1
|
Feng N, Huang X, Jia Y. Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol 2025; 389:115250. [PMID: 40194649 DOI: 10.1016/j.expneurol.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Dopaminergic neuron loss caused by microglia activation is an important pathological factor of Parkinson's disease (PD). Previously, we reported that small extracellular vesicle from adipose derived stem cells (ADSC-sEVs) could inhibit the activation of microglia and protect neuron apoptosis from microglia activation. However, whether ADSC-sEVs have protective effect on the motor deficit of PD mouse and the exact mechanism remains unknown. In this study, ADSC-sEVs were delivered to experimental model of Parkinson's disease by tail vein injection to explore the in vivo effect of ADSC-sEVs on PD. Next, the potential key microRNA in ADSC-sEVs was screened by RNA sequencing (RNA-seq), and the exact mechanism was further explored. We found that ADSC-sEVs greatly alleviated the activation of microglia and reduced the loss of dopaminergic neurons in the substantia nigra of PD mice, the motor deficit was also significantly improved. By RNA-seq analysis, miR-100-5p was verified as a potential microRNA in this process, because knockdown of miR-100-5p in ADSC-sEVs weakened the protective effect of ADSC-sEVs on PD mouse as well as the anti-inflammatory effect on microglia activation. Finally, we found that miR-100-5p could target Deltex E3 ubiquitin ligase 3 L (DTX3L) and suppress its expression, which then decreased the expression and phosphorylation of Signal Transducers and Activators of Transcription 1 (STAT1), as well as alleviating the activation of microglia. Our findings illustrate that ADSC-sEVs are an effective therapy for PD, and it could be a promising therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nianhua Feng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Yanjun Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
2
|
Zhang H, Jiang N, Xu M, Jing D, Dong T, Liu Q, Lv Q, Huo R, Chen P, Li L, Wang X. M2 macrophage derived exosomal miR-20a-5p ameliorates trophoblast pyroptosis and placental injuries in obstetric antiphospholipid syndrome via the TXNIP/NLRP3 axis. Life Sci 2025; 370:123561. [PMID: 40127859 DOI: 10.1016/j.lfs.2025.123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
AIM Obstetric antiphospholipid syndrome (OAPS) is a pregnancy-related complication characterized by trophoblast pyroptosis and placental injury induced by antiphospholipid antibodies (aPLs). M2-polarized macrophage-derived exosomes (M2-exos) exert anti-inflammatory, immunomodulatory, and growth-promoting effects in various autoimmune diseases and tumors. However, their role in OAPS is not yet clear. Therefore, in this study, we isolated M2-exos from M2 macrophages and investigated their effects on trophoblast proliferation, death, migration, invasion, and pyroptosis following stimulation using aPLs. MAIN METHODS First, we established an animal model of OAPS and thereafter treated the OAPS mice with exogenous M2-exos via injection through the tail vein. Then to clarify the roles of miR-20a-5p and thioredoxin-interacting protein (TXNIP) in OAPS, we performed gain- or loss-of-function assays, and used GraphPad Prism software to analyze the collected data with statistical significance set at P < 0.05. KEY FINDINGS MicroRNAs (miRNAs) sequencing revealed the enrichment of miR-20a-5p in M2-exos, and these M2-exos significantly alleviated aPLs-induced trophoblast dysfunction. Our results also indicated that M2-exos delivered miR-20a-5p to trophoblast cells directly targeted thioredoxin-interacting protein (TXNIP), and thus suppressed the TXNIP/NLRP3 pathway, reduced pyroptosis and inflammation in trophoblast cells, and improved placental function and fetal development. SIGNIFICANCE M2-exos improve pregnancy outcomes in OAPS via the miR-20a-5p/TXNIP/NLRP3 axis, and thus represent as a novel therapeutic approach for aPLs-induced OAPS.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China
| | - Ning Jiang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Mingyang Xu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Die Jing
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Tingting Dong
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi 273400, Shandong, China
| | - Qingfeng Lv
- The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, Shandong, China
| | - Ruiheng Huo
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China.
| |
Collapse
|
3
|
Shi S, Ou X, Wang Q, Zhang L. Macrophage-Derived Extracellular Vesicles: A Novel Therapeutic Alternative for Diabetic Wound. Int J Nanomedicine 2025; 20:5763-5777. [PMID: 40343196 PMCID: PMC12060905 DOI: 10.2147/ijn.s518655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
Diabetic wounds represent a significant clinical and economic challenge owing to their chronicity and susceptibility to complications. Dysregulated macrophage function is a key factor in delayed wound healing. Recent studies have emphasized the therapeutic potential of macrophage-derived extracellular vesicles (MDEVs), which are enriched with bioactive molecules such as proteins, lipids, and nucleic acids that mirror the state of their parent cells. MDEVs influence immune modulation, angiogenesis, extracellular matrix remodeling, and intercellular communication. In this review, we summarize and discuss the biological properties and therapeutic mechanisms of MDEVs in diabetic wound healing, highlighting strategies to enhance their efficacy through bioengineering and advanced delivery systems. We also explore the integration of MDEVs into innovative wound care technologies. Addressing current limitations and advancing clinical translation of MDEVs could advance diabetic wound management, offering a precise, effective, and versatile therapeutic option.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Qian Wang
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
4
|
Qi L, Luo DZ, Li H, Yan J, He W. Macrophage-driven exosomes regulate the progression of cardiovascular disease. Front Pharmacol 2025; 16:1563800. [PMID: 40371346 PMCID: PMC12075947 DOI: 10.3389/fphar.2025.1563800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Exosomes, as vital mediators of intercellular communication, play a critical role in the progression of cardiovascular disease (CVD). Recently, macrophage-derived exosomes (Mφ-Exos) have garnered increasing attention because of their significant potential in early diagnosis, pathological processes, and therapeutic applications for CVD. Exosomes contain diverse nucleic acids (e.g., miRNAs, mRNAs, and long noncoding RNAs (lncRNAs)) and proteins, which serve as specific biomarkers that regulate various stages of CVD. For example, miRNAs encapsulated within exosomes (e.g., miR-21, miR-133a, and miR-155) are closely associated with atherosclerosis, myocardial infarction, coronary artery disease, and stroke, and changes in their abundance can serve as diagnostic and prognostic indicators. Additionally, the composition of Mφ-Exos, including miRNAs, lipids, and proteins, plays a significant role in the initiation, progression, and inflammation of CVD. Research on Mφ-Exos provides new directions for early diagnosis, mechanistic exploration, and novel therapeutic targets in CVD. However, challenges remain regarding exosome isolation and identification technologies. Future studies need to further explore the biological properties of exosomes and develop more efficient, economical, and straightforward isolation methods. This review summarizes the multifaceted regulatory roles of Mφ-Exos in CVD, encompassing key processes such as inflammation, angiogenesis, metabolism, and cell death. Research has shown that M1-Exos promote the progression and exacerbation of CVD through pro-inflammatory and pro-fibrotic mechanisms, while M2-Exos demonstrate significant therapeutic potential via anti-inflammatory, pro-angiogenic, and metabolic reprogramming pathways. These findings not only reveal the complex mechanisms of Mφ-Exos in CVD but also provide new perspectives and potential targets for early diagnosis and precision treatment of the disease.
Collapse
Affiliation(s)
- Liao Qi
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| | - De-Zhu Luo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - HuLi Li
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - JianWen Yan
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| | - WenJie He
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| |
Collapse
|
5
|
Yao Y, Yin Y, Shuai F, Lam W, Zhou T, Xie Y, He X, Han X. M2 Macrophage-Derived Extracellular Vesicles Reprogram Immature Neutrophils into Anxa1 hi Neutrophils to Enhance Inflamed Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416159. [PMID: 40277454 DOI: 10.1002/advs.202416159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Indexed: 04/26/2025]
Abstract
Periodontitis is a microbiome-related inflammation that can lead to irreversible bone reduction and even tooth loss. This study reveals that macrophage polarization states significantly influence periodontal homeostasis, with M2 macrophage-derived extracellular vesicles (M2-EVs) playing a pivotal role in mitigating periodontitis-induced bone loss. Single-cell RNA sequencing of periodontal tissues treated with M2-EVs uncovered a unique Anxa1hi neutrophil subpopulation exhibiting pro-reparative properties. This subpopulation is characterized by immaturity and demonstrated osteogenic and angiogenic capabilities in vivo, partially mediated through the secretion of oncostatin M (OSM) signals. The findings suggest that this functional heterogeneity arises from M2-EVs disrupting the neutrophil maturation trajectory, with pivotal reprogramming genes, such as Acvrl1 and Fpr2, driving the differentiation of the Anxa1hi reparative subpopulation. This work underscores the potential of targeting M2 macrophage-neutrophil interactions to promote the regeneration of inflamed bone tissues.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Waishan Lam
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuesong He
- The ADA Forsyth Institute, 100 Chestnut Street, Somerville, MA, 02143, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Chen J, Zhu Z, Wang Y, Yu J, Zhang X, Xu Y. Cardiac resident macrophages in cardiovascular disease: from physiology to pathology. Heart 2025; 111:391-400. [PMID: 40037765 PMCID: PMC12015047 DOI: 10.1136/heartjnl-2024-324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/03/2024] [Indexed: 03/06/2025] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disease burden worldwide. Macrophages are important components of the internal immune cells, which profoundly affects the internal environmental homeostasis and repair after injury. Cardiac resident macrophages have been shown to regulate a variety of myocardial physiology and pathological activities. Homeostatic resident macrophages in the heart promote angiogenesis, remove ageing and dying cells and participate in cardiac electrical conduction. However, the role of cardiac resident macrophages is still not fully understood despite the growing attention they have received. This review provides an overview of macrophage biology and highlights prominent and emerging interrelationships and functions between cardiac resident macrophages and CVD, aiming to prove a description of the functional diversity of cardiac resident macrophages in different CVD to explore potential options to regulate them. This may provide opportunities for successful therapeutic interventions to improve the prognosis of patients with CVD.
Collapse
Affiliation(s)
- Jianshu Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ziwei Zhu
- Lanzhou University, Lanzhou, Gansu, China
| | - Yi Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jing Yu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | | | - Yuansheng Xu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Liu W, Liu D, Cui T, Wang Y, Zhou S, Tian F, Yang K, Wang W, Bi L, Fan K, Li L, Wang H, Zhang XD. Atomic Artificial Enzyme for Acute and Chronic Pneumonia. Adv Healthc Mater 2025; 14:e2402364. [PMID: 39248150 DOI: 10.1002/adhm.202402364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Pneumonia involves complex immunological and pathological processes leading to pulmonary dysfunction, which can be life-threatening yet lacks effective specialized medications. Natural enzymes can be used as biological agents for the treatment of oxidative stress-related diseases, but limiting to catalytic and environmental stability as well as high cost. Herein, an artificial enzyme, gold nanoclusters (Au NCs) with excellent stability, bioactivity, and renal clearance can be used as the next-generation biological agents for acute lung injury (ALI) and allergic lung disease (ALD). The Au25 clusters can mimic catalase (CAT) and glutathione peroxidase (GPx), and the Km of Au24Er1 with H2O2 reaches 1.28 mM, about 22 times higher than natural CAT (≈28.8 mM). The clusters inhibit the oxidative stress in the mitochondria and promote the synthesis of adenosine triphosphate (ATP). The molecular mechanism shows that the TLR4/MyD88/NF-κB pathway and M1 macrophage-mediated inflammatory response are suppressed in ALI and the Th1/Th2 imbalance in ovalbumin (OVA)-induced ALD is rescued. Further, the clusters can notably improve lung function in both ALI and ALD models which paves the way for immunomodulation and intervention for lung injury and can be used as a substitute for natural enzymes and potential biopharmaceuticals in the treatment of various types of pneumonia.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ke Yang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Wei Wang
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Lewei Bi
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
8
|
Chen X, Yang Y, Chen J, He Y, Huang Y, Huang Q, Deng W, Zhu R, Huang X, Li T. Dual-driven selenium Janus single-atom nanomotors for autonomous regulating mitochondrial oxygen imbalance to catalytic therapy of rheumatoid arthritis. Redox Biol 2025; 81:103574. [PMID: 40043450 PMCID: PMC11926693 DOI: 10.1016/j.redox.2025.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
O2 deficiency and excessive reactive oxygen and nitrogen species (RONS) in macrophage mitochondria is a key factor causing oxygen imbalance in rheumatoid arthritis microenvironment (RAM). Although nanocatalytic therapy that simultaneously produce O2 and eliminate RONS offer a novel strategy for RA therapy, the therapeutic efficacy of nanozymes is limited by the lack of autonomous targeting into mitochondria. Herein, we constructed a Janus-structured nanomotor (Pd@MSe) with autonomous targeting ability by embedding Pd single-atom nanozymes into mesoporous selenium (MSe) nanozymes, and obtained a composite nanomotor (Pd@MSe-TPP) with dual-driven forces by modifying with triphenylphosphine (TPP) in MSe hemisphere. In RAM, Pd@MSe-TPP nanomotor achieved autonomously target into macrophages mitochondria with the driven of generation O2 and TPP targeting effect, moreover under the single-atom effect of the Pd nanozymes enhanced electronic transfer between nanozymes, which significantly boosted GPx catalytic activity further effectively enhanced the diffusion of Pd@MSe-TPP nanomotor, thus quickly resorted the oxygen balance. Additionally, while regulating oxygen imbalance, Pd@MSe-TPP nanomotor enable rapidly blocked the inflammatory cascade, restored mitochondrial function and alleviated inflammation, further prevented cartilage degradation and effectively inhibited RA progression. Therefore, the exquisitely designed nanoplatform to regulation arthritic microenvironment provides a new direction for the RA therapy and the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China.
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Jiajun Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuebing He
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Weiming Deng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Ruiqi Zhu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing, 526000, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
9
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Chen H, Wang D, Liu J, Chen J, Hu Y, Ni Y. Augmenting Antitumor Immune Effects through the Coactivation of cGAS-STING and NF-κB Crosstalk in Dendritic Cells and Macrophages by Engineered Manganese Ferrite Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13375-13390. [PMID: 39964151 DOI: 10.1021/acsami.4c18570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The specific activation of dendritic cells (DCs) and tumor-associated macrophages (TAMs) can activate innate and adaptive immune responses to reverse the tumor immunosuppressive microenvironment. In this study, manganese ferrite nanohybrid MnFe5O8@(M1M-DOX) is synthesized to activate cGAS-STING and NF-κB crosstalk in DCs and TAMs. MnFe5O8, as the source of Fe2+/Fe3+ and Mn2+, is encapsulated with a microdose of doxorubicin (DOX) using an M1 macrophage cytomembrane. Fe2+/Fe3+ and DOX can cooperatively induce tumorous ferroptosis, triggering immunogenic cell death (ICD) that exposes tumor antigens. The release of Fe2+/Fe3+ and Mn2+ has intrinsic dual-immunomodulatory effects on the activation of DCs and the reprogramming of TAMs from the M2 to M1 phenotype. Briefly, Fe2+/Fe3+ activates the NF-κB signaling pathway to trigger the activation of STING signaling. Meanwhile, Mn2+ further enhances the activation of STING and stimulates NF-κB in a cascade-activating manner. Thus, the mutually reinforcing dual activation of cGAS-STING and NF-κB crosstalk prompts the strong maturation of DCs and TAMs, synergistically promoting the infiltration of T cells to inhibit primary tumor growth and localized recurrence. This work proposes a strategy for delivering immunomodulatory metal ions in nanoalloy and harnessing the activation of multisignaling pathways in antigen-presenting cells (APCs) to provide perspectives for tumor immunotherapy.
Collapse
Affiliation(s)
- Heying Chen
- The Key Laboratory of Chinese Ministry of Education in Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dongqing Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jiahe Liu
- The Key Laboratory of Chinese Ministry of Education in Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Jun Chen
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yilu Ni
- The Key Laboratory of Chinese Ministry of Education in Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
11
|
Wang K, Sun Y, Zhu K, Liu Y, Zheng X, Yang Z, Man F, Huang L, Zhu Z, Huang Q, Li Y, Dong H, Zhao J, Li Y. Anti-pyroptosis biomimetic nanoplatform loading puerarin for myocardial infarction repair: From drug discovery to drug delivery. Biomaterials 2025; 314:122890. [PMID: 39427429 DOI: 10.1016/j.biomaterials.2024.122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Pyroptosis is a critical pathological mechanism implicated in myocardial damage following myocardial infarction (MI), and the crosstalk between macrophages and pyroptotic cardiomyocytes presents a formidable challenge for anti-pyroptosis therapies of MI. However, as single-target pyroptosis inhibitors frequently fail to address this crosstalk, the efficacy of anti-pyroptosis treatment post-MI remains inadequate. Therefore, the exploration of more potent anti-pyroptosis approaches is imperative for improving outcomes in MI treatment, particularly in addressing the crosstalk between macrophages and pyroptotic cardiomyocytes. Here, in response to this crosstalk, we engineered an anti-pyroptosis biomimetic nanoplatform (NM@PDA@PU), employing polydopamine (PDA) nanoparticles enveloped with neutrophil membrane (NM) for targeted delivery of puerarin (PU). Notably, network pharmacology is deployed to discern the most efficacious anti-pyroptosis drug (puerarin) among the 7 primary active monomers of TCM formulations widely applied in clinical practice and reveal the effect of puerarin on the crosstalk. Additionally, targeted delivery of puerarin could disrupt the malignant crosstalk between macrophages and pyroptotic cardiomyocytes, and enhance the effect of anti-pyroptosis by not only directly inhibiting cardiomyocytes pyroptosis through NLRP3-CASP1-IL-1β/IL-18 signal pathway, but reshaping the inflammatory microenvironment by reprogramming macrophages to anti-inflammatory M2 subtype. Overall, NM@PDA@PU could enhance anti-pyroptosis effect by disrupting the crosstalk between M1 macrophages and pyroptotic cardiomyocytes to protect cardiomyocytes, ameliorate cardiac function and improve ventricular remodeling, which providing new insights for the efficient treatment of MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yu Sun
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Zhu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao Zheng
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zichen Yang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fulong Man
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Huang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| | - Yongyong Li
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| |
Collapse
|
12
|
Luo Q, Li Z, Sun W, Wang G, Yao H, Wang G, Liu B, Ding J. Myocardia-Injected Synergistically Anti-Apoptotic and Anti-Inflammatory Poly(amino acid) Hydrogel Relieves Ischemia-Reperfusion Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420171. [PMID: 39906023 DOI: 10.1002/adma.202420171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 02/06/2025]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction, but its efficacy is frequently limited by ischemia-reperfusion injury (IRI). While antioxidant and anti-inflammatory therapies have shown significant potential in alleviating IRI, these strategies have not yielded satisfactory clinical outcomes. For that, a thermo-sensitive myocardial-injectable poly(amino acid) hydrogel of methoxy poly(ethylene glycol)45-poly(L-methionine20-co-L-alanine10) (mPEG45-P(Met20-co-Ala10), PMA) loaded with FTY720 (PMA/FTY720) is developed to address IRI through synergistic anti-apoptotic and anti-inflammatory effects. Upon injection into the ischemic myocardium, the PMA aqueous solution undergoes a sol-to-gel phase transition and gradually degrades in response to reactive oxygen species (ROS), releasing FTY720 on demand. PMA acts synergistically with FTY720 to inhibit cardiomyocyte apoptosis and modulate pro-inflammatory M1 macrophage polarization toward anti-inflammatory M2 macrophages by clearing ROS, thereby mitigating the inflammatory response and promoting vascular regeneration. In a rat IRI model, PMA/FTY720 reduces the apoptotic cell ratio by 81.8%, increases vascular density by 34.0%, and enhances left ventricular ejection fraction (LVEF) by 12.8%. In a rabbit IRI model, the gel-based sustained release of FTY720 enhanced LVEF by an additional 7.2% compared to individual treatment. In summary, the engineered PMA hydrogel effectively alleviates IRI through synergistic anti-apoptosis and anti-inflammation actions, offering valuable clinical potential for treating myocardial IRI.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
| | - Wei Sun
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
| | - Guoliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Haochen Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, 130061, P. R. China
| | - Guoqing Wang
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, 130061, P. R. China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| |
Collapse
|
13
|
Zhang S, Li R, Song M, Han J, Fan X. Exploration of M2 macrophage membrane as a biotherapeutic agent and strong synergistic therapeutic effects in ischemic stroke. J Control Release 2025; 378:476-489. [PMID: 39561947 DOI: 10.1016/j.jconrel.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
The macrophage-derived membrane is widely applied in the targeting nanocarrier for its inflammatory tendency and long circulation ability due to the preservation of membrane protein. Few studies reported the application of macrophage membranes as biotherapeutic agents. To verify the ability of macrophage membrane as a biotherapeutic agent, ischemic stroke was selected as the model disease. Inspired by the features of macrophages infiltrating the ischemic core and the talent of M2 macrophages in modulating the inflammatory microenvironment, an M2 macrophage membrane (M2M)-disguised poly lactic-co-glycolic acid nanoparticles loaded with baicalin (BA) (M2M@BANPs) is developed. The results in vivo and in vitro indicate that M2M@BANPs could efficiently and actively target ischemic brain tissue and accumulate in microglia and neurons due to the coating of M2M. Furthermore, M2M and M2M@BANPs exhibit significant therapeutic effects in salvaging brain tissue damage and neurological functional recovery by reprogramming microglia from M1 to M2, reducing neutrophil infiltration and inhibiting neuronal apoptosis. Together, our fabrication provides a new insight and an applicative perspective for M2M in the therapy of ischemic stroke.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
14
|
Saleh NA, Gagea MA, Vitija X, Janovic T, Schmidt JC, Deng CX, Kanada M. Harnessing Extracellular Vesicles for Stabilized and Functional IL-10 Delivery in Macrophage Immunomodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633016. [PMID: 39868086 PMCID: PMC11761701 DOI: 10.1101/2025.01.14.633016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are gaining recognition as promising therapeutic carriers for immune modulation. We investigated the potential of EVs derived from HEK293FT cells to stabilize and deliver interleukin-10 (IL-10), a key anti-inflammatory cytokine. Using minicircle (MC) DNA vectors, we achieved IL-10 overexpression and efficient incorporation into EVs, yielding superior stability compared to free, recombinant IL-10 protein. Detailed biophysical and functional analyses revealed that IL-10+ EVs contain both monomeric and oligomeric forms of IL-10 on their external surface and encapsulated within vesicles. IL-10+ EVs suppressed inflammatory cytokine expression in pro-inflammatory macrophages (from two to 14-fold compared to naïve EVs) without inducing anti-inflammatory polarization, demonstrating a distinct immunosuppressive mechanism. Interestingly, naïve EVs from non-transfected cells also exhibited significant anti-inflammatory effects, suggesting that the intrinsic bioactive cargo of EVs substantially contributes to their function, complicating the interpretation of IL-10-specific effects. Size-based fractionation analyses of IL-10+ large EVs (lEVs), small EVs (sEVs), and non-vesicular extracellular particles (NVEPs) revealed IL-10 presence across all fractions, predominantly in monomeric form, with anti-inflammatory activity distributed among subpopulations. Anion exchange chromatography successfully enriched IL-10+ exosomes while retaining immunomodulatory effects. However, the shared properties of naïve and IL-10+ exosomes underscore the complexity of their immunomodulatory functions. These findings highlight the therapeutic potential of EVs while emphasizing the need to disentangle the contributions of engineered cytokines from endogenous vesicular components.
Collapse
Affiliation(s)
- Najla A. Saleh
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Matthew A. Gagea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
- Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
| | - Xheneta Vitija
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
- College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Tomas Janovic
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics and Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Cheri X. Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
- College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Lin F, Luo H, Wang J, Li Q, Zha L. Macrophage-derived extracellular vesicles as new players in chronic non-communicable diseases. Front Immunol 2025; 15:1479330. [PMID: 39896803 PMCID: PMC11782043 DOI: 10.3389/fimmu.2024.1479330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Macrophages are innate immune cells present in all tissues and play an important role in almost all aspects of the biology of living organisms. Extracellular vesicles (EVs) are released by cells and transport their contents (micro RNAs, mRNA, proteins, and long noncoding RNAs) to nearby or distant cells for cell-to-cell communication. Numerous studies have shown that macrophage-derived extracellular vesicles (M-EVs) and their contents play an important role in a variety of diseases and show great potential as biomarkers, therapeutics, and drug delivery vehicles for diseases. This article reviews the biological functions and mechanisms of M-EVs and their contents in chronic non-communicable diseases such as cardiovascular diseases, metabolic diseases, cancer, inflammatory diseases and bone-related diseases. In addition, the potential application of M-EVs as drug delivery systems for various diseases have been summarized.
Collapse
Affiliation(s)
- Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Zhang YW, Sun L, Wang YN, Zhan SY. Role of macrophage polarization in diabetic foot ulcer healing: A bibliometric study. World J Diabetes 2025; 16:99755. [PMID: 39817209 PMCID: PMC11718451 DOI: 10.4239/wjd.v16.i1.99755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are a significant contributor to disability and mortality in diabetic patients. Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing. However, the complex mechanism, the difficulty in clinical translation, and the large heterogeneity present significant challenges. Hence, this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing. AIM To examine the relevant literature on macrophage polarization in DFU healing. METHODS A bibliometric analysis was conducted using the Web of Science database. Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software (VOSviewer and CiteSpace) and bibliometric online platforms. The obtained literature was then subjected to visualization and analysis of different countries/regions, institutions, journals, authors, and keywords to reveal the research's major trends and focus. RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023, especially in the latter period. Chinese researchers were the most prolific in this field, with 217 publications, while American researchers had been engaged in this field for a longer period. Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field. Shanghai Jiao Tong University was the institution with the most publications (27). The keywords "bone marrow", "adjustment, replacement, response, tissue repair", and "activation, repair, differentiation" appeared more frequently. The study of macrophage polarization in DFU healing focused on the regulatory mechanism, gene expression, and other aspects. CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database. The key hotspots in this field mainly include the regulation of macrophage activation, gene expression, wound tissue repair, and new wound materials. This study provides references for future research directions.
Collapse
Affiliation(s)
- You-Wen Zhang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Lei Sun
- Department of Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, Shandong Province, China
| | - Yan-Nan Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Shi-Yu Zhan
- Department of Surgery, Longkou Traditional Chinese Medicine Hospital, Yantai 265701, Shandong Province, China
| |
Collapse
|
17
|
Shi S, Liu X, Geng X, Meng Q, Gao M, Wang E, Ma X, Hu H, Liu J, Han W, Yin H, Zhou X. Neonatal heart tissue-derived EVs alleviate adult ischemic cardiac injury via regulating the function of macrophages and cardiac regeneration in murine models. Int Immunopharmacol 2024; 143:113251. [PMID: 39353386 DOI: 10.1016/j.intimp.2024.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Previous studies confirmed the regenerative capacity of the mammalian neonatal heart. We recently found that adult heart tissue-derived EVs can protect the heart from myocardial ischemia-reperfusion (I/R). However, the role of EVs from neonatal heart tissue in cardiac healing post-ischemia remains unclear. In the present study, we revealed that intramyocardial administration of neonatal cardiac tissue-derived EVs (ncEVs) alleviated cardiac inflammation, mitigated reperfusion injury, and improved cardiac function in murine I/R models. In vitro, ncEVs inhibited M1 polarization of macrophages induced by LPS while up-regulated their phagocytic function via the miR-133a-3p-Ash1l signaling pathway. Moreover, the administration of ncEVs contributed to cardiac angiogenesis and improved cardiac function in murine myocardial infarction models. Collectively, these results suggested that neonatal heart-derived EVs can regulate the function of macrophages and contribute to cardiac regeneration and function recovery in murine cardiac ischemic models. Therefore, the derivatives in neonatal heart tissue-derived EVs might serve as a potential therapeutic strategy in ischemic diseases.
Collapse
Affiliation(s)
- Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Mingkui Gao
- Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoxue Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Hu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jie Liu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422000 China.
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
18
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
19
|
Carter K, Shah E, Waite J, Rana D, Zhao ZQ. Pathophysiology of Angiotensin II-Mediated Hypertension, Cardiac Hypertrophy, and Failure: A Perspective from Macrophages. Cells 2024; 13:2001. [PMID: 39682749 PMCID: PMC11640308 DOI: 10.3390/cells13232001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure is a complex syndrome characterized by cardiac hypertrophy, fibrosis, and diastolic/systolic dysfunction. These changes share many pathological features with significant inflammatory responses in the myocardium. Among the various regulatory systems that impact on these heterogeneous pathological processes, angiotensin II (Ang II)-activated macrophages play a pivotal role in the induction of subcellular defects and cardiac adverse remodeling during the progression of heart failure. Ang II stimulates macrophages via its AT1 receptor to release oxygen-free radicals, cytokines, chemokines, and other inflammatory mediators in the myocardium, and upregulates the expression of integrin adhesion molecules on both monocytes and endothelial cells, leading to monocyte-endothelial cell-cell interactions. The transendothelial migration of monocyte-derived macrophages exerts significant biological effects on the proliferation of fibroblasts, deposition of extracellular matrix proteins, induction of perivascular/interstitial fibrosis, and development of hypertension, cardiac hypertrophy and heart failure. Inhibition of macrophage activation using Ang II AT1 receptor antagonist or depletion of macrophages from the peripheral circulation has shown significant inhibitory effects on Ang II-induced vascular and myocardial injury. The purpose of this review is to discuss the current understanding in Ang II-induced maladaptive cardiac remodeling and dysfunction, particularly focusing on molecular signaling pathways involved in macrophages-mediated hypertension, cardiac hypertrophy, fibrosis, and failure. In addition, the challenges remained in translating these findings to the treatment of heart failure patients are also addressed.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
20
|
Guo D, Yan J, Yang Z, Chen M, Zhong W, Yuan X, Yu S. The immune regulatory role of exosomal miRNAs and their clinical application potential in heart failure. Front Immunol 2024; 15:1476865. [PMID: 39687609 PMCID: PMC11647038 DOI: 10.3389/fimmu.2024.1476865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure (HF) is a complex and debilitating condition characterized by the heart's inability to pump blood effectively, leading to significant morbidity and mortality. The abnormality of immune response is a key factor in the progression of HF, contributing to adverse cardiac remodeling and dysfunction. Exosomal microRNAs (miRNAs) play a pivotal role in regulating gene expression and cellular function, which are integral to the crosstalk between cardiac and immune cells, influencing immune cell functions, such as macrophage polarization, T cell activity, and cytokine production, thereby modulating various pathological processes of HF, such as inflammation, fibrosis, and cardiac dysfunction. This review emphasizes the immune-regulatory role of exosomal miRNAs in HF and highlights their clinical potential as diagnostic biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junchen Yan
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenyu Yang
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengzhu Chen
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weibo Zhong
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Siming Yu
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
21
|
Zhang Z, Du H, Gao W, Zhang D. Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:25. [PMID: 39592532 PMCID: PMC11599506 DOI: 10.1186/s13619-024-00209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.
Collapse
Affiliation(s)
- Zhuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hetian Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weijie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
22
|
Rody E, Zwaig J, Derish I, Khan K, Kachurina N, Gendron N, Giannetti N, Schwertani A, Cecere R. Evaluating the Reparative Potential of Secretome from Patient-Derived Induced Pluripotent Stem Cells during Ischemia-Reperfusion Injury in Human Cardiomyocytes. Int J Mol Sci 2024; 25:10279. [PMID: 39408608 PMCID: PMC11477076 DOI: 10.3390/ijms251910279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/20/2024] Open
Abstract
During a heart attack, ischemia causes losses of billions of cells; this is especially concerning given the minimal regenerative capability of cardiomyocytes (CMs). Heart remuscularization utilizing stem cells has improved cardiac outcomes despite little cell engraftment, thereby shifting focus to cell-free therapies. Consequently, we chose induced pluripotent stem cells (iPSCs) given their pluripotent nature, efficacy in previous studies, and easy obtainability from minimally invasive techniques. Nonetheless, using iPSC secretome-based therapies for treating injured CMs in a clinical setting is ill-understood. We hypothesized that the iPSC secretome, regardless of donor health, would improve cardiovascular outcomes in the CM model of ischemia-reperfusion (IR) injury. Episomal-generated iPSCs from healthy and dilated cardiomyopathy (DCM) donors, passaged 6-10 times, underwent 24 h incubation in serum-free media. Protein content of the secretome was analyzed by mass spectroscopy and used to treat AC16 immortalized CMs during 5 h reperfusion following 24 h of hypoxia. IPSC-derived secretome content, independent of donor health status, had elevated expression of proteins involved in cell survival pathways. In IR conditions, iPSC-derived secretome increased cell survival as measured by metabolic activity (p < 0.05), cell viability (p < 0.001), and maladaptive cellular remodelling (p = 0.052). Healthy donor-derived secretome contained increased expression of proteins related to calcium contractility compared to DCM donors. Congruently, only healthy donor-derived secretomes improved CM intracellular calcium concentrations (p < 0.01). Heretofore, secretome studies mainly investigated differences relating to cell type rather than donor health. Our work suggests that healthy donors provide more efficacious iPSC-derived secretome compared to DCM donors in the context of IR injury in human CMs. These findings illustrate that the regenerative potential of the iPSC secretome varies due to donor-specific differences.
Collapse
Affiliation(s)
- Elise Rody
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Jeremy Zwaig
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
| | - Ida Derish
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3G 1A4, Canada
| | - Kashif Khan
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadezda Kachurina
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Natalie Gendron
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadia Giannetti
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Adel Schwertani
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Renzo Cecere
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
23
|
Hu X, Liu X, Feng D, Xu T, Li H, Hu C, Wang Z, Liu X, Yin P, Shi X, Shang D, Xu G. Polarization of Macrophages in Tumor Microenvironment Using High-Throughput Single-Cell Metabolomics. Anal Chem 2024; 96:14935-14943. [PMID: 39221578 DOI: 10.1021/acs.analchem.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macrophages consist of a heterogeneous population of functionally distinct cells that participate in many physiological and pathological processes. They exhibit prominent plasticity by changing their different functional phenotypes represented by proinflammatory (M1) and anti-inflammatory (M2) in response to different environmental stimuli. Emerging evidence illustrates the importance of intracellular metabolic pathways in macrophage polarizations and functions. In the tumor microenvironment (TME), macrophages tend to M2 polarization, which promotes tumor growth and leads to adverse physiological effects. Due to the lack of highly specific antigens in M1 and M2 macrophages, significant challenges present in isolating these subtypes from clinical samples or in vitro coculture models of tumor-immune cells. In reverse, the single-cell technique provides the possibility to investigate the factors influencing macrophage polarization in the TME. In this research, we employed inertial microfluidic chip-mass spectrometry (IMC-MS) to conduct single-cell metabolomics analysis of macrophages polarized into the two major phenotypes, respectively, and 213 metabolites were identified in total. Subsequently, differential metabolites between macrophage phenotypes were analyzed using volcano plots and binary logistic regression models. Glutamine was pinpointed as a key metabolite for the M1 and M2 phenotypes. Experimental results from both monoculture and coculture cell models demonstrated that M1 polarization is more reliant on the presence of glutamine in the culture environment than M2 polarization. Glutamine deficiency resulted in failed M1 polarization, while its absence had a less pronounced effect on M2 polarization. Replenishing an appropriate amount of glutamine during the intermediate stages of coculture models significantly enhanced the proportion of M1 polarization and suppressed the growth of tumor cells. This research elucidated glutamine as a key factor influencing macrophage polarization in the TME via single-cell metabolomics based on IMC-MS, offering promising insights and targets for tumor therapies.
Collapse
Affiliation(s)
- Xuesen Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinlin Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Disheng Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhizhou Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peiyuan Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dong Shang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
24
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
25
|
Wang Q, Cao S, Zhang T, Lv F, Zhai M, Bai D, Zhao M, Cheng H, Wang X. Reactive oxide species and ultrasound dual-responsive bilayer microneedle array for in-situ sequential therapy of acute myocardial infarction. BIOMATERIALS ADVANCES 2024; 162:213917. [PMID: 38861802 DOI: 10.1016/j.bioadv.2024.213917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Acute myocardial infarction (AMI) resulting from coronary artery occlusion stands as the predominant cause of cardiovascular disability and mortality worldwide. An all-encompassing treatment strategy targeting pathological processes of oxidative stress, inflammation, proliferation and fibrotic remodeling post-AMI is anticipated to enhance therapeutic outcomes. Herein, an up-down-structured bilayer microneedle (Ce-CLMs-BMN) with reactive oxygen species (ROS) and ultrasound (US) dual-responsiveness is proposed for AMI in-situ sequential therapy. The upper-layer microneedle is formulated by crosslinking ROS-sensitive linker with polyvinyl alcohol loaded with cerium dioxide nanoparticles (CeNPs) featuring versatile enzyme-mimetic activities. During AMI acute phase, prompted by ischemia-induced microenvironmental redox imbalance, this layer swiftly releases CeNPs, which aid in eliminating excessive ROS and catalyzing oxygen gas (O2) production through multiple enzymatic pathways, thereby alleviating oxidative stress-induced damage and modulating inflammation. In AMI chronic repair phase, micro-nano reactors (CLMs) situated in the lower-layer microneedle undergo cascade reactions with the assistance of US irradiation to generate nitric oxide (NO). As a bioactive molecule with pro-angiogenic and anti-fibrotic effects, NO expedites cardiac repair while attenuating adverse remodeling. Additionally, its antiplatelet-aggregating properties contribute to thromboprophylaxis. In-vitro and in-vivo results substantiate the efficacy of this integrated healing approach in AMI management, showcasing promising prospects for advancing infarcted heart repair.
Collapse
Affiliation(s)
- Qingqing Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Shuangyuan Cao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330088, PR China
| | - Teng Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Fanzhen Lv
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Mingfei Zhai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China
| | - Danmeng Bai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330088, PR China
| | - Mengzhen Zhao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China
| | - Haoxin Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China
| | - Xiaolei Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330088, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China.
| |
Collapse
|
26
|
Liu R, Wang F, Luo X, Yang F, Gao J, Shen H, Zheng Z. The immunomodulatory of interleukin-33 in rheumatoid arthritis: A systematic review. Clin Immunol 2024; 265:110264. [PMID: 38825072 DOI: 10.1016/j.clim.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease that primarily affects the joints and surrounding soft tissues, characterized by chronic inflammation and proliferation of the synovium. Various immune cells are involved in the pathophysiology of RA. The complex interplay of factors such as chronic inflammation, genetic susceptibility, dysregulation of serum antibody levels, among others, contribute to the complexity of the disease mechanism, disease activity, and treatment of RA. Recently, the cytokine storm leading to increased disease activity in RA has gained significant attention. Interleukin-33 (IL-33), a member of the IL-1 family, plays a crucial role in inflammation and immune regulation. ST2 (suppression of tumorigenicity 2 receptor), the receptor for IL-33, is widely expressed on the surface of various immune cells. When IL-33 binds to its receptor ST2, it activates downstream signaling pathways to exert immunoregulatory effects. In RA, IL-33 regulates the progression of the disease by modulating immune cells such as circulating monocytes, tissue-resident macrophages, synovial fibroblasts, mast cells, dendritic cells, neutrophils, T cells, B cells, endothelial cells, and others. We have summarized and analyzed these findings to elucidate the pathways through which IL-33 regulates RA. Furthermore, IL-33 has been detected in the synovium, serum, and synovial fluid of RA patients. Due to inconsistent research results, we conducted a meta-analysis on the association between serum IL-33, synovial fluid IL-33, and the risk of developing RA in patients. The pooled SMD was 1.29 (95% CI: 1.15-1.44), indicating that IL-33 promotes the onset and pathophysiological progression of RA. Therefore, IL-33 may serve as a biomarker for predicting the risk of developing RA and treatment outcomes. As existing drugs for RA still cannot address drug resistance in some patients, new therapeutic approaches are needed to alleviate the significant burden on RA patients and healthcare systems. In light of this, we analyzed the potential of targeting the IL-33/ST2-related signaling pathway to modulate immune cells associated with RA and alleviate inflammation. We also reviewed IL-33 and RA susceptibility-related single nucleotide polymorphisms, suggesting potential involvement of IL-33 and macrophage-related drug-resistant genes in RA resistance therapy. Our review elucidates the role of IL-33 in the pathophysiology of RA, offering new insights for the treatment of RA.
Collapse
Affiliation(s)
- Renli Liu
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi 'an City, Shaanxi Province 710032, China
| | - Fangfang Wang
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi 'an City, Shaanxi Province 710032, China
| | - Xing Luo
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi 'an City, Shaanxi Province 710032, China
| | - Fengfan Yang
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi 'an City, Shaanxi Province 710032, China
| | - Jie Gao
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi 'an City, Shaanxi Province 710032, China
| | - Haomiao Shen
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi 'an City, Shaanxi Province 710032, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi 'an City, Shaanxi Province 710032, China.
| |
Collapse
|
27
|
Huang J, Kuang W, Zhou Z. IL-1 signaling pathway, an important target for inflammation surrounding in myocardial infarction. Inflammopharmacology 2024; 32:2235-2252. [PMID: 38676853 DOI: 10.1007/s10787-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Acute myocardial infarction is an important cardiovascular disease worldwide. Although the mortality rate of myocardial infarction (MI) has improved dramatically in recent years due to timely treatment, adverse remodeling of the left ventricle continues to affect cardiac function. Various immune cells are involved in this process to induce inflammation and amplification. The infiltration of inflammatory cells in the infarcted myocardium is induced by various cytokines and chemokines, and the recruitment of leukocytes further amplifies the inflammatory response. As an increasing number of clinical anti-inflammatory therapies have achieved significant success in recent years, treating myocardial infarction by targeting inflammation may become a novel therapeutic option. In particular, successful clinical trials of canakinumab have demonstrated the important role of the inflammatory factor interleukin-1 (IL-1) in atherosclerosis. Targeted IL-1 therapy may decrease inflammation levels and improve cardiac function in patients after myocardial infarction. This article reviews the complex series of responses after myocardial infarction, including the involvement of inflammatory cells and the role of cytokines and chemokines, focusing on the progression of the IL-1 family in myocardial infarction as well as the performance of current targeted therapy drugs in experiments.
Collapse
Affiliation(s)
- Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
Wu J, Wu Y, Tang H, Li W, Zhao Z, Shi X, Jiang H, Yu L, Deng H. Self-Adapting Biomass Hydrogel Embodied with miRNA Immunoregulation and Long-Term Bacterial Eradiation for Synergistic Chronic Wound Therapy. ACS NANO 2024; 18:18379-18392. [PMID: 38953692 DOI: 10.1021/acsnano.4c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chronic wound rescue is critical for diabetic patients but is challenging to achieve with a specific and long-term strategy. The prolonged bacterial inflammation is particularly prevalent in hyperglycemia-induced wounds, usually leading to severe tissue damage. Such a trend could further suffer from an environmental suitability provided by macrophages for persisting Staphylococcus aureus (S. aureus) and even deteriorate by their mutual reinforcement. However, the strategy of both suppressing bacteria growth and immunoreprogramming the inflammatory type of macrophages to break their vicious harm to wound healing is still lacking. Here, a self-adapting biomass carboxymethyl chitosan (CMC) hydrogel comprising immunomodulatory nanoparticles is reported to achieve Gram-negative/Gram-positive bacteria elimination and anti-inflammatory cytokines induction to ameliorate the cutaneous microenvironment. Mechanistically, antibacterial peptides and CMCs synergistically result in a long-term inhibition against methicillin-resistant S. aureus (MRSA) over a period of 7 days, and miR-301a reprograms the M2 macrophage via the PTEN/PI3Kγ/mTOR signaling pathway, consequently mitigating inflammation and promoting angiogenesis for diabetic wound healing in rats. In this vein, immunoregulatory hydrogel is a promising all-biomass dressing ensuring biocompatibility, providing a perspective to regenerate cutaneous damaged tissue, and repairing chronic wounds on skin.
Collapse
Affiliation(s)
- Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wei Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
29
|
Chen Y, Wang J, An C, Bao S, Zhang C. The role and research progress of macrophages after heart transplantation. Heliyon 2024; 10:e33844. [PMID: 39027574 PMCID: PMC11255595 DOI: 10.1016/j.heliyon.2024.e33844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Since the 60s of the 20th century, heart transplantation has been the best treatment for patients with end-stage heart failure. Due to the increasing number of patients, how to expand the number of donor organs and enhance immune compatibility has become an urgent problem to be solved at this stage. Although current immunosuppression is effective, its side effects are also quite obvious, such as opportunistic infections and malignant tumors. In this review, we focus on the important role in macrophages after heart transplantation and their potential targets for achieving allogeneic graft tolerance, in order to improve effective graft survival and reduce infection and the occurrence of malignant tumors.
Collapse
Affiliation(s)
- Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - JianPeng Wang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ShanQing Bao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ChengXin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
30
|
Sun D, Zhang X, Chen R, Sang T, Li Y, Wang Q, Xie L, Zhou Q, Dou S. Decoding cellular plasticity and niche regulation of limbal stem cells during corneal wound healing. Stem Cell Res Ther 2024; 15:201. [PMID: 38971839 PMCID: PMC11227725 DOI: 10.1186/s13287-024-03816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Dysfunction or deficiency of corneal epithelium results in vision impairment or blindness in severe cases. The rapid and effective regeneration of corneal epithelial cells relies on the limbal stem cells (LSCs). However, the molecular and functional responses of LSCs and their niche cells to injury remain elusive. METHODS Single-cell RNA sequencing was performed on corneal tissues from normal mice and corneal epithelium defect models. Bioinformatics analysis was performed to confirm the distinct characteristics and cell fates of LSCs. Knockdown of Creb5 and OSM treatment experiment were performed to determine their roles of in corneal epithelial wound healing. RESULTS Our data defined the molecular signatures of LSCs and reconstructed the pseudotime trajectory of corneal epithelial cells. Gene network analyses characterized transcriptional landmarks that potentially regulate LSC dynamics, and identified a transcription factor Creb5, that was expressed in LSCs and significantly upregulated after injury. Loss-of-function experiments revealed that silencing Creb5 delayed the corneal epithelial healing and LSC mobilization. Through cell-cell communication analysis, we identified 609 candidate regeneration-associated ligand-receptor interaction pairs between LSCs and distinct niche cells, and discovered a unique subset of Arg1+ macrophages infiltrated after injury, which were present as the source of Oncostatin M (OSM), an IL-6 family cytokine, that were demonstrated to effectively accelerate the corneal epithelial wound healing. CONCLUSIONS This research provides a valuable single-cell resource and reference for the discovery of mechanisms and potential clinical interventions aimed at ocular surface reconstruction.
Collapse
Affiliation(s)
- Di Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Xiaowen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Rong Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Tian Sang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
31
|
Zhu S, Liu Y, Xia G, Wang X, Du A, Wu J, Wang Y, Wang Y, Shen C, Wei P, Xu C. Modulation of cardiac resident macrophages immunometabolism upon high-fat-diet feeding in mice. Front Immunol 2024; 15:1371477. [PMID: 39007149 PMCID: PMC11239335 DOI: 10.3389/fimmu.2024.1371477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Background A high-fat diet (HFD) contributes to various metabolic disorders and obesity, which are major contributors to cardiovascular disease. As an essential regulator for heart homeostasis, cardiac resident macrophages may go awry and contribute to cardiac pathophysiology upon HFD. Thus, to better understand how HFD induced cardiac dysfunction, this study intends to explore the transcriptional and functional changes in cardiac resident macrophages of HFD mice. Methods C57BL/6J female mice that were 6 weeks old were fed with HFD or normal chow diet (NCD) for 16 weeks. After an evaluation of cardiac functions by echocardiography, mouse hearts were harvested and cardiac resident CCR2- macrophages were sorted, followed by Smart sequencing. Bioinformatics analysis including GO, KEGG, and GSEA analyses were employed to elucidate transcriptional and functional changes. Results Hyperlipidemia and obesity were observed easily upon HFD. The mouse hearts also displayed more severe fibrosis and diastolic dysfunction in HFD mice. Smart sequencing and functional analysis revealed metabolic dysfunctions, especially lipid-related genes and pathways. Besides this, antigen-presentation-related gene such as Ctsf and inflammation, particularly for NF-κB signaling and complement cascades, underwent drastic changes in cardiac resident macrophages. GO cellular compartment analysis was also performed and showed specific organelle enrichment trends of the involved genes. Conclusion Dysregulated metabolism intertwines with inflammation in cardiac resident macrophages upon HFD feeding in mice, and further research on crosstalk among organelles could shed more light on potential mechanisms.
Collapse
Affiliation(s)
- Simeng Zhu
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yujia Liu
- Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ailian Du
- Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Wu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanpeng Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanlong Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Wei
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Congfeng Xu
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
33
|
Yang YX, Zhou F, Wen T, Li WJ. Deciphering the Enigma of Intramyocardial Hemorrhage Following Reperfusion Therapy in Acute ST-Segment Elevation Myocardial Infarction: A Comprehensive Exploration from Mechanisms to Therapeutic Strategies. Cardiol Rev 2024:00045415-990000000-00274. [PMID: 38780252 DOI: 10.1097/crd.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) is a formidable challenge in cardiovascular medicine, demanding advanced reperfusion strategies such as emergency percutaneous coronary intervention. While successful revascularization is pivotal, the persistent "no-reflow" phenomenon remains a clinical hurdle, often intertwined with microvascular dysfunction. Within this intricate scenario, the emergence of intramyocardial hemorrhage (IMH) has garnered attention as a significant contributor. This review offers a detailed exploration of the multifaceted relationship between IMH and the "no-reflow" phenomenon, delving into the mechanisms governing IMH occurrence, state-of-the-art diagnostic modalities, predictive factors, clinical implications, and the evolving landscape of preventive and therapeutic strategies. The nuanced examination aims to deepen our comprehension of IMH, providing a foundation for the identification of innovative therapeutic avenues and enhanced clinical outcomes for STEMI patients.
Collapse
Affiliation(s)
- Yong Xin Yang
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
| | - Fei Zhou
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
- Department of Cardiology, Institute of Cardiovascular Disease, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Te Wen
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
| | - Wen Jing Li
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
34
|
Ruiz Luque J, Cevey ÁC, Pieralisi AV, Poncini C, Erra Díaz F, Azevedo Reis MV, Donato M, Mirkin GA, Goren NB, Penas FN. Fenofibrate Induces a Resolving Profile in Heart Macrophage Subsets and Attenuates Acute Chagas Myocarditis. ACS Infect Dis 2024; 10:1793-1807. [PMID: 38648355 DOI: 10.1021/acsinfecdis.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.
Collapse
Affiliation(s)
- Javier Ruiz Luque
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Ágata Carolina Cevey
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Azul Victoria Pieralisi
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Carolina Poncini
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Fernando Erra Díaz
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Marcus Vinicius Azevedo Reis
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Martin Donato
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires C1121A6B, Argentina
| | - Gerardo Ariel Mirkin
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Nora Beatriz Goren
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Federico Nicolás Penas
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| |
Collapse
|
35
|
Wang X, Xie L, Liu C. CCR2 antagonist attenuates calcium oxalate-induced kidney oxidative stress and inflammation by regulating macrophage activation. Exp Anim 2024; 73:211-222. [PMID: 38199255 PMCID: PMC11091353 DOI: 10.1538/expanim.23-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
C-C chemokine receptor type 2 (CCR2) is a monocyte chemokine associated with oxidative stress and inflammation. Kidney stones (KS) are composed of calcium oxalate (CaOx), which trigger renal oxidative stress and inflammatory. This study aims to evaluate the effects of CCR2 on KS in vivo and in vitro. Eight-week-old male C57BL/6J mice were intraperitoneally injected with glyoxylate (GOX) daily to establish a KS model, and along with CCR2 antagonist (INCB3344) treatment on days 2, 4, and 6. The results showed that CCR2 antagonist reduced renal injury markers (blood urea nitrogen and serum creatinine), alleviated renal tubular injury and CaOx crystal deposition. CCR2 antagonist also decreased CCR2 expression induced by GOX treatment and increased Nrf2 expression. GOX treatment promoted malondialdehyde (MDA) production, decreased glutathione (GSH) content, and inhibited catalase (CAT) and superoxide dismutase (SOD) activity, however, CCR2 antagonist attenuated the above effects of GOX. CCR2 antagonist had inhibitory effects on GOX-induced inflammatory cytokine expression (IL1B, IL6 and MCP1), and inhibited apoptosis by increasing Bcl-2 expression and decreasing Bax and cleaved-caspase 3 expression. In vitro experiments were performed by co-culture model of CaOx-induced damaged HK-2 cells and macrophage-like THP-1 cells. CCR2 antagonist inhibited CaOx-induced THP-1 cell M1 polarization by decreasing the TNF-α, IL6 and iNOS levels, and further alleviated CaOx-induced oxidative stress damage, inflammatory response and apoptosis of HK-2 cells. The study suggests that CCR2 antagonist may be resistant to CaOx crystals-induced oxidative stress and inflammation by inhibiting macrophage M1 polarization.
Collapse
Affiliation(s)
- Xinpeng Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| |
Collapse
|
36
|
Xie L, Chen J, Hu H, Zhu Y, Wang X, Zhou S, Wang F, Xiang M. Engineered M2 macrophage-derived extracellular vesicles with platelet membrane fusion for targeted therapy of atherosclerosis. Bioact Mater 2024; 35:447-460. [PMID: 38390527 PMCID: PMC10881364 DOI: 10.1016/j.bioactmat.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Atherosclerosis is featured as chronic low-grade inflammation in the arteries, which leads to the formation of plaques rich in lipids. M2 macrophage-derived extracellular vesicles (M2EV) have significant potential for anti-atherosclerotic therapy. However, their therapeutic effectiveness has been hindered by their limited targeting capability in vivo. The objective of this study was to create the P-M2EV (platelet membrane-modified M2EV) using the membrane fusion technique in order to imitate the interaction between platelets and macrophages. P-M2EV exhibited excellent physicochemical properties, and microRNA (miRNA)-sequencing revealed that the extrusion process had no detrimental effects on miRNAs carried by the nanocarriers. Remarkably, miR-99a-5p was identified as the miRNA with the highest expression level, which targeted the mRNA of Homeobox A1 (HOXA1) and effectively suppressed the formation of foam cells in vitro. In an atherosclerotic low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model, the intravenous injection of P-M2EV showed enhanced targeting and greater infiltration into atherosclerotic plaques compared to regular extracellular vesicles. Crucially, P-M2EV successfully suppressed the progression of atherosclerosis without causing systemic toxicity. The findings demonstrated a biomimetic platelet-mimic system that holds great promise for the treatment of atherosclerosis in clinical settings.
Collapse
Affiliation(s)
- Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Haochang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Yuan Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Xiying Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Siyu Zhou
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Feifan Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
37
|
Lee M, Kim YS, Park J, Choe G, Lee S, Kang BG, Jun JH, Shin Y, Kim M, Ahn Y, Lee JY. A paintable and adhesive hydrogel cardiac patch with sustained release of ANGPTL4 for infarcted heart repair. Bioact Mater 2024; 31:395-407. [PMID: 37680586 PMCID: PMC10481188 DOI: 10.1016/j.bioactmat.2023.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The infarcted heart undergoes irreversible pathological remodeling after reperfusion involving left ventricle dilation and excessive inflammatory reactions in the infarcted heart, frequently leading to fatal functional damage. Extensive attempts have been made to attenuate pathological remodeling in infarcted hearts using cardiac patches and anti-inflammatory drug delivery. In this study, we developed a paintable and adhesive hydrogel patch using dextran-aldehyde (dex-ald) and gelatin, incorporating the anti-inflammatory protein, ANGPTL4, into the hydrogel for sustained release directly to the infarcted heart to alleviate inflammation. We optimized the material composition, including polymer concentration and molecular weight, to achieve a paintable, adhesive hydrogel using 10% gelatin and 5% dex-ald, which displayed in-situ gel formation within 135 s, cardiac tissue-like modulus (40.5 kPa), suitable tissue adhesiveness (4.3 kPa), and excellent mechanical stability. ANGPTL4 was continuously released from the gelatin/dex-ald hydrogel without substantial burst release. The gelatin/dex-ald hydrogel could be conveniently painted onto the beating heart and degraded in vivo. Moreover, in vivo studies using animal models of acute myocardial infarction revealed that our hydrogel cardiac patch containing ANGPTL4 significantly improved heart tissue repair, evaluated by echocardiography and histological evaluation. The heart tissues treated with ANGPTL4-loaded hydrogel patches exhibited increased vascularization, reduced inflammatory macrophages, and structural maturation of cardiac cells. Our novel hydrogel system, which allows for facile paintability, appropriate tissue adhesiveness, and sustained release of anti-inflammatory drugs, will serve as an effective platform for the repair of various tissues, including heart, muscle, and cartilage.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bo Gyeong Kang
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Yoonmin Shin
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Minchul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
38
|
Chen SY, Yang RL, Wu XC, Zhao DZ, Fu SP, Lin FQ, Li LY, Yu LM, Zhang Q, Zhang T. Mesenchymal Stem Cell Transplantation: Neuroprotection and Nerve Regeneration After Spinal Cord Injury. J Inflamm Res 2023; 16:4763-4776. [PMID: 37881652 PMCID: PMC10595983 DOI: 10.2147/jir.s428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.
Collapse
Affiliation(s)
- Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Sheng-Ping Fu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Feng-Qin Lin
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Lin-Yan Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
39
|
Zuo W, Sun R, Ji Z, Ma G. Macrophage-driven cardiac inflammation and healing: insights from homeostasis and myocardial infarction. Cell Mol Biol Lett 2023; 28:81. [PMID: 37858035 PMCID: PMC10585879 DOI: 10.1186/s11658-023-00491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Early and prompt reperfusion therapy has markedly improved the survival rates among patients enduring myocardial infarction (MI). Nonetheless, the resulting adverse remodeling and the subsequent onset of heart failure remain formidable clinical management challenges and represent a primary cause of disability in MI patients worldwide. Macrophages play a crucial role in immune system regulation and wield a profound influence over the inflammatory repair process following MI, thereby dictating the degree of myocardial injury and the subsequent pathological remodeling. Despite numerous previous biological studies that established the classical polarization model for macrophages, classifying them as either M1 pro-inflammatory or M2 pro-reparative macrophages, this simplistic categorization falls short of meeting the precision medicine standards, hindering the translational advancement of clinical research. Recently, advances in single-cell sequencing technology have facilitated a more profound exploration of macrophage heterogeneity and plasticity, opening avenues for the development of targeted interventions to address macrophage-related factors in the aftermath of MI. In this review, we provide a summary of macrophage origins, tissue distribution, classification, and surface markers. Furthermore, we delve into the multifaceted roles of macrophages in maintaining cardiac homeostasis and regulating inflammation during the post-MI period.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Renhua Sun
- Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng, 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
40
|
Moya-Guzmán MJ, de Solminihac J, Padilla C, Rojas C, Pinto C, Himmel T, Pino-Lagos K. Extracellular Vesicles from Immune Cells: A Biomedical Perspective. Int J Mol Sci 2023; 24:13775. [PMID: 37762077 PMCID: PMC10531060 DOI: 10.3390/ijms241813775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Research on the role of extracellular vesicles (sEV) in physiology has demonstrated their undoubted importance in processes such as the transportation of molecules with significance for cell metabolism, cell communication, and the regulation of mechanisms such as cell differentiation, inflammation, and immunity. Although the role of EVs in the immune response is actively investigated, there is little literature revising, in a comprehensive manner, the role of small EVs produced by immune cells. Here, we present a review of studies reporting the release of sEV by different types of leukocytes and the implications of such observations on cellular homeostasis. We also discuss the function of immune cell-derived sEV and their relationship with pathological states, highlighting their potential application in the biomedical field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 755000, Chile
| |
Collapse
|
41
|
Cui Y, Hong S, Xia Y, Li X, He X, Hu X, Li Y, Wang X, Lin K, Mao L. Melatonin Engineering M2 Macrophage-Derived Exosomes Mediate Endoplasmic Reticulum Stress and Immune Reprogramming for Periodontitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302029. [PMID: 37452425 PMCID: PMC10520618 DOI: 10.1002/advs.202302029] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Periodontitis is a chronic infectious disease caused by bacterial irritation. As an essential component of the host immunity, macrophages are highly plastic and play a crucial role in inflammatory response. An appropriate and timely transition from proinflammatory (M1) to anti-inflammatory (M2) macrophages is indispensable for treating periodontitis. As M2 macrophage-derived exosomes (M2-exos) can actively target inflammatory sites and modulate immune microenvironments, M2-exos can effectively treat periodontitis. Excessive endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) are highly destructive pathological characteristics during inflammatory periodontal bone loss. Although melatonin has antioxidant and anti-inflammatory effects, studies focusing on melatonin ER stress modulation remain limited. This study fabricates engineered M2-exos loading with melatonin (Mel@M2-exos) for treating periodontitis. As a result, M2-exos drive an appropriate and timely macrophage reprogramming from M1 to M2 type, which resolves chronic inflammation and accelerated periodontal healing. Melatonin released from Mel@M2-exos rescues the osteogenic and cementogenic differentiation capacity in inflammatory human periodontal ligament cells (hPDLCs) by reducing excessive ER stress and UPR. Injectable gelatin methacryloyl (GelMA) hydrogels with sustained-release Mel@M2-exos accelerate periodontal bone regeneration in rats with ligation-induced periodontitis. Taken together, melatonin engineering M2 macrophage-derived exosomes are promising candidates for inflammatory periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ya Cui
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Shebin Hong
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Yunhui Xia
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Xiaojing Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Xiaoya He
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Xiangying Hu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Yaxin Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Xudong Wang
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Kaili Lin
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Lixia Mao
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| |
Collapse
|
42
|
Ni R, Jiang L, Zhang C, Liu M, Luo Y, Hu Z, Mou X, Zhu Y. Biologic Mechanisms of Macrophage Phenotypes Responding to Infection and the Novel Therapies to Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24098358. [PMID: 37176064 PMCID: PMC10179618 DOI: 10.3390/ijms24098358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chaohai Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|