1
|
Tang T, Xu X, Bai X, Hou C, Gan T, Wang Z, Guan J. A Triatomic Cobalt Catalyst for Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202503019. [PMID: 40130710 DOI: 10.1002/anie.202503019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 03/26/2025]
Abstract
The advancement of rechargeable zinc-air batteries significantly depends on bifunctional oxygen electrocatalysts to provide outstanding oxygen reduction/evolution reaction (ORR/OER) performance. However, it is still challenging to design electrocatalysts with excellent bifunctional activity and stability. Here, we adopt an ultrafast printing method to efficiently embed a triatom cobalt complex precursor onto graphene nanosheets to obtain a triatomic catalyst (Co3-NG), exhibiting a durable and excellent bifunctional catalyst in the electrocatalytic ORR (Ehalf-wave = 0.903 V) and OER (Ej = 10 = 1.596 V). The Co3-NG-assembled zinc-air battery can output a maximum power density of 189.0 mW cm-2 at 330 mA cm-2 and can be charged and discharged over 3000 cycles, significantly outperforming the Pt/C + RuO2 benchmark (146.5 mW cm-2, 360 cycles) under testing conditions of 25 °C. In situ XAS analysis and theoretical calculations disclose that Co3ON6 is the catalytic site for bifunctional ORR/OER electrocatalysis. The constructed triangular pyramidal active sites effectively regulate the d-band center and electronic configuration and promote the adsorption/desorption of oxygen intermediates. This work uncovers that the geometry and electronic structure of triatomic active centers play a key role in improving bifunctional ORR/OER performance for electrochemical energy applications.
Collapse
Affiliation(s)
- Tianmi Tang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P.R. China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P.R. China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P.R. China
| | - Changmin Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130021, P.R. China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P.R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P.R. China
| |
Collapse
|
2
|
Wu R, Zuo J, Fu C, Zhu Z, Zhao L, Wang J, Li Q, Xue Q, Li Z, Niu X, Qi X, Yang N, Chen JS. Enhancing Rechargeable Zinc-Air Batteries with Atomically Dispersed Zinc Iron Cobalt Planar Sites on Porous Nitrogen-Doped Carbon. ACS NANO 2025. [PMID: 40387154 DOI: 10.1021/acsnano.5c05961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Rechargeable zinc-air batteries (ZABs) face significant challenges in achieving both high power density and long-term stability, primarily due to limitations in catalytic materials for oxygen electrodes. Here, we present a trimetal planar heterogeneous metal catalyst featuring atomically dispersed ZnN4, FeN4, and CoN4 sites supported on a porous nitrogen-doped carbon substrate (ZnFeCo-NC) through a templating approach. By fine-tuning the content of each metal, the optimized ZnFeCo-NC-based ZAB achieves a high peak power density of 244 mW cm-2 and maintains durable performance for 500 h at 10 mA cm-2. Ab initio molecular dynamics simulations reveal that the ZnFeCo-NC catalyst configuration remains stable at 300 K during the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) process. Further theoretical calculations demonstrate that the introduction of adsorbed OH groups effectively tunes the electronic structure redistribution of metal active sites, particularly improving the catalytic performance at the Fe site for ORR and the Co site for the OER. These findings provide insights into the rational design of high-performance electrocatalysts in energy storage technologies.
Collapse
Affiliation(s)
- Rui Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiayu Zuo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chuang Fu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhaozhao Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lei Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junjie Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiyu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhao Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Na Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
| |
Collapse
|
3
|
Ji X, Zhang J, Wang Y, Cao H, Yu J, Chen D. Coupling CoO x@NC with NiFe LDH Enhances Oxygen Electrocatalysis for Rechargeable High-Efficiency Zn-Air Batteries. Chemistry 2025:e202501103. [PMID: 40342215 DOI: 10.1002/chem.202501103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Developing bifunctional catalysts with the high oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalytic activities is of great significance in improving the efficiency of rechargeable Zn-air batteries. Herein, this study adopts simple one-pot pyrolysis and subsequent hydrothermal strategies to prepare a high-performance bifunctional composite catalyst by coupling a layered hydroxide NiFe LDH with Co and N codoped carbon framework, composed of cobalt oxide and metallic Co nanoparticles distributed on interconnected porous carbon nanosheets and carbon nanotubes (CNTs). Benefiting from the exposure of more active sites, high conductivity, and beneficial charge transport advantages, the best catalyst (CoOx@NC)2─NiFe demonstrates excellent bifunctional electrocatalytic activities and stability for oxygen-related electrochemical reactions, exhibiting a low potential gap of 0.757 V. Additionally, the rechargeable Zn-air battery assembled with the (CoOx@NC)2─NiFe catalyst performs a peak power density of 136 mW cm-2, and a specific capacity of 803 mAh gZn -1 at 10 mA cm-2, and outstanding stability (over 200 hours). This work presents a simple and low-cost approach for synthesizing bifunctional catalysts to realize efficient and durable rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Xinru Ji
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Jingcheng Zhang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Yuxin Wang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Hongmei Cao
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Jie Yu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Daifen Chen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| |
Collapse
|
4
|
Song W, Liu D, Zhu B, He Y, Dou S, Huang X, Li M, Zhong B. Entropy-induced high-density grain boundaries in Co-free high-entropy spinel oxides for highly reversible lithium storage. J Colloid Interface Sci 2025; 677:795-803. [PMID: 39173512 DOI: 10.1016/j.jcis.2024.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Transition metal oxides (TMOs) with high discharge capacity are considered as one of the most promising anodes for lithium-ion batteries. However, the practical utilization of TMOs is largely limited by cycling stability issues arising from volume expansion, structural collapse. In this study, we synthesized a high-entropy spinel oxide material (FeCrNiMnZn)3O4 using a solution combustion method. With the implementation of five cations through high-entropy engineering, the agglomeration and expansion of the electrode materials during charging and discharging are suppressed, and the cycling stability is enhanced. The results demonstrate that entropy-induced high-density grain boundaries and the reversibility of spinel structure contribute to improved capacity and cycling stability. Herein, (FeCrNiMnZn)3O4 provides a high capacity (1374 mAh g-1) at 0.1 A g-1 and superior cycling stability (almost 100 %) during 200 cycles with a current density of 0.5 A g-1. The study provides valuable understanding for designing the high entropy oxides anode electrodes.
Collapse
Affiliation(s)
- Wenzong Song
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264009, China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264009, China.
| | - Baonian Zhu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yunfei He
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264009, China
| | - Sihao Dou
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264009, China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Mingji Li
- Weihai Yunshan Technology Co., Ltd, Weihai 264200, China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264009, China.
| |
Collapse
|
5
|
Wang Q, Wang L, Zhang S, Chen Z, Peng W, Li Y, Fan X. MOF-on-MOF-derived FeCo@NC OER&ORR bifunctional electrocatalysts for zinc-air batteries. J Colloid Interface Sci 2025; 677:800-811. [PMID: 39121664 DOI: 10.1016/j.jcis.2024.07.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (Ehalf = 0.907 V) and OER (Ej=10 = 1.551 V) within alkaline environments, surpassing esteemed noble metal benchmarks (Pt/C and RuO2). Systematically characterizations and density functional theory (DFT) calculations reveal that the synergistic effect of iron and cobalt bimetallic and the optimized distribution of nitrogen configuration improved the charge distribution of the catalysts, which in turn optimized the adsorption / desorption of oxygenated intermediates accelerating the reaction kinetics. While the unique leaf-like core-shell morphology and excellent pore structure of the FeCo@NC-II catalyst caused the improvement of mass transfer efficiency, electrical conductivity and stability. The core and shell of the precursor constructed through the MOF-on-MOF strategy achieved the effect of 1 + 1 > 2 in mutual cooperation. Further application to zinc-air batteries (ZABs) yielded remarkable power density (212.4 mW/cm2), long cycle (more than 150 h) stability and superior energy density (∼1060 Wh/kg Zn). This work provides a methodology and an idea for the design, synthesis and optimization of advanced bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Qianqiao Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Lan Wang
- School of New Energy, Ningbo University of Technology, Ningbo 315336, China
| | - Shuya Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhuo Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
6
|
Chen Y, Ge Y, Yan Y, Xu L, Zhu X, Yan P, Ding P, Li H, Li H. Photoinduced Zn-Air Battery-Assisted Self-Powered Sensor Utilizing Cobalt and Sulfur Co-Doped Carbon Nitride for Portable Detection Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408293. [PMID: 39445509 PMCID: PMC11633469 DOI: 10.1002/advs.202408293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Most self-powered electrochemical sensors (SPESs) are limited by low open circuit voltage and power density, leading to a narrow detection range and low sensitivity. Herein, a photoinduced Zn-air battery-assisted SPES (ZAB-SPES) is proposed based on cobalt and sulfur co-doped carbon nitride with the cyano group (Co, S-CN). The cyano functionalization remarkably enhances visible light utilization, and the cyano moiety acts as an electron-withdrawing group to promote electron enrichment. Co and S co-doping can create a p-n homojunction within carbon nitride, enabling the efficient migration and separation of carriers, thereby significantly improving the performance of the oxygen reduction reaction. The synergistic effects endow Co, S-CN photocathode with an open circuit voltage of 1.85 V and the maximum power density of 43.5 µW cm-2 in the photoinduced ZAB. Employing heavy metal copper ions as the target model, the photoinduced ZAB-SPES exhibited dual-mode and sensitive detection. Furthermore, a portable detection device based on the photoinduced ZAB-SPES is designed and exhibits high linearity in the range of 5 ~ 600 nM with a detection limit of 1.7 nM. This work offers a portable detection method based on the photoinduced ZAB-SPES in the aquatic environment.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Yuhang Ge
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Yuting Yan
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Li Xu
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Xingwang Zhu
- School of Environmental Science and EngineeringCollege of Mechanical EngineeringYangzhou UniversityYangzhou225002China
| | - Pengcheng Yan
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Penghui Ding
- Department of Science and TechnologyLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Huaming Li
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Henan Li
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| |
Collapse
|
7
|
Gao S, Lian K, Wang X, Liu X, Abdukayum A, Kong Q, Hu G. Recent Achievements in Heterogeneous Bimetallic Atomically Dispersed Catalysts for Zn-Air Batteries: A Minireview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406776. [PMID: 39363812 DOI: 10.1002/smll.202406776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable Zn-air batteries (ZABs) hold promise as the next-generation energy-storage devices owing to their affordability, environmental friendliness, and safety. However, cathodic catalysts are easily inactivated in prolonged redox potential environments, resulting in inadequate energy efficiency and poor cycle stability. To address these challenges, anodic active sites require multiple-atom combinations, that is, ensembles of metals. Heterogeneous bimetallic atomically dispersed catalysts (HBADCs), consisting of heterogeneous isolated single atoms and atomic pairs, are expected to synergistically boost the cyclic oxygen reduction and evolution reactions of ZABs owing to their tuneable microenvironments. This minireview revisits recent achievements in HBADCs for ZABs. Coordination environment engineering and catalytic substrate structure optimization strategies are summarized to predict the innovation direction for HBADCs in ZAB performance enhancement. These HBADCs are divided into ferrous and nonferrous dual sites with unique microenvironments, including synergistic effects, ion modulation, electronic coupling, and catalytic activity. Finally, conclusions and perspectives relating to future challenges and potential opportunities are provided to optimise the performance of ZABs.
Collapse
Affiliation(s)
- Sanshuang Gao
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Kang Lian
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
8
|
Li Y, Peng CK, Sun Y, Sui LDN, Chang YC, Chen SY, Zhou Y, Lin YG, Lee JM. Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes. Nat Commun 2024; 15:10222. [PMID: 39587090 PMCID: PMC11589590 DOI: 10.1038/s41467-024-54589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Precise morphological control and identification of structure-property relationships pose formidable challenges for high-entropy alloys, severely limiting their rational design and application in multistep and tandem reactions. Herein, we report the synthesis of sub-nanometric high-entropy metallenes with up to eight metallic elements via a one-pot wet-chemical approach. The PdRhMoFeMn high-entropy metallenes exhibit high electrocatalytic hydrogen evolution performances with 6, 23, and 26 mV overpotentials at -10 mA cm-2 in acidic, neutral, and alkaline media, respectively, and high stability. The electrochemical measurements, theoretical simulations, and operando X-ray absorption spectroscopy reveal the actual active sites along with their dynamics and synergistic mechanisms in various electrolytes. Specially, Mn sites have strong binding affinity to hydroxyl groups, which enhances the water dissociation process at Pd sites with low energy barrier while Rh sites with optimal hydrogen adsorption free energy accelerate hydride coupling, thereby markedly boosting its intrinsic ability for hydrogen production.
Collapse
Affiliation(s)
- Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chun-Kuo Peng
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | - L D Nicole Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yu-Chung Chang
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - San-Yuan Chen
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Yan-Gu Lin
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan.
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
9
|
Wan Y, Wei W, Ding S, Wu L, Yuan X. Achieving Efficient Oxygen Evolution on High-Entropy Sulfide Utilizing Low Electronegativity of Al. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404689. [PMID: 39115098 DOI: 10.1002/smll.202404689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Indexed: 11/21/2024]
Abstract
Efficient and stable catalysts are in high demand for accelerating the oxygen evolution reaction (OER). Herein, a high-entropy sulfide (HES) of (FeCoNiCrCuAl)S@HCS with a 3D structure is successfully prepared by utilizing a simple one-step solvothermal method and employed as catalyst toward OER. The lower electronegativity of Al compared to the other metal elements and its anti-corrosion character enable an outstanding OER performance of (FeCoNiCrCuAl)S@HCS with an overpotential of 253 mV at 10 mA cm-2 and an excellent durability after 20 000 CV cycles, outperforming the commercial RuO2 and most reported metal-sulfide catalysts. Experiments coupled with theoretical calculations reveal that Al atom primarily serves as electron donor and promotes a redistribution of local electrons from Co and Cr toward adjacent Fe, Ni, and Cu sites. As a result, the Cr-Al site possesses a lowest energy barrier during the rate-determining step and works as the dominant active site for OER process. This study provides a novel insight and strategy into structural design and performance enhancement for HES materials.
Collapse
Affiliation(s)
- Yi Wan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenrui Wei
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengqi Ding
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianxia Yuan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Hu X, Tian W, Wu Z, Li X, Li Y, Wang H. Synthesis of Zr 2ON 2 via a urea-glass route to modulate the bifunctional catalytic activity of NiFe layered double hydroxide in a rechargeable zinc-air battery. J Colloid Interface Sci 2024; 672:610-617. [PMID: 38861848 DOI: 10.1016/j.jcis.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The development of a highly efficient, stable, and low-cost bifunctional catalyst is imperative for facilitating the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, significant challenges are involved in extending its applications to rechargeable zinc-air batteries. This study presents a bifunctional catalyst, Zr2ON2@NiFe layered double hydroxide (LDH), that was developed by utilizing a urea-glass route for synthesizing the Zr2ON2 precursor, followed by riveting NiFe LDH nanosheets using a hydrothermal method. Specifically, the vertical distribution of NiFe LDH on the Zr2ON2 surface ensures the maximization of the number of accessible active sites and interfacial catalysis of NiFe LDH. Notably, Zr2ON2@NiFe LDH demonstrates ORR and OER bifunctional electrocatalytic behavior and high stability owing to its heterostructure and composition. Furthermore, a rechargeable zinc-air battery using a Zr2ON2@NiFe LDH electrocatalyst as the air cathode demonstrated a high peak power density (172 mW cm-2) and galvanostatic charge-discharge cycle stability (5 mA cm-2 over 443 h). Thus, this study presents an efficient and cost-effective strategy for the design of bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Xiaolin Hu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China.
| | - Wenping Tian
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Zhenkun Wu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Li
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhong Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Huang Z, Li M, Yang X, Zhang T, Wang X, Song W, Zhang J, Wang H, Chen Y, Ding J, Hu W. Diatomic Iron with a Pseudo-Phthalocyanine Coordination Environment for Highly Efficient Oxygen Reduction over 150,000 Cycles. J Am Chem Soc 2024; 146:24842-24854. [PMID: 39186017 DOI: 10.1021/jacs.4c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Atomically dispersed Fe-N-C catalysts emerged as promising alternatives to commercial Pt/C for the oxygen reduction reaction. However, the majority of Fe-N-C catalysts showed unsatisfactory activity and durability due to their inferior O-O bond-breaking capability and rapid Fe demetallization. Herein, we create a pseudo-phthalocyanine environment coordinated diatomic iron (Fe2-pPc) catalyst by grafting the core domain of iron phthalocyanine (Fe-Nα-Cα-Nβ) onto defective carbon. In situ characterizations and theoretical calculation confirm that Fe2-pPc follows the fast-kinetic dissociative pathway, whereby Fe2-pPc triggers bridge-mode oxygen adsorption and catalyzes direct O-O radical cleavage. Compared to traditional Fe-N-C and FePc-based catalysts exhibiting superoxo-like oxygen adsorption and an *OOH-involved pathway, Fe2-pPc delivers a superior half-wave potential of 0.92 V. Furthermore, the ultrastrong Nα-Cα bonds in the pPc environment endow the diatomic iron active center with high tolerance for reaction-induced geometric stress, leading to significantly promoted resistance to demetallization. Upon an unprecedented harsh accelerated degradation test of 150,000 cycles, Fe2-pPc experiences negligible Fe loss and an extremely small activity decay of 17 mV, being the most robust candidate among previously reported Fe-N-C catalysts. Zinc-air batteries employing Fe2-pPc exhibit a power density of 255 mW cm-2 and excellent operation stability beyond 440 h. This work brings new insights into the design of atomically precise metallic catalysts.
Collapse
Affiliation(s)
- Zechuan Huang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Mianfeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Tao Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wanqing Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
12
|
Liu P, Liu H, Qiu Y, Jiang J, Zhong W. Electron Transfer Induced by the Change of Spin States as a Catalytic Descriptor on C 2N-TM Single-Atom Catalysts. J Phys Chem Lett 2024; 15:9003-9009. [PMID: 39186377 DOI: 10.1021/acs.jpclett.4c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The catalytic activity and selectivity of metal single-atom catalysts strongly depend upon their spin states. However, their intrinsic connections are not yet clear. In this work, we evaluate the catalytic activity and selectivity of oxygen reduction reactions (ORRs) on C2N-supporting 3d transition metal (TM = Mn/Co/Ni/Cu) single-atom catalysts (SACs) using the density functional theory calculations. It is found that all of the SACs with different spin states tend to follow the 2e- H2O2 pathway, except for C2N-Mn (S = 1/2), which takes the 4e- OOH pathway. Interestingly, we found that the sum of the changes in the electron spin moments of the metal active centers and the reaction intermediate OOH affects the OOH electron transfer, and the electron transfer promotes the catalytic activity of the 2e- H2O2 pathway on C2N-TM SACs. Moreover, there is a strong linear relationship between the OOH electron transfer and the catalytic activity of the 2e- H2O2 pathway on C2N-TM SACs. These findings indicate that electron transfer induced by the change of spin states serves as a descriptor of the catalytic activity of the 2e- H2O2 pathway on C2N-TM SACs, which is very helpful for designing more powerful SACs.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Huifeng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Yue Qiu
- Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wenhui Zhong
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, People's Republic of China
| |
Collapse
|
13
|
Wu C, Chen M, Wang B, Luo L, Zhou Q, Mao G, Xiong Y, Wang Q. Orbital electron delocalization of axial-coordinated modified FeN 4 and structurally ordered PtFe intermetallic synergistically for efficient oxygen reduction reaction catalysis. Chem Sci 2024; 15:12989-13000. [PMID: 39148774 PMCID: PMC11322963 DOI: 10.1039/d4sc02824d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Regulating the chemical environment of materials to optimize their electronic structure, leading to the optimal adsorption energies of intermediates, is of paramount importance to improving the performance of electrocatalysts, yet remains an immense challenge. Herein, we design a harmonious axial-coordination Pt x Fe/FeN4CCl catalyst that integrates a structurally ordered PtFe intermetallic with an orbital electron-delocalization FeN4CCl support for synergistically efficient oxygen reduction catalysis. The obtained Pt2Fe/FeN4CCl with a favorable atomic arrangement and surface composition exhibits enhanced oxygen reduction reaction (ORR) intrinsic activity and durability, achieving a mass activity (MA) and specific activity (SA) of 1.637 A mgPt -1 and 2.270 mA cm-2, respectively. Detailed X-ray absorption fine spectroscopy (XAFS) further confirms the axial-coupling effect of the FeN4CCl substrate by configuring the Fe-N bond to ∼1.92 Å and the Fe-Cl bond to ∼2.06 Å. Additionally, Fourier transforms of the extended X-ray absorption fine structure (FT-EXAFS) demonstrate relatively prominent peaks at ∼1.5 Å, ascribed to the contribution of the Fe-N/Fe-Cl, further indicating the construction of the FeN4CCl moiety structure. More importantly, the electron localization function (ELF) and density functional theory (DFT) further determine an orbital electron delocalization effect due to the strong axial traction between the Cl atoms and FeN4, resulting in electron redistribution and modification of the coordination surroundings, thus optimizing the adsorption free energy of OHabs intermediates and effectively accelerating the ORR catalytic kinetic process.
Collapse
Affiliation(s)
- Chenzhong Wu
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Meida Chen
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Bin Wang
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Leqing Luo
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Qian Zhou
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Guangtao Mao
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Yuan Xiong
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Qingmei Wang
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| |
Collapse
|
14
|
Xia Y, Wang L, Gao G, Mao T, Wang Z, Jin X, Hong Z, Han J, Peng DL, Yue G. Constructed Mott-Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O 2 Battery. NANO-MICRO LETTERS 2024; 16:258. [PMID: 39073728 PMCID: PMC11286616 DOI: 10.1007/s40820-024-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Lithium-oxygen batteries (LOBs) with high energy density are a promising advanced energy storage technology. However, the slow cathodic redox kinetics during cycling causes the discharge products to fail to decompose in time, resulting in large polarization and battery failure in a short time. Therefore, a self-supporting interconnected nanosheet array network NiCo2O4/MnO2 with a Mott-Schottky heterostructure on titanium paper (TP-NCO/MO) is ingeniously designed as an efficient cathode catalyst material for LOBs. This heterostructure can accelerate electron transfer and influence the charge transfer process during adsorption of intermediate by triggering the interface disturbance at the heterogeneous interface, thus accelerating oxygen reduction and oxygen evolution kinetics and regulating product decomposition, which is expected to solve the above problems. The meticulously designed unique structural advantages enable the TP-NCO/MO cathode catalyst to exhibit an astounding ultra-long cycle life of 800 cycles and an extraordinarily low overpotential of 0.73 V. This study utilizes a simple method to cleverly regulate the morphology of the discharge products by constructing a Mott-Schottky heterostructure, providing important reference for the design of efficient catalysts aimed at optimizing the adsorption of reaction intermediates.
Collapse
Affiliation(s)
- Yongji Xia
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Le Wang
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Guiyang Gao
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tianle Mao
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhenjia Wang
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xuefeng Jin
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zheyu Hong
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiajia Han
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Dong-Liang Peng
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Guanghui Yue
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
15
|
Liu Y, Zhu Q, Zhang L, Xu Q, Li X, Hu G. Nickel-Induced charge transfer in semicoherent Co-Ni/Co 6Mo 6C Heterostructures for reversible oxygen electrocatalysis. J Colloid Interface Sci 2024; 674:361-369. [PMID: 38941930 DOI: 10.1016/j.jcis.2024.06.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
To achieve high-performance Zn-air batteries (ZABs), the development of bifunctional air electrodes capable of efficiently mediating both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is imperative. In this study, we present an N-doped carbon hollow nanorod encapsulating a semi-coherent Co-Ni/Co6Mo6C heterojunction, tailored for reversible oxygen catalysis. This nanohybrid demonstrated an ORR half-wave potential of 0.907 V alongside an OER overpotential of η10 = 352 mV. When incorporated into ZABs, this catalyst exhibited extraordinary performance metrics, including a high-power density of 343.7 mW/cm2, a specific capacity of 681 mAh/gZn, and enhanced durability. The distinctive electric field within the heterojunction facilitated electron transfer across the semi-coherent interface during reversible oxygen electrocatalysis, enhancing the adsorption and release of active intermediates. Thus, this heightened ORR-OER catalytic efficiency culminated in superior ZABs performance. Our findings afford a pivotal design paradigm for the advancement of productive bifunctional catalysts within the field of energy conversion technologies.
Collapse
Affiliation(s)
- Yan Liu
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Qiliang Zhu
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| | - Qiaoling Xu
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Xiaowei Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, PR China.
| |
Collapse
|
16
|
Rani B, Yadav JK, Saini P, Pandey AP, Dixit A. Aluminum-air batteries: current advances and promises with future directions. RSC Adv 2024; 14:17628-17663. [PMID: 38832240 PMCID: PMC11145468 DOI: 10.1039/d4ra02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Owing to their attractive energy density of about 8.1 kW h kg-1 and specific capacity of about 2.9 A h g-1, aluminum-air (Al-air) batteries have become the focus of research. Al-air batteries offer significant advantages in terms of high energy and power density, which can be applied in electric vehicles; however, there are limitations in their design and aluminum corrosion is a main bottleneck. Herein, we aim to provide a detailed overview of Al-air batteries and their reaction mechanism and electrochemical characteristics. This review emphasizes each component/sub-component including the anode, electrolyte, and air cathode together with strategies to modify the electrolyte, air-cathode, and even anode for enhanced performance. The latest advancements focusing on the specific design of Al-air batteries and their rechargeability characteristics are discussed. Finally, the constraints and prospects of their use in mobility applications are also covered in depth. Thus, the present review may pave the way for researchers and developers working in energy storage solutions to look beyond lithium/sodium ion-based storage solutions.
Collapse
Affiliation(s)
- Bharti Rani
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Jitendra Kumar Yadav
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Priyanka Saini
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Anant Prakash Pandey
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Ambesh Dixit
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| |
Collapse
|
17
|
Prabhu P, Do VH, Yoshida T, Zhou Y, Ariga-Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee JM. Subnanometric Osmium Clusters Confined on Palladium Metallenes for Enhanced Hydrogen Evolution and Oxygen Reduction Catalysis. ACS NANO 2024; 18:9942-9957. [PMID: 38552006 DOI: 10.1021/acsnano.3c10219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.
Collapse
Affiliation(s)
- P Prabhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
- Energy Research Institute @ NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Takefumi Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Hiroko Ariga-Miwa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Takuma Kaneko
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
18
|
Gao Y, Liu L, Jiang Y, Yu D, Zheng X, Wang J, Liu J, Luo D, Zhang Y, Shi Z, Wang X, Deng YP, Chen Z. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries. NANO-MICRO LETTERS 2024; 16:162. [PMID: 38530476 PMCID: PMC11250732 DOI: 10.1007/s40820-024-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/26/2024] [Indexed: 03/28/2024]
Abstract
Zinc-air batteries (ZABs) are promising energy storage systems because of high theoretical energy density, safety, low cost, and abundance of zinc. However, the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs. Therefore, feasible and advanced non-noble-metal electrocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction. In this review, we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field. Then, we discussed the working mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design, crystal structure tuning, interface strategy, and atomic engineering. We also included theoretical studies, machine learning, and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions. Finally, we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Yunnan Gao
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ling Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yi Jiang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Dexin Yu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiaomei Zheng
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Jingwei Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Zhenjia Shi
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
19
|
Chen S, Xu J, Chen J, Yao Y, Wang Z, Li P, Li Y, Wang F. Ru doping induced interface engineering in flower-liked CoMoO 4-RuO 2 boosts oxygen electrocatalysis for rechargeable Zn-air battery. J Colloid Interface Sci 2024; 658:230-237. [PMID: 38104405 DOI: 10.1016/j.jcis.2023.12.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Constructing heterogeneous catalysts can significantly boost the electrocatalytic activity due to the improved intrinsic catalytic activity induced by tailored electronic structure and optimized chemisorption to the reaction intermediates. RuO2 based electrocatalysts are especially attractive due to the high catalytic activity of RuO2. To reduce the usage of noble metal and improve the catalytic activity of catalyst, CoMoO4-RuO2 micro-flower was synthesized using a facile hydrothermal-calcination method in this work. CoMoO4-RuO2 exhibits a low overpotential of 177 mV at 10 mA cm-2 for oxygen evolution reaction (OER) and a high half-wave potential of 0.858 V for oxygen reduction reaction (ORR). Moreover, the Zn-air battery assembled using CoMoO4-RuO2 exhibit shows a high maximum discharge power density of 149 mW cm-2 and a large open circuit voltage of 1.38 V. The good performance can be attributed to the incorporation of RuO2, which not only induces extra catalytic active sites, but also forms heterojunction with CoMoO4 to optimize the electronic structure of CoMoO4-RuO2, thereby achieving a better equilibrium of absorption and desorption of intermediates. The work provides insights into designing RuO2 based electrocatalysts for advanced electrocatalysis.
Collapse
Affiliation(s)
- Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Junlong Xu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Junyan Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yingying Yao
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhuo Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Pengyu Li
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Fang Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China.
| |
Collapse
|
20
|
Song D, Zheng Z, Wang Z, Zhao M, Ding L, Zhang Q, Deng F. Catalytic PMS oxidation universality of CuFe 2O 4/MnO 2 heterojunctions at multiple application scenarios. ENVIRONMENTAL RESEARCH 2024; 243:117828. [PMID: 38048866 DOI: 10.1016/j.envres.2023.117828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
The magnetic CuFe2O4/MnO2 heterojunctions were prepared by hydrothermal method, and the effect of different reaction temperature on the physicochemical properties and catalytic activity was investigated. The CuFe2O4/MnO2 heterojunctions prepared at 100 °C can effectively activate peroxymonosulfate (PMS) at multiple application scenarios for degradation and mineralization of tetracycline, o-nitrophenol and ceftriaxone sodium under indoor light, visible light and dark condition. Additionally, the CuFe2O4/MnO2-PMS system showed high catalytic activity and anti-interference ability for degradation of pharmaceutical pollutants in natural water bodies and industrial wastewater. The TC removal efficiency in Qianhu Lake water, Ganjiang River water and tap water was about 88%, 92% and 89%, respectively. The CuFe2O4/MnO2-PMS system is also effective for actual pharmaceutical wastewater treatment with 77.9% of COD removal efficiency. Interestingly, the reactive species of CuFe2O4/MnO2-PMS system under visible light are different from those in dark condition, and the different catalytic mechanisms at multiple application scenarios were proposed. This work provides new insights into mechanism exploration of heterojunction catalyst for PMS activation.
Collapse
Affiliation(s)
- Di Song
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zixuan Zheng
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhenzhou Wang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Mengyuan Zhao
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lin Ding
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Qian Zhang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Fang Deng
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
21
|
Xiao L, Yu W, Liu J, Luan S, Pei W, Cui X, Jiang L. Co 3Fe 7/CoC x nanoparticles encapsulated in nitrogen-doped carbon nanotubes synergistically promote the oxygen reduction reaction in Zn-air batteries. J Colloid Interface Sci 2024; 655:427-438. [PMID: 37951000 DOI: 10.1016/j.jcis.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Efficient and stable non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are crucial for the advancement of Zn-air batteries. Herein, we report a supramolecular self-scarifying template and confinement pyrolysis strategy to obtain an efficient ORR catalyst of well-dispersed Co3Fe7/CoCx heterostructure nanoparticles encapsulated by nitrogen-doped carbon nanotubes (Co3Fe7/CoCx@N-CNT). The as-synthesized Co3Fe7/CoCx@N-CNT catalyst exhibited outstanding ORR activity, with a half-wave potential of 0.88 V versus a reversible hydrogen electrode, and good stability. The Zn-air battery based on the Co3Fe7/CoCx@N-CNT cathode achieved a peak power density of 265 mW cm-2 and a durability of over 200 h, which is superior to most reported NPMCs and even the Pt/C counterpart. The physical characterization and electrochemical poisoning experiments revealed that the Co3Fe7/CoCx nanoparticles in the core along with pyridine N and Fe-Nx hosted in the carbon nanotube all acted as active sites for the ORR. Further theoretical calculations showed that the charge redistribution between the Co3Fe7/CoCx nanoparticles and the Fe-Nx carbon overlayers downshifted the d-band center of Fe and optimized the adsorption ability, which boosted the ORR kinetics. This work provides an effective strategy to synthesize non-precious metal ORR catalysts with multiple active sites and highlights the synergistic role of encapsulated nanoparticles and carbon support.
Collapse
Affiliation(s)
- Lang Xiao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wanqing Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jing Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Shankui Luan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenyu Pei
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xuejing Cui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Luhua Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
22
|
Bi Z, Hu J, Xu M, Zhang H, Zhou Y, Hu G. Nitrogen-bridged Fe-Cu Atomic Pair Sites for Efficient Electrochemical Ammonia Production and Electricity Generation with Zn-NO 2 Batteries. Angew Chem Int Ed Engl 2024; 63:e202313434. [PMID: 37996973 DOI: 10.1002/anie.202313434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The development of environmentally sustainable and highly efficient technologies for ammonia production is crucial for the future advancement of carbon-neutral energy systems. The nitrite reduction reaction (NO2 RR) for generating NH3 is a promising alternative to the low-efficiency nitrogen reduction reaction (NRR), owing to the low N=O bond energy and high solubility of nitrite. In this study, we designed a highly efficient dual-atom catalyst with Fe-Cu atomic pair sites (termed FeCu DAC), and the as-developed FeCu DAC was able to afford a remarkable NH3 yield of 24,526 μg h-1 mgcat. -1 at -0.6 V, with a Faradaic Efficiency (FE) for NH3 production of 99.88 %. The FeCu DAC also exhibited exceptional catalytic activity and selectivity in a Zn-NO2 battery, achieving a record-breaking power density of 23.6 mW cm-2 and maximum NH3 FE of 92.23 % at 20 mA cm-2 . Theoretical simulation demonstrated that the incorporation of the Cu atom changed the energy of the Fe 3d orbital and lowered the energy barrier, thereby accelerating the NO2 RR. This study not only demonstrates the potential of galvanic nitrite-based cells for expanding the field of Zn-based batteries, but also provides fundamental interpretation for the synergistic effect in highly dispersed dual-atom catalysts.
Collapse
Affiliation(s)
- Zenghui Bi
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Jiao Hu
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hua Zhang
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Guangzhi Hu
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
23
|
Kumar RS, Mannu P, Prabhakaran S, Nga TTT, Kim Y, Kim DH, Chen J, Dong C, Yoo DJ. Trimetallic Oxide Electrocatalyst for Enhanced Redox Activity in Zinc-Air Batteries Evaluated by In Situ Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303525. [PMID: 37786295 PMCID: PMC10646265 DOI: 10.1002/advs.202303525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Indexed: 10/04/2023]
Abstract
Researchers are investigating innovative composite materials for renewable energy and energy storage systems. The major goals of this studies are i) to develop a low-cost and stable trimetallic oxide catalyst and ii) to change the electrical environment of the active sites through site-selective Mo substitution. The effect of Mo on NiCoMoO4 is elucidated using both in situ X-ray absorption spectroscopy and X-ray diffraction analysis. Also, density functional theory strategies show that NiCoMoO4 has extraordinary catalytic redox activity because of the high adsorption energy of the Mo atom on the active crystal plane. Further, it is demonstrated that hierarchical nanoflower structures of NiCoMoO4 on reduced graphene oxide can be employed as a powerful bifunctional electrocatalyst for oxygen reduction/evolution reactions in alkaline solutions, providing a small overpotential difference of 0.75 V. Also, Zn-air batteries based on the developed bifunctional electrocatalyst exhibit outstanding cycling stability and a high-power density of 125.1 mW cm-2 . This work encourages the use of Zn-air batteries in practical applications and provides an interesting concept for designing a bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Ramasamy Santhosh Kumar
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Pandian Mannu
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Sampath Prabhakaran
- Department of Nano Convergence EngineeringJeonbuk National UniversityJeonjuJeonbuk54896Republic of Korea
| | - Ta Thi Thuy Nga
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Yangsoo Kim
- Korea Basic Science InstituteJeonju CenterJeonju‐siJeollabuk‐do54896Republic of Korea
| | - Do Hwan Kim
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Division of Science Education and Institute of Fusion ScienceJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Jeng‐Lung Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chung‐Li Dong
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Department of Life ScienceJeonbuk National UniversityJeonju‐siJeollabuk‐do54896Republic of Korea
| |
Collapse
|
24
|
He R, Yang L, Zhang Y, Jiang D, Lee S, Horta S, Liang Z, Lu X, Ostovari Moghaddam A, Li J, Ibáñez M, Xu Y, Zhou Y, Cabot A. A 3d-4d-5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303719. [PMID: 37487245 DOI: 10.1002/adma.202303719] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/17/2023] [Indexed: 07/26/2023]
Abstract
High entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution-based low-temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm-2 and 276 mV at 100 mA cm-2 . Density functional theory calculations reveal the electronic structures of the FeCoNiMoW active sites with an optimized d-band center position that enables suitable adsorption of OOH* intermediates and reduces the Gibbs free energy barrier in the OER process. Aqueous zinc-air batteries (ZABs) based on this HEA demonstrate a high open circuit potential of 1.59 V, a peak power density of 116.9 mW cm-2 , a specific capacity of 857 mAh gZn -1 , and excellent stability for over 660 h of continuous charge-discharge cycles. Flexible and solid ZABs are also assembled and tested, displaying excellent charge-discharge performance at different bending angles. This work shows the significance of 4d/5d metal-modulated electronic structure and optimized adsorption ability to improve the performance of OER/ORR, ZABs, and beyond.
Collapse
Affiliation(s)
- Ren He
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Linlin Yang
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Yu Zhang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daochuan Jiang
- School of Materials Science and Engineering, Anhui University, 230601, Hefei, China
| | - Seungho Lee
- Institute of Science and Technology Austria (ISTA), 3400, Am Campus 1, Klosterneuburg, Austria
| | - Sharona Horta
- Institute of Science and Technology Austria (ISTA), 3400, Am Campus 1, Klosterneuburg, Austria
| | - Zhifu Liang
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
| | - Xuan Lu
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
| | | | - Junshan Li
- Institute of Advanced Study, Chengdu University, 610106, Chengdu, China
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400, Am Campus 1, Klosterneuburg, Austria
| | - Ying Xu
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, 071002, Baoding, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control,National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Catalonia, 08010, Spain
| |
Collapse
|
25
|
Chen M, Wang H, Wang J, Sun M, Hu Y, Zhao X, Zhou Y. Efficient degradation of formaldehyde based on DFT-screened metal-doped C 3N 6 monolayer photocatalysts: performance evaluation and mechanistic insights. Phys Chem Chem Phys 2023; 25:25353-25360. [PMID: 37703044 DOI: 10.1039/d3cp03160h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Photocatalytic oxidation is an efficient and promising technology for reducing indoor pollution levels of formaldehyde (HCHO). However, developing efficient and low-cost photocatalysts for the removal of HCHO remains challenging due to the time-consuming and expensive nature of traditional "trial and error" and "directed research" approaches. To achieve this goal, first-principles density functional theory (DFT) calculations were conducted to high-throughput screen candidate TM-C3N6 photocatalysts for high-performance degradation of HCHO. The results revealed that Zr-C3N6 and Hf-C3N6 in functionalizing C3N6 with 28 transition metals showed excellent adsorption energy of HCHO, boosting the highly effective capture of HCHO. Meanwhile, an excellent adsorption performance mechanism was further elicited by the electric structure-property relationship. In addition, reaction mechanisms for HCHO degradation and three potential reaction pathways for HCHO degradation were systematically evaluated. Our findings indicated that hydroxyl-assisted dehydrogenation and oxygen-assisted dehydrogenation are the most favorable pathways, with rate-limiting steps involving the formation of ˙OH and ˙O radicals. Overall, this study may provide new insights into a high-throughput screening of novel photocatalysts that are both high-performing and low-cost for the removal of formaldehyde. This, in turn, can accelerate the experimental development process and reduce the associated costs and time consumption.
Collapse
Affiliation(s)
- Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China.
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China.
| | - Jinhu Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China.
| | - Mingyuzhi Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China.
| | - Yaxuan Hu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China.
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650000, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China.
| |
Collapse
|