1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Xu L, Zhang J, Luo J, Cui Y, Chen J, Zeng B, Deng Z, Shao L. "Double-sided protector" Janus hydrogels for skin and mucosal wound repair: applications, mechanisms, and prospects. J Nanobiotechnology 2025; 23:387. [PMID: 40426120 PMCID: PMC12117736 DOI: 10.1186/s12951-025-03438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Skin and mucous membranes serve as crucial barrier tissues within the human body. Defective wound healing not only inflicts pain but also heightens the risk of infection and impairs immune function. Janus hydrogels possess two-sided distinct asymmetric structures that endow them with diverse properties such as high water absorbency, flexibility, anti-adhesion ability etc. These hydrogels also exhibit great potential in biofluid transport, drug delivery and promoting tissue repair. Currently, research efforts predominantly concentrate on the preparation techniques, properties, and biomedical applications. This review summarized its structural characteristics and different forms of designations, and focused on the possible mechanisms, the existing problems and improvement strategies for the skin and mucous tissues wound, aiming to provide new design ideas for repairing complex skin and mucous membrane tissue defects.
Collapse
Affiliation(s)
- Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Junyi Zhang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Junsi Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Yiteng Cui
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Jinhong Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
- School of Stomatology, Changsha Medical University, Changsha, 410219, China.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Yan T, Cheng J, Liu H, Wang Y, Zhang C, Huang D, Liu J, Wang Z. Multifunctional Janus Hydrogels: Surface Design Strategies for Next-Generation Clinical Solutions. Gels 2025; 11:343. [PMID: 40422363 DOI: 10.3390/gels11050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/28/2025] Open
Abstract
Janus hydrogels, distinguished by their dual-sided structure with distinct physical and chemical properties, have garnered significant attention in the medical field, particularly for applications in drug delivery, tissue engineering, and wound healing. Their ability to simultaneously perform multiple functions, such as targeted drug release and biomimetic tissue interaction, positions them as a promising platform for advanced therapeutic strategies. The growing interest in these hydrogels is primarily driven by their multifunctionality and capacity to address complex biological needs. This review delves into the design, fabrication methods, and applications of Janus hydrogels in medicine, focusing on their potential to overcome the limitations of conventional therapies and providing a comprehensive overview of their role in contemporary biomedical applications.
Collapse
Affiliation(s)
- Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Haoming Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Hu X, Zhang H, Cheng H, Hu HJ, Tang S, Zhong BH, Li YC, Lan LM, Chen Y, Song K, Jiang GB. Iron-based driven chitosan quaternary ammonium salt self-gelling powder: Sealing uncontrollable bleeding and promoting wound healing. Int J Biol Macromol 2025; 300:140330. [PMID: 39870283 DOI: 10.1016/j.ijbiomac.2025.140330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Uncontrollable bleeding poses a significant risk of death and cost in wars, vehicle accidents, and first aid. Hence, in order to seal uncontrollable bleeding and promote wound healing, the Fe3+-driven chitosan quaternary ammonium salt self-gelling powder (QPF) was prepared using 5%QCS/AA/Fe3+ with the 52.72 % ± 0.30 % yield. As demonstrated by the results, the QPF had a high liquid absorption rate, mechanical properties, reactive oxygen species scavenging capacity, and bacteriostatic ability. Furthermore, QPF has excellent self-healing characteristics and underwater adherence, making it appropriate for a wide range of wound types. Importantly, this property is influenced by variations in Fe3+ concentration. In the in vitro coagulation experiment, QPF can rapidly capture blood cells, resulting in coagulation within 30s. After applying the QPF to different bleeding models, it immediately formed the self-gel (<2 s) that adheres securely to the hemorrhage site. Subsequently, the bleeding site could be promptly closed within 30s, and no blood leaking occurred within 10 min. Compared to CS, QPF (200 mg) improves wound healing by closing the wound gap, activating M2-type macrophage polarization, increasing neovascularization, and hastening granulation tissue proliferation (1046.0 μm ± 41.9 μm). In conclusion, iron-based driven self-gelling powders offer significant promise for limiting uncontrolled bleeding and promoting wound healing.
Collapse
Affiliation(s)
- Xiaolong Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongyan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal, Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hao Cheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shipeng Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bi-Huan Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Cheng Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Min Lan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Shan Y, Cao F, Zhao X, Luo J, Mei H, Zhang L, Huang Y, Yang Y, Yan L, Huang Y, Han Y, Guo B. Procoagulant, antibacterial and antioxidant high-strength porous hydrogel adhesives in situ formed via self-gelling hemostatic microsheets for emergency hemostasis and wound repair. Biomaterials 2025; 315:122936. [PMID: 39509859 DOI: 10.1016/j.biomaterials.2024.122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Procoagulant, antibacterial and analgesic hemostatic hydrogel dressing with high wet tissue adhesion, ultra-high burst pressure, and easy preparation shows huge promising for rapid hemostasis in emergencies, yet it remains a challenge. Herein, we propose hemostatic microsheets based on quaternized chitosan-g-gallic acid (QCS-GA) and oxidized hyaluronic acid (OHA), which merge the benefits of sponges, hydrogels, and powders for rapid hemostasis and efficient wound healing. Specifically, they exhibit a large specific surface area and excellent hydrophilicity, rapidly absorbing blood and self-gelling through electrostatic interaction and Schiff base crosslinking. And this results in dense, porous hydrogel adhesives with superior mechanical properties, adhesion strength, and ultra-high burst pressure. Furthermore, the microsheets are biocompatible, biodegradable, and possess procoagulant, antibacterial, and antioxidant properties. In mouse and rat liver hemorrhage models, the optimized formulation (QCS-GA + OHA4) demonstrated superior hemostatic effects compared to Celox. In particular, QCS-GA + OHA4 microsheets could stop bleeding quickly from rat femoral artery transection and deliver lidocaine to provide analgesia during emergency treatment. Additionally, they promoted wound healing in mouse full-thickness skin defect wound. These easy-to-manufacture hemostatic microsheets are adaptable to irregular wounds, providing a novel solution for rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Yingli Shan
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Cao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haoliang Mei
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Limou Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yutong Yang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangruijie Yan
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yayong Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Li Q, Ye L, Leng Y, Yu K, Hu E, Lu F, Xie R, Jiang S, Gao H, Bao R, Dai F, Lan G. Nanofiber-based Multifunctional Microspheres for Rapid Hemostasis and Microorganism Removal of Water. Adv Healthc Mater 2025; 14:e2403679. [PMID: 39663705 DOI: 10.1002/adhm.202403679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Constructing hemostats capable of effectively controlling severe hemorrhage from irregular wounds presents significant challenges and imperatives. In this study, a novel approach is introduced using nanofibrous chitin microspheres (NCM) that are compressed to 60% strain (NCM-60%) to amplify their water-initiated expansion performance. This unique capacity allows NCM-60% to efficiently conform to and fill irregular bleeding cavities, even those of varying depths and curvatures, thereby promoting rapid blood coagulation at deep hemorrhage sites. NCM-60% exhibits effective control of severe femoral artery and "J"-shaped liver hemorrhages in 151 ± 6 s and 68 ± 15 s, respectively, revealing its exceptional hemostatic efficacy. Furthermore, NCM-60% exhibited promising capabilities in removing microbes from water, achieving removal rates of over 96% of bacteria. Blood compatibility assessments and cytotoxicity tests further confirmed the favorable biocompatibility of NCM-60%. Importantly, NCM-60% is found to biodegrade and be absorbed in vivo within 12 weeks. This study represents the first instance of leveraging chitin nanofiber-based biomaterials to design water-initiated expansion micro-hemostat, and integrate hemostatic functions with waterborne microorganism removal, thereby expanding the potential applications of micro-nanostructural materials in emergency first-aid scenarios.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Lingjun Ye
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Yanqiu Leng
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Sha Jiang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hang Gao
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| |
Collapse
|
7
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
8
|
Huang Z, Zhang D, Tong L, Gao F, Zhang S, Wang X, Xie Y, Chen F, Liu C. Protonated-chitosan sponge with procoagulation activity for hemostasis in coagulopathy. Bioact Mater 2024; 41:174-192. [PMID: 39131629 PMCID: PMC11314896 DOI: 10.1016/j.bioactmat.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Hemostatic materials are essential for managing acute bleeding in medical settings. Chitosan (CS) shows promise in hemostasis but its underlying mechanism remains incompletely understood. We unexpectedly discovered that certain protonated-chitosan (PCS) rapidly assembled plasma proteins to form protein membrane (PM) upon contact with platelet-poor plasma (PPP). We hypothesized that the novel observation was intricately related to the procoagulant effect of chitosan. Herein, the study aimed to elucidate the conditions necessary and mechanism for PM formation, identify the proteins within the PM and PCS's procoagulant action at the molecule levels. We confirmed that the amount of -NH3 + groups (>4.9 mmol/g) on PCS molecules played a crucial role in promoting coagulation. The -NH3 + group interacted with blood's multiple active components to exert hemostatic effects: assembling plasma proteins including coagulation factors such as FII, FV, FX, activating blood cells and promoting the secretion of coagulation-related substances (FV, ADP, etc) by platelets. Notably, the hemostatic mechanism can be extended to protonated-chitosan derivatives like quaternized, alkylated, and catechol-chitosan. In the blood clotting index (BCI) experiment, compared to other groups, PCS95 achieved the lowest BCI value (∼6 %) within 30 s. Protonated-chitosan exhibited excellent biocompatibility and antibacterial properties, with PCS95 demonstrating inhibition effectiveness of over 95 % against Escherichia coli (E.coil) and Staphylococcus aureus (S. aureus). Moreover, PCS performed enhanced hemostatic effectiveness over chitosan-based commercially agents (Celox™ and ChitoGauze®XR) in diverse bleeding models. In particular, PCS95 reduced bleeding time by 70 % in rabbit models of coagulopathy. Overall, this study investigated the coagulation mechanism of materials at the molecular level, paving the way for innovative approaches in designing new hemostatic materials.
Collapse
Affiliation(s)
- Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Laiqiang Tong
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fan Gao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shaozan Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xinqing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yina Xie
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fangping Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
9
|
Yu Q, Wang W, Deng N, Su B, Zhao W, Zhao C. Janus Amphipathic Dressing With Liquid Self-Pumping and Blood-Clot Anti-Adhesion for Satisfactory Hemostasis. Adv Healthc Mater 2024; 13:e2400993. [PMID: 38850126 DOI: 10.1002/adhm.202400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Ideal hemostatic materials for the emergency rescue of war and traffic accident sufferers are essential to significantly control hemorrhage, reduce patient discomfort, and improve the survival ratio. However, most hemostats absorb blood quickly in contact with the wound; and then, adhere to blood clots, resulting in breaking scabs and tearing the wound when the materials are removed. Herein, an effective Janus amphipathic hemostatic dressing (Fiber@Gel/Ca2+/KL) with a fiber layer (polylactic acid/carboxymethyl chitosan) and a hydrogel layer (polyvinyl alcohol, carboxymethyl chitosan, Ca2+, and kaolin) is reported. Such a composite dressing unidirectionally drains the excessive serum from its hydrophobic side (fiber layer) to its hydrophilic side (hydrogel layer), so-called self-pumping, thereby further concentrating coagulated factors (including red blood cells and platelets). Further, Ca2+ diffused from the hydrogel layer subsequently activates platelets and coagulation cascade. Besides, the Fiber@Gel/Ca2+/KL exhibits specific blood-clot anti-adhesion property on the fiber layer, making the dressing easily and safely peel off from the wound. It is believed that this novel hemostatic dressing with good hemostatic performance, easy clots removal, and excellent biocompatibility is expected to be used as a safe and efficient hemostatic dressing in clinical applications.
Collapse
Affiliation(s)
- Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610054, China
| | - Ningyue Deng
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baihai Su
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610054, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610054, China
| |
Collapse
|
10
|
Tong L, Zhang D, Huang Z, Gao F, Zhang S, Chen F, Liu C. Calcium Ion-Coupled Polyphosphates with Different Degrees of Polymerization for Bleeding Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43244-43256. [PMID: 39136271 DOI: 10.1021/acsami.4c06698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of efficient hemostatic materials is crucial for achieving rapid hemorrhage control and effective wound healing. Inorganic polyphosphate (polyP) is recognized as an effective modulator of the blood coagulation process. However, the specific effect of polyP chain length on coagulation is not yet fully understood. Furthermore, calcium ions (Ca2+) are essential for the coagulation process, promoting multiple enzyme-catalyzed reactions within the coagulation cascade. Hence, calcium ion-coupled polyphosphate powders with three different degrees of polymerization (CaPP-n, n = 20, 50, and 1500) are synthesized by an ion-exchange reaction. CaPP exhibits a crystalline phase at a low polymerization degree and transitions to an amorphous phase as the polymerization degree increases. Notably, the addition of Ca2+ enhances the wettability of polyP, and CaPP promotes hemostasis, with varying degrees of effectiveness related to chain length. CaPP-50 exhibits the most promising hemostatic performance, with the lowest blood clotting index (BCI, 12.1 ± 0.7%) and the shortest clotting time (302.0 ± 10.5 s). By combining Ca2+ with polyP of medium-chain length, CaPP-50 demonstrates an enhanced ability to accelerate the adhesion and activation of blood cells, initiate the intrinsic coagulation cascade, and form a stable blood clot, outperforming both CaPP-20 and CaPP-1500. The hemostatic efficacy of CaPP-50 is further validated using rat liver bleeding and femoral artery puncture models. CaPP-50 is proven to possess hemostatic properties comparable to those of commercial calcium-based zeolite hemostatic powder and superior to kaolin. In addition, CaPP-50 exhibits excellent biocompatibility and long-term storage stability. These results suggest that CaPP-50 has significant clinical and commercial potential as an active inorganic hemostatic agent for rapid control of bleeding.
Collapse
Affiliation(s)
- Laiqiang Tong
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fan Gao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shaozan Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
11
|
Wu Z, Li S, Qin X, Zheng L, Fang J, Wei L, Xu C, Li ZA, Wang X. Facile preparation of fatigue-resistant Mxene-reinforced chitosan cryogel for accelerated hemostasis and wound healing. Carbohydr Polym 2024; 334:121934. [PMID: 38553248 DOI: 10.1016/j.carbpol.2024.121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The development of highly effective chitosan-based hemostatic materials that can be utilized for deep wound hemostasis remains a considerable challenge. In this study, a hemostatic antibacterial chitosan/N-hydroxyethyl acrylamide (NHEMAA)/Ti3C2Tx (CSNT) composite cryogel was facilely prepared through the physical interactions between the three components and the spontaneous condensation of NHEMAA. Because of the formation of strong crosslinked network, the CSNT cryogel showed a developed pore structure (~ 99.07 %) and superfast water/blood-triggered shape recovery, enabling it to fill the wound after contacting the blood. Its capillary effect, amino groups, negative charges, and affinity with lipid collectively induced rapid hemostasis, which was confirmed by in vitro and in vivo analysis. In addition, CSNT cryogel showed excellent photothermal antibacterial activities, high biosafety, and in vivo wound healing ability. Furthermore, the presence of chitosan effectively prevented the oxidation of MXene, thus enabling the long-term storage of the MXene-reinforced cryogel. Thus, our hemostatic cryogel demonstrates promising potential for clinical application and commercialization, as it combines high resilience, rapid hemostasis, efficient sterilization, long-term storage, and easy mass production.
Collapse
Affiliation(s)
- Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210000, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Shanshan Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoqian Qin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Lu Zheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jiawei Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Lansheng Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
12
|
Zhu T, Wan L, Li R, Zhang M, Li X, Liu Y, Cai D, Lu H. Janus structure hydrogels: recent advances in synthetic strategies, biomedical microstructure and (bio)applications. Biomater Sci 2024; 12:3003-3026. [PMID: 38695621 DOI: 10.1039/d3bm02051g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Janus structure hydrogels (JSHs) are novel materials. Their primary fabrication methods and various applications have been widely reported. JSHs are primarily composed of Janus particles (JNPs) and polysaccharide components. They exhibit two distinct physical or chemical properties, generating intriguing characteristics due to their asymmetric structure. Normally, one side (adhesive interface) is predominantly constituted of polysaccharide components, primarily serving excellent adhesion. On the other side (functional surface), they integrate diverse functionalities, concurrently performing a plethora of synergistic functions. In the biomedical field, JSHs are widely applied in anti-adhesion, drug delivery, wound healing, and other areas. It also exhibits functions in seawater desalination and motion sensing. Thus, JSHs hold broad prospects for applications, and they possess significant research value in nanotechnology, environmental science, healthcare, and other fields. Additionally, this article proposes the challenges and future work facing these fields.
Collapse
Affiliation(s)
- Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Yilong Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Dingjun Cai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Department of Stomatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
13
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
14
|
Jerka D, Bonowicz K, Piekarska K, Gokyer S, Derici US, Hindy OA, Altunay BB, Yazgan I, Steinbrink K, Kleszczyński K, Yilgor P, Gagat M. Unraveling Endothelial Cell Migration: Insights into Fundamental Forces, Inflammation, Biomaterial Applications, and Tissue Regeneration Strategies. ACS APPLIED BIO MATERIALS 2024; 7:2054-2069. [PMID: 38520346 PMCID: PMC11022177 DOI: 10.1021/acsabm.3c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cell migration is vital for many fundamental biological processes and human pathologies throughout our life. Dynamic molecular changes in the tissue microenvironment determine modifications of cell movement, which can be reflected either individually or collectively. Endothelial cell (EC) migratory adaptation occurs during several events and phenomena, such as endothelial injury, vasculogenesis, and angiogenesis, under both normal and highly inflammatory conditions. Several advantageous processes can be supported by biomaterials. Endothelial cells are used in combination with various types of biomaterials to design scaffolds promoting the formation of mature blood vessels within tissue engineered structures. Appropriate selection, in terms of scaffolding properties, can promote desirable cell behavior to varying degrees. An increasing amount of research could lead to the creation of the perfect biomaterial for regenerative medicine applications. In this review, we summarize the state of knowledge regarding the possible systems by which inflammation may influence endothelial cell migration. We also describe the fundamental forces governing cell motility with a specific focus on ECs. Additionally, we discuss the biomaterials used for EC culture, which serve to enhance the proliferative, proangiogenic, and promigratory potential of cells. Moreover, we introduce the mechanisms of cell movement and highlight the significance of understanding these mechanisms in the context of designing scaffolds that promote tissue regeneration.
Collapse
Affiliation(s)
- Dominika Jerka
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Faculty
of Medicine, Collegium Medicum, Mazovian
Academy in Płock, 09-402 Płock, Poland
| | - Klaudia Piekarska
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Seyda Gokyer
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Utku Serhat Derici
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Osama Ali Hindy
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Baris Burak Altunay
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Işıl Yazgan
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Kerstin Steinbrink
- Department
of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department
of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Pinar Yilgor
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Maciej Gagat
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Faculty
of Medicine, Collegium Medicum, Mazovian
Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|
15
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
16
|
Zhao X, Huang Y, Li Z, Chen J, Luo J, Bai L, Huang H, Cao E, Yin Z, Han Y, Guo B. Injectable Self-Expanding/Self-Propelling Hydrogel Adhesive with Procoagulant Activity and Rapid Gelation for Lethal Massive Hemorrhage Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308701. [PMID: 37971104 DOI: 10.1002/adma.202308701] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Developing hydrogels that can quickly reach deep bleeding sites, adhere to wounds, and expand to stop lethal and/or noncompressible bleeding in civil and battlefield environments remains a challenge. Herein, an injectable, antibacterial, self-expanding, and self-propelling hydrogel bioadhesive with procoagulant activity and rapid gelation is reported. This hydrogel combines spontaneous gas foaming and rapid Schiff base crosslinking for lethal massive hemorrhage. Hydrogels have rapid gelation and expansion rate, high self-expanding ratio, excellent antibacterial activity, antioxidant efficiency, and tissue adhesion capacity. In addition, hydrogels have good cytocompatibility, procoagulant ability, and higher blood cell/platelet adhesion activity than commercial combat gauze and gelatin sponge. The optimized hydrogel (OD-C/QGQL-A30) exhibits better hemostatic ability than combat gauze and gelatin sponge in rat liver and femoral artery bleeding models, rabbit volumetric liver loss massive bleeding models with/without anticoagulant, and rabbit liver and kidney incision bleeding models with bleeding site not visible. Especially, OD-C/QGQL-A30 rapidly stops the bleedings from pelvic area of rabbit, and swine subclavian artery vein transection. Furthermore, OD-C/QGQL-A30 has biodegradability and biocompatibility, and accelerates Methicillin-resistant S. aureus (MRSA)-infected skin wound healing. This injectable, antibacterial, self-expanding, and self-propelling hydrogel opens up a new avenue to develop hemostats for lethal massive bleeding, abdominal organ bleeding, and bleeding from coagulation lesions.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenlong Li
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jueying Chen
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Zhang S, Lei X, Lv Y, Wang L, Wang LN. Recent advances of chitosan as a hemostatic material: Hemostatic mechanism, material design and prospective application. Carbohydr Polym 2024; 327:121673. [PMID: 38171686 DOI: 10.1016/j.carbpol.2023.121673] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Uncontrolled hemorrhage arising from surgery or trauma may cause morbidity and even mortality. Therefore, facilitating control of severe bleeding is imperative for health care worldwide. Among diverse hemostatic materials, chitosan (CS) is becoming the most promising material owing to its non-toxic feature, as well as inherently hemostatic performance. However, further enhancing hemostatic property of CS-based materials without compromising more beneficial functions remains a challenge. In this review, representative hemostatic mechanisms of CS-based materials are firstly discussed in detail, mostly including red blood cells (RBCs) aggregation, platelet adherence and aggregation, as well as interaction with plasma proteins. Also, various forms (involving powder/particle, sponge, hydrogel, nanofiber, and other forms) of CS-based hemostatic materials are systematically summarized, mainly focusing on their design and preparation, characteristics, and comparative analysis of various forms. In addition, varied hemostatic applications are described in detail, such as skin wound hemostasis, liver hemostasis, artery hemostasis, and heart hemostasis. Finally, current challenges and future directions of functional design of CS-based hemostatic materials in diverse hemostatic applications are proposed to inspire more intensive researches.
Collapse
Affiliation(s)
- Shuxiang Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuxue Lei
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yongle Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, PR China.
| |
Collapse
|
18
|
Guo Y, Shao Z, Wang W, Liu H, Zhao W, Wang L, Bao C. Periodontium-Mimicking, Multifunctional Biomass-Based Hydrogel Promotes Full-Course Socket Healing. Biomacromolecules 2024; 25:1246-1261. [PMID: 38305191 DOI: 10.1021/acs.biomac.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Preserving stable tooth-periodontal tissue integration is vital for maintaining alveolar bone stability under physiological conditions. However, tooth extraction compromises this integration and impedes socket healing. Therefore, it becomes crucial to provide early stage coverage of the socket to promote optimal healing. Drawing inspiration from the periodontium, we have developed a quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel, termed the quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel (QDL hydrogel). Through blue-light-induced cross-linking, the QDL hydrogel serves as a comprehensive wound dressing for socket healing. The QDL hydrogel exhibits remarkable efficacy in closing irregular tooth extraction wounds. Its favorable mechanical properties, flexible formability, and strong adhesion are achieved through modifications of chitosan and sodium alginate derived from biomass sources. Moreover, the QDL hydrogel demonstrates a superior hemostatic ability, facilitating swift blood clot formation. Additionally, the inherent antibacterial properties of the QDL hydrogel effectively inhibit oral microorganisms. Furthermore, the QDL hydrogel promotes angiogenesis, which facilitates the nutrient supply for subsequent tissue regeneration. Notably, the hydrogel accelerates socket healing by upregulating the expression of genes associated with wound healing. In conclusion, the periodontium-mimicking multifunctional hydrogel exhibits significant potential as a clinical tooth extraction wound dressing.
Collapse
Affiliation(s)
- Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Liao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Lei X, Zou C, Hu J, Fan M, Jiang Y, Xiong M, Han C, Zhang X, Li Y, Zhao L, Nie R, Li‐Ling J, Xie H. A Self-Assembly Pro-Coagulant Powder Capable of Rapid Gelling Transformation and Wet Adhesion for the Efficient Control of Non-Compressible Hemorrhage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306289. [PMID: 38044313 PMCID: PMC10811489 DOI: 10.1002/advs.202306289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Rapid and effective control of non-compressible massive hemorrhage poses a great challenge in first-aid and clinical settings. Herein, a biopolymer-based powder is developed for the control of non-compressible hemorrhage. The powder is designed to facilitate rapid hemostasis by its excellent hydrophilicity, great specific surface area, and adaptability to the shape of wound, enabling it to rapidly absorb fluid from the wound. Specifically, the powder can undergo sequential cross-linking based on "click" chemistry and Schiff base reaction upon contact with the blood, leading to rapid self-gelling. It also exhibits robust tissue adhesion through covalent/non-covalent interactions with the tissues (adhesive strength: 89.57 ± 6.62 KPa, which is 3.75 times that of fibrin glue). Collectively, this material leverages the fortes of powder and hydrogel. Experiments with animal models for severe bleeding have shown that it can reduce the blood loss by 48.9%. Studies on the hemostatic mechanism also revealed that, apart from its physical sealing effect, the powder can enhance blood cell adhesion, capture fibrinogen, and synergistically induce the formation of fibrin networks. Taken together, this hemostatic powder has the advantages for convenient preparation, sprayable use, and reliable hemostatic effect, conferring it with a great potential for the control of non-compressible hemorrhage.
Collapse
Affiliation(s)
- Xiong‐Xin Lei
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Orthopedic SurgeryFirst People's Hospital of FoshanFoshanGuangdong528000P. R. China
| | - Chen‐Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Juan‐Juan Hu
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Otolaryngology – Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Ming‐Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Yan‐Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Ming Xiong
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Otolaryngology – Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Xiu‐Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Ya‐Xing Li
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Long‐Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Jesse Li‐Ling
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
- Center of Medical GeneticsWest China Second University HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Hui‐Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| |
Collapse
|
20
|
Svenskaya Y, Pallaeva T. Exploiting Benefits of Vaterite Metastability to Design Degradable Systems for Biomedical Applications. Pharmaceutics 2023; 15:2574. [PMID: 38004553 PMCID: PMC10674703 DOI: 10.3390/pharmaceutics15112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023] Open
Abstract
The widespread application of calcium carbonate is determined by its high availability in nature and simplicity of synthesis in laboratory conditions. Moreover, calcium carbonate possesses highly attractive physicochemical properties that make it suitable for a wide range of biomedical applications. This review provides a conclusive analysis of the results on using the tunable vaterite metastability in the development of biodegradable drug delivery systems and therapeutic vehicles with a controlled and sustained release of the incorporated cargo. This manuscript highlights the nuances of vaterite recrystallization to non-porous calcite, dissolution at acidic pH, biodegradation at in vivo conditions and control over these processes. This review outlines the main benefits of vaterite instability for the controlled liberation of the encapsulated molecules for the development of biodegradable natural and synthetic polymeric materials for biomedical purposes.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Scientific Medical Center, Saratov State University, 410012 Saratov, Russia
| | | |
Collapse
|
21
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|