1
|
Anglada T, Rodriguez‐Muñoz M, Pulido‐Artola N, Genescà A. Engineering Chromosome Bridges Through CRISPR/Cas9 to Decipher the Impact of Intercentromeric Distance on Resolution Dynamics. FASEB J 2025; 39:e70599. [PMID: 40331862 PMCID: PMC12057592 DOI: 10.1096/fj.202402258rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/20/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Resolution of chromosome bridges during mitosis is a critical yet incompletely understood process with implications for genomic stability and cancer development. In this study, we investigated the impact of the bridging chromatin length on the timing and mechanism of chromosome bridge resolution. Using CRISPR/Cas9 technology, we engineered chromosome bridges with precisely defined intercentromeric distances in human RPE-1 cells. Our study revealed a decline in the frequency of chromosome bridges as cells progressed from early anaphase to late telophase, indicating resolution during mitosis. Moreover, the longer the bridging chromatin length, the higher the frequency of chromosome bridges observed at the mitotic exit, demonstrating that the size of the bridge influences its resolution during mitosis. Additionally, the separation between the bridge kinetochores needed for bridge breakage was strongly dependent on the megabase length of the bridging chromatin, with longer chromosome bridges requiring greater separation for their resolution. Given that chromosome bridge resolution occurs in a concerted manner with spindle elongation and is influenced by the length of the bridging chromatin, we posit that the traction forces generated by microtubules attaching to dicentric chromosomes play a significant role in resolving chromosome bridges during mitosis. Our study underscores the intricate interplay between chromosome bridge geometry and mechanical forces in mitotic chromosome bridge resolution. Our model offers a valuable framework for future investigations into the molecular mechanisms underlying chromosome bridge resolution, with potential implications for cancer biology and genomic stability maintenance.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology, and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Marina Rodriguez‐Muñoz
- Department of Cell Biology, Physiology, and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Núria Pulido‐Artola
- Department of Cell Biology, Physiology, and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Anna Genescà
- Department of Cell Biology, Physiology, and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Singh MI, Rajendraprasad G, Katopodis V, Cui R, Barisic M, Bhowmick R, Hickson ID. Mechanistic insight into anaphase bridge signaling to the abscission checkpoint. EMBO J 2025:10.1038/s44318-025-00453-w. [PMID: 40355560 DOI: 10.1038/s44318-025-00453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
During cytokinesis in human cells, a failure to resolve persistent DNA bridges that span the cell-division plane maintains the Aurora B-dependent abscission checkpoint in an active state. However, the molecular mechanism by which unresolved sister-chromatid bridging signals to this checkpoint is poorly defined. Here, we define an essential role for the Bloom's syndrome helicase, BLM, in signaling to the abscission-checkpoint machinery in response to replication stress through the conversion of dsDNA bridges into RPA-coated ssDNA. RPA then promotes ATR-CHK1 signaling to Aurora B, utilizing a kinase cascade shared with the S-phase checkpoint. BLM-deficient cells ultimately abandon cytokinesis in response to replication stress, which promotes binucleation and hence aneuploidy. Considering that aneuploidy is a hallmark of cancer, we propose that this role for BLM in cytokinesis is a plausible reason for cancer predisposition in Bloom's syndrome individuals. Consistent with this, BLM deficiency promotes anchorage-independent growth of non-cancer cells.
Collapse
Affiliation(s)
- Manika I Singh
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
- Centre for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Girish Rajendraprasad
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen N, Denmark
| | - Vasileios Katopodis
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen N, Denmark
| | - Rui Cui
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen N, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Zhang Z, Li L, Ge Y, Chen A, Diao S, Yang Y, Chen Q, Zhou Y, Shao J, Meng F, Yu L, Tian M, Qian X, Lin Z, Xie C, Liu B, Li R. Verteporfin-Mediated In Situ Nanovaccine Based on Local Conventional-Dose Hypofractionated Radiotherapy Enhances Antitumor and Immunomodulatory Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413387. [PMID: 40231790 DOI: 10.1002/advs.202413387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Indexed: 04/16/2025]
Abstract
In situ radiotherapy is the most successful cytotoxic therapy available for the treatment of solid tumors, while high-dose radiotherapy per fraction is not yet widely and reliably used. To some extent, the major considerations of the disappointing results are on the risk of high-dose irradiation-induced damage to the surrounding normal tissues and the difficulty in distant metastasis control. To break these restraints, a gelatinase-responsive amphiphilic methoxypolyethyleneglycol-PVGLIG-polycaprolactone (mPEG-PVGLIG-PCL) nanoparticles' loading verteporfin (N@VP), a special photosensitizer that can also be excited by X-rays to produce cytotoxic singlet oxygen and greatly enhance radiotherapy efficacy, is prepared in this study. Herein, it is shown that the formed N@VP combined with conventional-dose radiation therapy (RT, 2 Gy (gray, a radiation dose unit)) can realize an antitumor effect no less than high-dose RT (8 Gy) and minimize radiation dose necessary to achieve local tumor control. Moreover, this radiosensitive nanosystem can exert excellent systemic antitumor immunity and abscopal effect, providing a preferable "in situ vaccine" strategy based on conventional-dose RT to achieve efficient systemic management of distant tumor metastasis. When combined with immunotherapy, this novel strategy for radiosensitization results in better immunotherapy sensitivity by stimulating significant immunogenic tumor cell death and synergistic antitumor immune responses.
Collapse
Affiliation(s)
- Zhifan Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuchen Ge
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Anni Chen
- Nanjing International Hospital, Medical School of Nanjing University, Nanjing, 210019, China
| | - Shanchao Diao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yueling Yang
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Qianyue Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Yingling Zhou
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jie Shao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Manman Tian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Rutian Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
4
|
Song J, Geary P, Salemova K, Rouse J, Hong Y, Rolland SM, Gartner A. Functional dissection of the conserved C. elegans LEM-3/ANKLE1 nuclease reveals a crucial requirement for the LEM-like and GIY-YIG domains for DNA bridge processing. Nucleic Acids Res 2025; 53:gkaf265. [PMID: 40193711 PMCID: PMC11975286 DOI: 10.1093/nar/gkaf265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Faithful chromosome segregation requires the removal of all DNA bridges physically linking chromatids before the completion of cell division. While several redundant safeguard mechanisms to process these DNA bridges exist from S-phase to late anaphase, the conserved LEM-3/ANKLE1 nuclease has been proposed to be part of a 'last chance' mechanism that acts at the midbody to eliminate DNA bridges that persist until late cytokinesis. We show that LEM-3 can cleave a wide range of branched DNA substrates, including flaps, forks, nicked, and intact Holliday junctions. AlphaFold modelling data suggest that the catalytic mechanism of LEM-3/ANKLE1 is conserved, mirroring the mechanism observed in bacterial GIY-YIG nucleases. We present evidence that LEM-3 may form a homodimeric complex on the Holliday junction DNA. LEM-3 LEM-like and GIY-YIG nuclease domains are essential for LEM-3 recruitment to the midbody and its nuclease activity, while its LEM-like domain is sufficient for DNA binding. Finally, we show that preventing LEM-3 nuclear access is important to avoid toxicity, likely caused by branched DNAs cleavage during normal DNA metabolism. Our data suggest that Caenorhabditis elegans LEM-3 acts as a 'last chance catch-all' enzyme that processes DNA bridges caused by various perturbations of DNA metabolism just before cells divide.
Collapse
Affiliation(s)
- Junfang Song
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Peter Geary
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Khadisha Salemova
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Stéphane G M Rolland
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
- Graduate School for Health Sciences and Technology, UNIST, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Graduate School for Health Sciences and Technology, UNIST, UNIST-gil 50, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Du Y, Hu P, Ding X, Wang D, Luo J, Le S, Ren L, Chen M, Ye P, Xia J. Deficiency of ATF3 facilitates both angiotensin II-induced and spontaneously formed aortic aneurysm and dissection development by activating cGAS-STING pathway. Clin Transl Med 2025; 15:e70147. [PMID: 39731276 DOI: 10.1002/ctm2.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood. METHODS AND RESULTS In this study, we employed a discovery-driven, unbiased approach. This approach encourages us to explore the unknown functions of activating transcription factor 3 (ATF3) rather than merely confirming existing hypotheses, while no assumptions were made about ATF3 prior to the experiments. We ensured the unbiased nature of our assessment by conducting morphological evaluations with two independent observers in a blinded manner. We identified elevated expression of ATF3 in both human sporadic AAD tissues and mouse AAD models. VSMC-specific ATF3 conditional knockout (Atf3 cKO) mice showed notable enlargement, dissection and rupture in both thoracic and abdominal aortic regions after exposure to Ang II. Interestingly, older Atf3 cKO mice exhibited spontaneous aortic dissections and senescence of the aortic wall. Mechanistically, ATF3 deficiency led to the degradation of P21 through ubiquitination. Impaired DNA repair in VSMCs resulted in micronuclei formation in the cytoplasm, activating the cyclicGMP-AMP synthase- stimulator of interferon genes (cGAS-STING) pathway and inducing VSMC phenotypic switching and apoptosis. Finally, both pharmacological complementation of P21 function and knockdown of STING expression alleviated ATF3 deficiency-induced AAD. CONCLUSIONS Our study indicates that ATF3 is essential for genomic DNA stability in VSMCs through the P21-cGAS-STING pathway, suggesting that enhancing ATF3 expression in VSMCs could help prevent sporadic AAD. KEY POINTS ATF3 deficiency led to degradation of P21 through ubiquitination, which abolished the G1 phase arrest. VSMCs had no time window to repair the damaged DNA, leading to generation of micronuclei in cytoplasm. Cytoplasmic micronuclei facilitating the activation of cGAS-STING pathway, thus inducing the phenotypic switch and apoptosis of VSMCs.
Collapse
Affiliation(s)
- Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangchao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dashuai Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Jingjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lingyun Ren
- Department of Anesthesiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manhua Chen
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Popęda M, Kowalski K, Wenta T, Beznoussenko GV, Rychłowski M, Mironov A, Lavagnino Z, Barozzi S, Richert J, Bertolio R, Myszczyński K, Szade J, Bieńkowski M, Miszewski K, Matuszewski M, Żaczek AJ, Braga L, Del Sal G, Bednarz-Knoll N, Maiuri P, Nastały P. Emerin mislocalization during chromatin bridge resolution can drive prostate cancer cell invasiveness in a collagen-rich microenvironment. Exp Mol Med 2024; 56:2016-2032. [PMID: 39218980 PMCID: PMC11446916 DOI: 10.1038/s12276-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61β. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.
Collapse
Affiliation(s)
- Marta Popęda
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kamil Kowalski
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Zeno Lavagnino
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Julia Richert
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rebecca Bertolio
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kevin Miszewski
- Department of Urology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna J Żaczek
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Giannino Del Sal
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Natalia Bednarz-Knoll
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paulina Nastały
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
7
|
Chen M, Huang X, Shi Y, Wang W, Huang Z, Tong Y, Zou X, Xu Y, Dai Z. CRISPR/Pepper-tDeg: A Live Imaging System Enables Non-Repetitive Genomic Locus Analysis with One Single-Guide RNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402534. [PMID: 38924638 PMCID: PMC11348139 DOI: 10.1002/advs.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Indexed: 06/28/2024]
Abstract
CRISPR-based genomic-imaging systems have been utilized for spatiotemporal imaging of the repetitive genomic loci in living cells, but they are still challenged by limited signal-to-noise ratio (SNR) at a non-repetitive genomic locus. Here, an efficient genomic-imaging system is proposed, termed CRISPR/Pepper-tDeg, by engineering the CRISPR sgRNA scaffolds with the degron-binding Pepper aptamers for binding fluorogenic proteins fused with Tat peptide derived degron domain (tDeg). The target-dependent stability switches of both sgRNA and fluorogenic protein allow this system to image repetitive telomeres sensitively with a 5-fold higher SNR than conventional CRISPR/MS2-MCP system using "always-on" fluorescent protein tag. Subsequently, CRISPR/Pepper-tDeg is applied to simultaneously label and track two different genomic loci, telomeres and centromeres, in living cells by combining two systems. Given a further improved SNR by the split fluorescent protein design, CRISPR/Pepper-tDeg system is extended to non-repetitive sequence imaging using only one sgRNA with two aptamer insertions. Neither complex sgRNA design nor difficult plasmid construction is required, greatly reducing the technical barriers to define spatiotemporal organization and dynamics of both repetitive and non-repetitive genomic loci in living cells, and thus demonstrating the large application potential of this genomic-imaging system in biological research, clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Wen Wang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510275China
| | - Zhan Huang
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xiaoyong Zou
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yuzhi Xu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| |
Collapse
|
8
|
Lu Y, Zhao M, Chen L, Wang Y, Liu T, Liu H. cGAS: action in the nucleus. Front Immunol 2024; 15:1380517. [PMID: 38515746 PMCID: PMC10954897 DOI: 10.3389/fimmu.2024.1380517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
As a canonical cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) plays a key role in innate immunity. In recent years, a growing number of studies have shown that cGAS can also be located in the nucleus and plays new functions such as regulating DNA damage repair, nuclear membrane repair, chromosome fusion, DNA replication, angiogenesis and other non-canonical functions. Meanwhile, the mechanisms underlying the nucleo-cytoplasmic transport and the regulation of cGAS activation have been revealed in recent years. Based on the current understanding of the structure, subcellular localization and canonical functions of cGAS, this review focuses on summarizing the mechanisms underlying nucleo-cytoplasmic transport, activity regulation and non-canonical functions of cGAS in the nucleus. We aim to provide insights into exploring the new functions of cGAS in the nucleus and advance its clinical translation.
Collapse
Affiliation(s)
- Yikai Lu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianhao Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Guo X, Yang L, Wang J, Wu Y, Li Y, Du L, Li L, Fang Z, Zhang X. The cytosolic DNA-sensing cGAS-STING pathway in neurodegenerative diseases. CNS Neurosci Ther 2024; 30:e14671. [PMID: 38459658 PMCID: PMC10924111 DOI: 10.1111/cns.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND With the widespread prevalence of neurodegenerative diseases (NDs) and high rates of mortality and disability, it is imminent to find accurate targets for intervention. There is growing evidence that neuroimmunity is pivotal in the pathology of NDs and that interventions targeting neuroimmunity hold great promise. Exogenous or dislocated nucleic acids activate the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), activating the stimulator of interferon genes (STING). The activated STING triggers innate immune responses and then the cGAS-STING signaling pathway links abnormal nucleic acid sensing to the immune response. Recently, numerous studies have shown that neuroinflammation regulated by cGAS-STING signaling plays an essential role in NDs. AIMS In this review, we summarized the mechanism of cGAS-STING signaling in NDs and focused on inhibitors targeting cGAS-STING. CONCLUSION The cGAS-STING signaling plays an important role in the pathogenesis of NDs. Inhibiting the cGAS-STING signaling may provide new measures in the treatment of NDs.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Intensive Care UnitJoint Logistics Force No. 988 HospitalZhengzhouChina
| | - Lin Yang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Jiawei Wang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - You Wu
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Yi Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Lixia Du
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Ling Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Anesthesiology, Xijing HospitalFourth Military Medical UniversityShaanxiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| |
Collapse
|
10
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Guan X, Zhao B, Guan X, Dong J, Ying J. A benzochalcone derivative synchronously induces apoptosis and ferroptosis in pancreatic cancer cells. PeerJ 2023; 11:e16291. [PMID: 37927794 PMCID: PMC10625348 DOI: 10.7717/peerj.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Pancreatic cancer is a highly aggressive and lethal disease with limited treatment options. In this study, we investigated the potential therapeutic effects of compound KL-6 on pancreatic cancer cells. Methods The study involved assessing the inhibitory effects of KL-6 on cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion. Additionally, we examined the action mechanism of KL-6 by RNA-seq and bioinformatic analysis and validated by qRT-PCR and western blot in pancreatic cancer cells. Results Our results demonstrated that KL-6 effectively inhibited the growth of pancreatic cancer cells in a dose-dependent manner. It induced G2/M phase cell cycle arrest and apoptosis, disrupting the cell cycle progression and promoting cell death. KL-6 also exhibited inhibitory effects on cell migration and invasion, suggesting its potential to suppress the metastatic properties of pancreatic cancer cells. Furthermore, KL-6 modulated the expression of genes involved in various cancer-related pathways including apoptosis and ferroptosis. Conclusion These findings collectively support the potential of KL-6 as a promising therapeutic option for pancreatic cancer treatment. Further research is needed to fully understand the underlying mechanisms and evaluate the clinical efficacy of KL-6 in pancreatic cancer patients.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bing Zhao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaodan Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jieer Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Paine EL, Skalicky JJ, Whitby FG, Mackay DR, Ullman KS, Hill CP, Sundquist WI. The Calpain-7 protease functions together with the ESCRT-III protein IST1 within the midbody to regulate the timing and completion of abscission. eLife 2023; 12:e84515. [PMID: 37772788 PMCID: PMC10586806 DOI: 10.7554/elife.84515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the membrane fission step that completes cytokinetic abscission and separates dividing cells. Filaments composed of ESCRT-III subunits constrict membranes of the intercellular bridge midbody to the abscission point. These filaments also bind and recruit cofactors whose activities help execute abscission and/or delay abscission timing in response to mitotic errors via the NoCut/Abscission checkpoint. We previously showed that the ESCRT-III subunit IST1 binds the cysteine protease Calpain-7 (CAPN7) and that CAPN7 is required for both efficient abscission and NoCut checkpoint maintenance (Wenzel et al., 2022). Here, we report biochemical and crystallographic studies showing that the tandem microtubule-interacting and trafficking (MIT) domains of CAPN7 bind simultaneously to two distinct IST1 MIT interaction motifs. Structure-guided point mutations in either CAPN7 MIT domain disrupted IST1 binding in vitro and in cells, and depletion/rescue experiments showed that the CAPN7-IST1 interaction is required for (1) CAPN7 recruitment to midbodies, (2) efficient abscission, and (3) NoCut checkpoint arrest. CAPN7 proteolytic activity is also required for abscission and checkpoint maintenance. Hence, IST1 recruits CAPN7 to midbodies, where its proteolytic activity is required to regulate and complete abscission.
Collapse
Affiliation(s)
- Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Frank G Whitby
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|