1
|
Fang S, Xu X, Wei Y, Qiu F, Huang W, Jiang H, Zhang N, Song Y, Gao M, Liu H, Liu Y, Cheng B. Super-elastic, hydrophobic composite aerogels for triboelectric nanogenerators. NANOSCALE 2025; 17:8047-8056. [PMID: 40034044 DOI: 10.1039/d4nr04831h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Progress toward the advancement of environmentally friendly energy harvesting devices is critical for eco-environmental protection. There is an urgent need for developing energy harvesting devices from biobased materials. However, it is still a challenge to utilize biobased cellulose nanofiber (CNF) aerogels in triboelectric nanogenerators (TENGs) due to their poor mechanical properties, hydrophilicity, and weak polarization capability. Here, we demonstrate a facile strategy to fabricate a super-elastic, hydrophobic CNF/MXene composite aerogel for TENGs through fluorosilane crosslinking and a directional freeze-dried assembled structure. This aerogel can withstand up to 80% compressive strain, rebound to 95.33% of its original height, and exhibit hydrophobicity (water contact angle = 137.65°). In addition, the induction of MXene and the silane coupling agent endows the aerogel with enhanced electronegativity and charge density. These properties enable the CNF/MXene aerogel to harvest energy with an output voltage of 100 V and a short-circuit charge density of ∼900 nC cm-3, while maintaining stability for 1000 cycles. This aerogel holds great application potential in the field of self-powered sensing and raindrop energy harvesting.
Collapse
Affiliation(s)
- Shize Fang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
| | - Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yu Wei
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Fangcheng Qiu
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
| | - Weixin Huang
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
| | - Hong Jiang
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
- School of Fashion Design, Jiangxi Institute of Fashion Technology, Jiangxi 330201, China
| | - Ning Zhang
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
- School of Fashion Design, Jiangxi Institute of Fashion Technology, Jiangxi 330201, China
| | - Yufeng Song
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
| |
Collapse
|
2
|
Ren M, Pan W, Liu T, Cao M. Multifunctional, UV Radiation Shielding and High Bacteriostatic Efficiency 3D Wearable Sensor Triggered by ZIF-67. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3676-3685. [PMID: 39763035 DOI: 10.1021/acsami.4c21256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
3D multifunctional wearable piezoresistive sensors have aroused extensive attention in the fields of motion detection, human-computer interaction, electronic skin, etc. However, current research mainly focuses on improving the foundational performance of piezoresistive sensors, while many advanced demands are often ignored. Herein, a 3D piezoresistive sensor based on rGO@C-ZIF-67@PU is fabricated via high temperature carbonization and a solvothermal reduction method. The as-prepared sensor exhibits a high sensitivity of 245.4 kPa-1, a wide detection range (0-25 kPa), a fast response/recovery time (30 ms/50 ms), and excellent durability (over 5000 cycles). Apart from the outstanding sensing performance, this sensor also displays UV shielding properties and excellent antibacterial activity, providing a broader application prospect for this hybrid sensor. Besides, the optic nerve damage/loss can be compensated to some extent via combining this multifunctional 3D piezoresistive sensor with traditional guide sticks, thus assisting visually impaired people to integrate into social life and normal social interaction easily. Evidently, these outstanding features pave a promising avenue to overcome the limitation of the existing piezoresistive sensors and provide a general way to promote its broad commercial applications.
Collapse
Affiliation(s)
- Mengchen Ren
- College of Electronics and Information, Qingdao University, Qingdao 266071, China
| | - Weiliang Pan
- College of Electronics and Information, Qingdao University, Qingdao 266071, China
| | - Tong Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, China
| | - Minghui Cao
- College of Electronics and Information, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Peng L, Xu J, Yuan S, Li S, Deng S, Zhu H, Fu L, Zhang T, Li T. A Force-Thermal-Magnetic Trimodal Flexible Sensor for Ultrafine Recognition of Metallic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70919-70932. [PMID: 39666993 DOI: 10.1021/acsami.4c17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Humans possess the remarkable ability to perceive the intricate world by integrating multiple senses. However, the challenge of enabling humanoid robots to achieve multimodal sensing and fine recognition of metallic materials persists. In this study, we propose a flexible tactile sensor that mimics the sensory patterns of human skin, which is assembled by a flexible electromagnetic coil that is engraved on the surface of a polyimide substrate and porous MXene/CNT aerogel. This sensor is capable of detecting pressure, temperature, and inductive signals with minimal interference via three disparate response mechanisms of the piezoresistive sensing, the thermoelectric principle, and the electromagnetic induction effect, allowing the device with the abilities of sensing grasp forces and selectively identifying ferromagnetic and nonferromagnetic metals, which has a high accuracy rate of 99.2% in distinguishing mixed metals with varying ratios based on the fusion algorithm of multimodal sensory data. Further, the sensor was integrated on a humanoid robotic hand to demonstrate its recognition capacity of objects used in a kitchen setting and a simulated scenario of mineral exploration, achieving a remarkable ultrafine accuracy of 100% in distinguishing 16 common metal products. These findings will pave the way for humanoid robots to attain heightened levels of perception and recognition.
Collapse
Affiliation(s)
- Lu Peng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Jingyi Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
| | - Shen Yuan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Shengzhao Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Shihao Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
| | - Hao Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Lei Fu
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Ting Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
| | - Tie Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
- Jiangxi Institute of Nanotechnology, 278 Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| |
Collapse
|
4
|
Tan X, Huang Z, Pei H, Jia Z, Zheng J. Highly Porous, Ultralight, Biocompatible Silk Fibroin Aerogel-Based Triboelectric Nanogenerator. ACS Sens 2024; 9:3938-3946. [PMID: 39096301 DOI: 10.1021/acssensors.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
This study presents the fabrication of an ultralight, porous, and high-performance triboelectric nanogenerator (TENG) utilizing silk fibroin (SF) aerogels and PDMS sponges as the friction layer. The transition from two-dimensional film friction layers to three-dimensional porous aerogels significantly increased the specific surface area, offering an effective strategy for designing high-performance SF aerogel-based TENGs. The TENG incorporating the porous SF aerogel exhibited optimal output performance at a 3% SF concentration, achieving a maximum open circuit voltage of 365 V, a maximum short-circuit current of 11.8 μA, and a maximum power density of 7.52 W/m2. In comparison to SF-film-based TENGs, the SF-aerogel based TENG demonstrated a remarkable 6.5-fold increase in voltage and a 4.5-fold increase in current. Furthermore, the power density of our SF-based TENG surpassed the previously reported optimal values for SF-based TENGs by 2.4 times. Leveraging the excellent mechanical stability and biocompatibility of TENGs, we developed an SF-based TENG self-powered sensor for the real-time monitoring of subtle biological movements. The SF-based TENG exhibits promising potential as a wearable bioelectronic device for health monitoring.
Collapse
Affiliation(s)
- Xueqiang Tan
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zuyi Huang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hairun Pei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jimin Zheng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Duan Z, Cai F, Chen Y, Chen T, Lu P. Advanced Applications of Porous Materials in Triboelectric Nanogenerator Self-Powered Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3812. [PMID: 38931596 PMCID: PMC11207259 DOI: 10.3390/s24123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Porous materials possess advantages such as rich pore structures, a large surface area, low relative density, high specific strength, and good breathability. They have broad prospects in the development of a high-performance Triboelectric Nanogenerator (TENG) and self-powered sensing fields. This paper elaborates on the structural forms and construction methods of porous materials in existing TENG, including aerogels, foam sponges, electrospinning, 3D printing, and fabric structures. The research progress of porous materials in improving TENG performance is systematically summarized, with a focus on discussing design strategies of porous structures to enhance the TENG mechanical performance, frictional electrical performance, and environmental tolerance. The current applications of porous-material-based TENG in self-powered sensing such as pressure sensing, health monitoring, and human-machine interactions are introduced, and future development directions and challenges are discussed.
Collapse
Affiliation(s)
- Zhengyin Duan
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Feng Cai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Yuxin Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Tianying Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| |
Collapse
|
6
|
Wang Y, Xi S, Zhou B, Zu G, Liang X, Zhang X, Shen J, Wang X. Superhydrophobic Highly Flexible Triple-Network Polyorganosiloxane-Based Aerogels for Thermal Insulation, Oil-Water Separation, and Strain/Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30324-30335. [PMID: 38805013 DOI: 10.1021/acsami.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polyvinylpolymethylsiloxane (PVPMS)/polydimethylsiloxane (PDMS) copolymer aerogels were synthesized via consecutive radical polymerization and cohydrolytic polycondensation of vinylmethyldimethoxysilane and dimethyldimethoxysilane, followed by supercritical drying or ambient pressure drying. The resultant PVPMS/PDMS copolymer aerogels exhibit a highly porous, tunable triple-network structure consisting of interlinked hydrocarbon polymers, PVPMS and PDMS. These aerogels display superhydrophobicity (151°), low density (109 mg cm-3), low thermal conductivity (29.8 mW m-1 K-1), and adjustable pore structure. The combination of good machinability, low thermal conductivity, excellent compressive elasticity and bending flexibility, and efficient organic solvent adsorption gives these aerogels broad application prospects in thermal insulation and oil-water separation. In addition, PVPMS/PDMS/carbon nanotube (CNT) composite aerogels were obtained by incorporating the conductive CNTs, followed by vacuum drying. The resultant PVPMS/PDMS/CNT composite aerogel exhibits high sensitivity with a broad pressure sensing range in strain and pressure sensing applications.
Collapse
Affiliation(s)
- Yijun Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuang Xi
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Bowen Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guoqing Zu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xing Liang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xiaoxue Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaodong Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Xing F, Gao X, Wen J, Li H, Liu H, Wang ZL, Chen B. Multistrand Twisted Triboelectric Kevlar Yarns for Harvesting High Impact Energy, Body Injury Location and Levels Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401076. [PMID: 38489669 DOI: 10.1002/advs.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Indexed: 03/17/2024]
Abstract
Developing ultrahigh-strength fabric-based triboelectric nanogenerators for harvesting high-impact energy and sensing biomechanical signals is still a great challenge. Here, the constraints are addressed by design of a multistrand twisted triboelectric Kevlar (MTTK) yarn using conductive and non-conductive Kevlar fibers. Manufactured using a multistrand twisting process, the MTTK yarn offers superior tensile strength (372 MPa), compared to current triboelectric yarns. In addition, a self-powered impact sensing fabric patch (SP-ISFP) comprising signal acquisition, processing, communication circuit, and MTTK yarns is integrated. The SP-ISFP features withstanding impact (4 GPa) and a sensitivity and response time under the high impact condition (59.68 V GPa-1; 0.4 s). Furthermore, a multi-channel smart bulletproof vest is developed by the array of 36 SP-ISFPs, enabling the reconstruction of impact mapping and assessment of body injury location and levels by real-time data acquisition. Their potential to reduce body injuries, professional security, and construct a multi-point personal vital signs dynamic monitoring platform holds great promise.
Collapse
Affiliation(s)
- Fangjing Xing
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaobo Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, 010051, P. R. China
| | - Jing Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Liu
- Changchun University of Chinese Medicine, Jilin, 130117, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Baodong Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Hu Z, Zhang X, Sun Q, Gu P, Liang X, Yang X, Liu M, Huang J, Wu G, Zu G. Biomimetic Transparent Layered Tough Aerogels for Thermal Superinsulation and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307602. [PMID: 38150669 DOI: 10.1002/smll.202307602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Transparent aerogels are ideal candidates for thermally insulating windows, solar thermal receivers, electronics, etc. However, they are usually prepared via energy-consuming supercritical drying and show brittleness and low tensile strength, significantly restricting their practical applications. It remains a great challenge to prepare transparent aerogels with high tensile strength and toughness. Herein, biomimetic transparent tough cellulose nanofiber-based nanocomposite aerogels with a layered nanofibrous structure are achieved by vacuum-assisted self-assembly combined with ambient pressure drying. The nacre-like layered homogeneous nanoporous structures can reduce light scattering and effectively transfer stress and prevent stress concentration under external forces. The aerogels exhibit an attractive combination of excellent transparency and hydrophobicity, high compressive and tensile strengths, high toughness, excellent machinability, thermal superinsulation, and wide working temperature range (-196 to 230 °C). It is demonstrated that they can be used for superinsulating windows of buildings and high-efficient thermal management for electronics and human bodies. In addition, a prototype of transparent flexible aerogel-based triboelectric nanogenerator is developed. This work provides a promising pathway toward transparent tough porous materials for energy saving/harvesting, thermal management, electronics, sensors, etc.
Collapse
Affiliation(s)
- Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Qi Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xing Liang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Muxiang Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Guangming Wu
- Shanghai Key laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
9
|
Lu P, Liao X, Guo X, Cai C, Liu Y, Chi M, Du G, Wei Z, Meng X, Nie S. Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications. NANO-MICRO LETTERS 2024; 16:206. [PMID: 38819527 PMCID: PMC11143175 DOI: 10.1007/s40820-024-01432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable, portable, and self-powered flexible sensing devices. Triboelectric nanogenerators (TENGs) based on gel materials (with excellent conductivity, mechanical tunability, environmental adaptability, and biocompatibility) are considered an advanced approach for developing a new generation of flexible sensors. This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors, covering their principles, properties, and applications. Based on the development requirements for flexible sensors, the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced. Design strategies for the performance optimization of hydrogel-, organogel-, and aerogel-based TENGs are systematically summarized. In addition, the applications of gel-based TENGs in human motion sensing, tactile sensing, health monitoring, environmental monitoring, human-machine interaction, and other related fields are summarized. Finally, the challenges of gel-based TENGs for flexible sensing are discussed, and feasible strategies are proposed to guide future research.
Collapse
Affiliation(s)
- Peng Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Xiaofang Liao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiaoyao Guo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoli Du
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Zhiting Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
10
|
Park B, Jeong C, Ok J, Kim TI. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem Rev 2024; 124:6148-6197. [PMID: 38690686 DOI: 10.1021/acs.chemrev.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Sun E, Zhu Q, Rehman HU, Wu T, Cao X, Wang N. Magnetic Material in Triboelectric Nanogenerators: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:826. [PMID: 38786783 PMCID: PMC11124044 DOI: 10.3390/nano14100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, magnetic materials are also drawing considerable attention in the development of innovative energy converters such as triboelectric nanogenerators (TENGs), where the introduction of magnetic materials at the triboelectric interface not only significantly enhances the energy harvesting efficiency but also promotes TENG entry into the era of intelligence and multifunction. In this review, we begin from the basic operating principle of TENGs and then summarize the recent progress in applications of magnetic materials in the design of TENG magnetic materials by categorizing them into soft ferrites and amorphous and nanocrystalline alloys. While highlighting key role of magnetic materials in and future opportunities for improving their performance in energy conversion, we also discuss the most promising choices available today and describe emerging approaches to create even better magnetic TENGs and TENG-based sensors as far as intelligence and multifunctionality are concerned. In addition, the paper also discusses the integration of magnetic TENGs as a power source for third-party sensors and briefly explains the self-powered applications in a wide range of related fields. Finally, the paper discusses the challenges and prospects of magnetic TENGs.
Collapse
Affiliation(s)
- Enqi Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Hafeez Ur Rehman
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Tong Wu
- National Institute of Metrology China, Beijing 100029, China;
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| |
Collapse
|
12
|
Hou X, Chen J, Chen Z, Yu D, Zhu S, Liu T, Chen L. Flexible Aerogel Materials: A Review on Revolutionary Flexibility Strategies and the Multifunctional Applications. ACS NANO 2024; 18:11525-11559. [PMID: 38655632 DOI: 10.1021/acsnano.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The design and preparation of flexible aerogel materials with high deformability and versatility have become an emerging research topic in the aerogel fields, as the brittle nature of traditional aerogels severely affects their safety and reliability in use. Herein, we review the preparation methods and properties of flexible aerogels and summarize the various controlling and design methods of aerogels to overcome the fragility caused by high porosity and nanoporous network structure. The mechanical flexibility of aerogels can be revolutionarily improved by monomer regulation, nanofiber assembly, structural design and controlling, and constructing of aerogel composites, which can greatly broaden the multifunctionality and practical application prospects. The design and construction criterion of aerogel flexibility is summarized: constructing a flexible and deformable microstructure in an aerogel matrix. Besides, the derived multifunctional applications in the fields of flexible thermal insulation (flexible thermal protection at extreme temperatures), flexible wearable electronics (flexible sensors, flexible electrodes, electromagnetic shielding, and wave absorption), and environmental protection (oil/water separation and air filtration) are summarized. Furthermore, the future development prospects and challenges of flexible aerogel materials are also summarized. This review will provide a comprehensive research basis and guidance for the structural design, fabrication methods, and potential applications of flexible aerogels.
Collapse
Affiliation(s)
- Xianbo Hou
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Jia Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhilin Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Dongqin Yu
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shaowei Zhu
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Tao Liu
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Liming Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
13
|
Gui C, Li J, Zhang Z, Chen Z, Huang J, Li H. Fabrication of Electrode Material for Textile-Based Triboelectric Nanogenerators: Research of the Relationship between Output Performance and Dielectric Material Strain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4022-4032. [PMID: 38349698 DOI: 10.1021/acs.langmuir.3c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this work, a textile-based triboelectric nanogenerator (TENG) device was developed through electroless plating technology to prepare electrode material. Hydrophilic groups on the fiber surface are able to absorb Ag+, which could play a role in the center of a catalyst to reduce Cu2+ to fabricate Cu-coated cotton toward the fabrication of TENG electrode material. The TENG device established admirable performance and good stabilization, and a maximum voltage at 9.6 V was detected when the stress and strain on the polydimethylsiloxane layer are 82.6 kPa and 5.8%, respectively. In addition, the relationships among device properties and strain/thickness of dielectric materials have been explored in depth as well. The output voltage of the device increases gradually with the enhancement of dielectric strain and stress. As expected, the TENG as-fabricated device was installed to various physical behaviors to illustrate the harvesting of power of knee-jerk movements.
Collapse
Affiliation(s)
- Chengmei Gui
- College of Chemical and Material Engineering, Chaohu University, Hefei, Anhui 230009, People's Republic of China
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, Anhui 230009, People's Republic of China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou, Guangxi 542899, People's Republic of China
| | - Jing Li
- College of Chemical and Material Engineering, Chaohu University, Hefei, Anhui 230009, People's Republic of China
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, Anhui 230009, People's Republic of China
| | - Zifeng Zhang
- College of Chemical and Material Engineering, Chaohu University, Hefei, Anhui 230009, People's Republic of China
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, Anhui 230009, People's Republic of China
| | - Zhenming Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou, Guangxi 542899, People's Republic of China
| | - Junjun Huang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou, Guangxi 542899, People's Republic of China
| | - Honglin Li
- College of Chemical and Material Engineering, Chaohu University, Hefei, Anhui 230009, People's Republic of China
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, Anhui 230009, People's Republic of China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou, Guangxi 542899, People's Republic of China
| |
Collapse
|
14
|
Shahriar SMS, McCarthy AD, Andrabi SM, Su Y, Polavoram NS, John JV, Matis MP, Zhu W, Xie J. Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration. Nat Commun 2024; 15:1080. [PMID: 38316777 PMCID: PMC10844217 DOI: 10.1038/s41467-024-45458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The structure and design flexibility of aerogels make them promising for soft tissue engineering, though they tend to come with brittleness and low elasticity. While increasing crosslinking density may improve mechanics, it also imparts brittleness. In soft tissue engineering, resilience against mechanical loads from mobile tissues is paramount. We report a hybrid aerogel that consists of self-reinforcing networks of micro- and nanofibers. Nanofiber segments physically entangle microfiber pillars, allowing efficient stress distribution through the intertwined fiber networks. We show that optimized hybrid aerogels have high specific tensile moduli (~1961.3 MPa cm3 g-1) and fracture energies (~7448.8 J m-2), while exhibiting super-elastic properties with rapid shape recovery (~1.8 s). We demonstrate that these aerogels induce rapid tissue ingrowth, extracellular matrix deposition, and neovascularization after subcutaneous implants in rats. Furthermore, we can apply them for engineering soft tissues via minimally invasive procedures, and hybrid aerogels can extend their versatility to become magnetically responsive or electrically conductive, enabling pressure sensing and actuation.
Collapse
Affiliation(s)
- S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alec D McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Navatha Shree Polavoram
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell P Matis
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
15
|
Jiang F, Zhan L, Lee JP, Lee PS. Triboelectric Nanogenerators Based on Fluid Medium: From Fundamental Mechanisms toward Multifunctional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308197. [PMID: 37842933 DOI: 10.1002/adma.202308197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Fluid-based triboelectric nanogenerators (FB-TENGs) are at the forefront of promising energy technologies, demonstrating the ability to generate electricity through the dynamic interaction between two dissimilar materials, wherein at least one is a fluidic medium (such as gas or liquid). By capitalizing on the dynamic and continuous properties of fluids and their interface interactions, FB-TENGs exhibit a larger effective contact area and a longer-lasting triboelectric effect in comparison to their solid-based counterparts, thereby affording longer-term energy harvesting and higher-precision self-powered sensors in harsh conditions. In this review, various fluid-based mechanical energy harvesters, including liquid-solid, gas-solid, liquid-liquid, and gas-liquid TENGs, have been systematically summarized. Their working mechanism, optimization strategies, respective advantages and applications, theoretical and simulation analysis, as well as the existing challenges, have also been comprehensively discussed, which provide prospective directions for device design and mechanism understanding of FB-TENGs.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Flexible Electronics Technology of Tsinghua, Jiaxing, Zhejiang, 314000, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liuxiang Zhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jin Pyo Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Yu H, Liu Y, Zhou G, Peng M. Multilayer Perceptron Algorithm-Assisted Flexible Piezoresistive PDMS/Chitosan/cMWCNT Sponge Pressure Sensor for Sedentary Healthcare Monitoring. ACS Sens 2023; 8:4391-4401. [PMID: 37939316 DOI: 10.1021/acssensors.3c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Recently, the health problems faced by sedentary workers have received increasing attention. In this study, a pressure sensor based on a poly(dimethylsiloxane) (PDMS)/carboxylated chitosan (CCS)/carboxylated multiwalled carbon nanotube (cMWCNT) sponge was prepared to realize a portable, sensitive, comfortable, and noninvasive healthcare monitoring system for sedentary workers. The proposed piezoresistive pressure sensor exhibited exceptional sensing performances with high sensitivity (147.74 kPa-1), an ultrawide detection range (22 Pa to 1.42 MPa), and reliable stability (over 3000 cycles). Furthermore, the obtained sensor displayed superior capability in detecting various human motion signals. Based on the 4 × 4 sensing array and multilayer perceptron (MLP) algorithm model, a smart cushion was developed to recognize five types of sitting postures and supply timely reminders to sedentary workers. The piezoresistive sponge pressure sensor proposed in this study reveals promising potential in the fields of wearable electronics, healthcare monitoring, and human-machine interface applications.
Collapse
Affiliation(s)
- He Yu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yubing Liu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Guanya Zhou
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Mugen Peng
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
17
|
Miyamoto S, Hirakawa T, Noguchi Y, Urushiyama D, Miyata K, Baba T, Yotsumoto F, Yasunaga S, Nakabayashi K, Hata K, Nakagawa W, Otsuka T, Nozawa Y, Furuhata I, Mikasa J. Physical Properties of Ultrafine Bubbles Generated Using a Generator System. In Vivo 2023; 37:2555-2563. [PMID: 37905634 PMCID: PMC10621414 DOI: 10.21873/invivo.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Ultrafine bubbles (UFBs) have been extensively researched owing to their promising physical and biological properties. However, determining the lifespan or ideal concentration of UFBs for various biological events is challenging. This study aimed to determine the maximum concentration and longest lifespan of UFBs and to verify the validity of UFBs for assessing cell properties. MATERIALS AND METHODS A generator system (HMB-H0150+P001, TOSSLEC Corporation Limited, Kyoto, Japan) generated UFBs using various gases. The size and concentration of UFBs in ultrapure water and cell culture medium were measured through a nanoparticle tracking analysis method. RESULTS The UFB concentration increased when the generator operated in a time dependent manner. The mean size of UFBs was approximately 120 nm. In the UFB lifespan, the concentration decreased by approximately 30% within the first two weeks of generation and was stable for up to 6 months. The UFB size increased by approximately 20% within the first two weeks of generation and demonstrated minor changes until the 6th month. The number of cells differed significantly with various concentrations of nitrogen gas UFBs. CONCLUSION The generator system can generate UFBs with multiple concentrations within a suitable temperature. Consequently, the solution containing UFBs could be widely acceptable in cell culture systems.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan;
| | - Toyofumi Hirakawa
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan;
| | - Yukiko Noguchi
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Daichi Urushiyama
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kohei Miyata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tsukasa Baba
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Fusanori Yotsumoto
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Lei H, Ji H, Liu X, Lu B, Xie L, Lim EG, Tu X, Liu Y, Zhang P, Zhao C, Sun X, Wen Z. Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare. NANO-MICRO LETTERS 2023; 15:109. [PMID: 37071340 PMCID: PMC10113410 DOI: 10.1007/s40820-023-01081-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However, wearable sensors with low power consumption and high sensitivity to both weak physiological signals and large mechanical stimuli remain challenges. Here, a flexible triboelectric patch (FTEP) based on porous-reinforcement microstructures for remote health monitoring has been reported. The porous-reinforcement microstructure is constructed by the self-assembly of silicone rubber adhering to the porous framework of the PU sponge. The mechanical properties of the FTEP can be regulated by the concentrations of silicone rubber dilution. For pressure sensing, its sensitivity can be effectively improved fivefold compared to the device with a solid dielectric layer, reaching 5.93 kPa-1 under a pressure range of 0-5 kPa. In addition, the FTEP has a wide detection range up to 50 kPa with a sensitivity of 0.21 kPa-1. The porous microstructure makes the FTEP ultra-sensitive to external pressure, and the reinforcements endow the device with a greater deformation limit in a wide detection range. Finally, a novel concept of the wearable Internet of Healthcare (IoH) system for real-time physiological signal monitoring has been proposed, which could provide real-time physiological information for ambulatory personalized healthcare monitoring.
Collapse
Affiliation(s)
- Hao Lei
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L693GJ, UK
| | - Haifeng Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xiaohan Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Bohan Lu
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L693GJ, UK
| | - Linjie Xie
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
| | - Eng Gee Lim
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
| | - Xin Tu
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L693GJ, UK
| | - Yina Liu
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
| | - Peixuan Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China.
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|