI: 10.1021/prechem.3c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 05/11/2025]
Abstract
Liquid-phase transmission electron microscopy (LP-TEM) is a powerful tool to gain unique insights into dynamics at the nanoscale. The electron probe, however, can induce significant beam effects that often alter observed phenomena such as radiolysis of the aqueous phase. The magnitude of beam-induced radiolysis can be assessed by means of radiation chemistry simulations potentially enabling quantitative application of LP-TEM. Unfortunately, the computational cost of these simulations scales with the amount of reactants regarded. To minimize the computational cost, while maintaining accurate predictions, we optimize the parameter space for the solution chemistry of aqueous systems in general and for diluted HAuCl4 solutions in particular. Our results indicate that sparsened kinetic models can accurately describe steady-state formation during LP-TEM and provide a handy prerequisite for efficient multidimensional modeling. We emphasize that the demonstrated workflow can be easily generalized to any kinetic model involving multiple reaction pathways.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Paolo Malgaretti
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Jens Harting
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 1, 91058 Erlangen, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chem Commun (Camb) 2023; 59:12830-12846. [PMID: 37807847 DOI: 10.1039/d3cc03723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) has enabled unprecedented direct real time imaging of physicochemical processes during solution phase synthesis of metallic nanoparticles. LPTEM primarily provides images of nanometer scale, and sometimes atomic scale, metal nanoparticle crystallization processes, but provides little chemical information about organic surface ligands, metal-ligand complexes and reaction intermediates, and redox reactions. Likewise, complex electron beam-solvent interactions during LPTEM make it challenging to pinpoint the chemical processes, some involving exotic highly reactive radicals, impacting nanoparticle formation. Pairing LPTEM with correlative solution synthesis, ex situ chemical analysis, and theoretical modeling represents a powerful approach to gain a holistic understanding of the chemical processes involved in nanoparticle synthesis. In this feature article, we review recent work by our lab and others that has focused on elucidating chemical processes during nanoparticle synthesis using LPTEM and correlative chemical characterization and modeling, including mass and optical spectrometry, fluorescence microscopy, solution chemistry, and reaction kinetic modeling. In particular, we show how these approaches enable investigating redox chemistry during LPTEM, polymeric and organic capping ligands, metal deposition mechanisms on plasmonic nanoparticles, metal clusters and complexes, and multimetallic nanoparticle formation. Future avenues of research are discussed, including moving beyond electron beam induced nanoparticle formation by using light and thermal stimuli during LPTEM. We discuss prospects for real time LPTEM imaging and online chemical analysis of reaction intermediates using microfluidic flow reactors.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, College Park, MD 20742, USA
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| |
Collapse
|
10
|
Couasnon T, Fritsch B, Jank MPM, Blukis R, Hutzler A, Benning LG. Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301904. [PMID: 37439408 PMCID: PMC10477898 DOI: 10.1002/advs.202301904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Liquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP-TEM. The results not only reveal beam-induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings.
Collapse
Affiliation(s)
- Thaïs Couasnon
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
| | - Birk Fritsch
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Department of Materials Science and EngineeringInstitute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Michael P. M. Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystr. 1091058ErlangenGermany
| | - Roberts Blukis
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Leibniz‐Institut für KristallzüchtungMax‐Born Str. 212489BerlinGermany
| | - Andreas Hutzler
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Liane G. Benning
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Department of Earth SciencesFreie Universität Berlin12249BerlinGermany
| |
Collapse
|
11
|
Fritsch B, Körner A, Couasnon T, Blukis R, Benning L, Jank MPM, Spiecker E, Hutzler A. Towards Unveiling the Mystery of Electron-Liquid Interaction in Liquid-Phase TEM: Implications for Practical Application. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:666-667. [PMID: 37613407 DOI: 10.1093/micmic/ozad067.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Birk Fritsch
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Erlangen, Germany
| | - Andreas Körner
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen, Germany
| | - Thaïs Couasnon
- German Research Center for Geosciences (GFZ), Potsdam, Germany
| | - Roberts Blukis
- German Research Center for Geosciences (GFZ), Potsdam, Germany
| | - Liane Benning
- German Research Center for Geosciences (GFZ), Potsdam, Germany
- Freie Universität Berlin, Department of Earth Sciences, Berlin, Germany
| | - Michael P M Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany
| | - Erdmann Spiecker
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Erlangen, Germany
| | - Andreas Hutzler
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen, Germany
| |
Collapse
|
12
|
Fritsch B, Körner A, Couasnon T, Blukis R, Taherkhani M, Benning LG, Jank MPM, Spiecker E, Hutzler A. Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid-Base Correlation beyond pH. J Phys Chem Lett 2023; 14:4644-4651. [PMID: 37167107 DOI: 10.1021/acs.jpclett.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| | - Thaïs Couasnon
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Roberts Blukis
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Mehran Taherkhani
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Liane G Benning
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Michael P M Jank
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Chen Y, Tang S, Shen Y, Chen H, Deng S. A tunable photo-electric co-excited point electron source: low-intensity excitation emission and structure-modulated spectrum-selection. NANOSCALE 2023; 15:8643-8653. [PMID: 37128823 DOI: 10.1039/d3nr00652b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of a point electron source requires an efficient excitation mode with low energy consumption, flexible tunability, and high performance. In particular for traditional electron emission cathode materials, it is necessary to expand the function of this aspect to meet application demands in many emerging fields. In this study, we propose a photo-electric co-excited scheme to drive a tungsten (W) needle nano-cold-cathode. The developed W needle cathode has been demonstrated to show electron emission performance with a narrow energy spread of 0.76 eV and a high brightness of 4 × 109 A m-2 sr-1 V-1. This could be achieved through low-intensity co-excitation, including an electrostatic field below ∼0.5 V μm-1 and a laser intensity at ∼10 W cm-2 level. Based on this co-excitation, the electron emission further exhibited a tunable property relative to the intrinsic properties of the incident light, such as optical frequency and polarization, which is shown to be directly modulated by the structure of the W needle nano-cold-cathode. This work provides a choice to achieve tunable, miniaturized and integrated vacuum micro- and nano-electronic devices.
Collapse
Affiliation(s)
- Yinyao Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shuai Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yan Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
14
|
Lee S, Schneider NM, Tan SF, Ross FM. Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. ACS NANO 2023; 17:5609-5619. [PMID: 36881385 DOI: 10.1021/acsnano.2c11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid cell transmission electron microscopy has become a powerful and increasingly accessible technique for in situ studies of nanoscale processes in liquid and solution phase. Exploring reaction mechanisms in electrochemical or crystal growth processes requires precise control over experimental conditions, with temperature being one of the most critical factors. Here we carry out a series of crystal growth experiments and simulations at different temperatures in the well-studied system of Ag nanocrystal growth driven by the changes in redox environment caused by the electron beam. Liquid cell experiments show strong changes in both morphology and growth rate with temperature. We develop a kinetic model to predict the temperature-dependent solution composition, and we discuss how the combined effect of temperature-dependent chemistry, diffusion, and the balance between nucleation and growth rates affect the morphology. We discuss how this work may provide guidance in interpreting liquid cell TEM and potentially larger-scale synthesis experiments for systems controlled by temperature.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Shu Fen Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Wang Y, Rastogi D, Malek K, Sun J, Asa-Awuku A, Woehl TJ. Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy. J Phys Chem A 2023; 127:2545-2553. [PMID: 36913529 DOI: 10.1021/acs.jpca.2c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Understanding the nanoscale water condensation dynamics in strong electric fields is important for improving the atmospheric modeling of cloud dynamics and emerging technologies utilizing electric fields for direct air moisture capture. Here, we use vapor-phase transmission electron microscopy (VPTEM) to directly image nanoscale condensation dynamics of sessile water droplets in electric fields. VPTEM imaging of saturated water vapor stimulated condensation of sessile water nanodroplets that grew to a size of ∼500 nm before evaporating over a time scale of a minute. Simulations showed that electron beam charging of the silicon nitride microfluidic channel windows generated electric fields of ∼108 V/m, which depressed the water vapor pressure and effected rapid nucleation of nanosized liquid water droplets. A mass balance model showed that droplet growth was consistent with electric field-induced condensation, while droplet evaporation was consistent with radiolysis-induced evaporation via conversion of water to hydrogen gas. The model quantified several electron beam-sample interactions and vapor transport properties, showed that electron beam heating was insignificant, and demonstrated that literature values significantly underestimated radiolytic hydrogen production and overestimated water vapor diffusivity. This work demonstrates a method for investigating water condensation in strong electric fields and under supersaturated conditions, which is relevant to vapor-liquid equilibrium in the troposphere. While this work identifies several electron beam-sample interactions that impact condensation dynamics, quantification of these phenomena here is expected to enable delineating these artifacts from the physics of interest and accounting for them when imaging more complex vapor-liquid equilibrium phenomena with VPTEM.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Kotiba Malek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Akua Asa-Awuku
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| |
Collapse
|