1
|
Liu S, Liu Y, Li Z, Zhang M, Song C, Tang J. Dimethyl itaconate: An effective antioxidant for promoting angiogenesis under oxidative stress. Talanta 2025; 293:128024. [PMID: 40174364 DOI: 10.1016/j.talanta.2025.128024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Angiogenesis is an important physiological process in the human body. When ischemic diseases occur, the ischemic and hypoxic environment induces excessive production of reactive oxygen species (ROS) within cells, which inhibits angiogenesis and leads to poor prognosis. Therefore, finding antioxidants that can eliminate excessive ROS to promote angiogenesis is crucial for the treatment of ischemic diseases. In this work, we investigate the antioxidant effects of dimethyl itaconate (DMI) by using an oxidative stress model in human umbilical vein endothelial cells (HUVECs). Our results demonstrate that DMI significantly reduces excessive ROS in cells under oxidative stress. DMI could protect mechanical properties of HUVECs from oxidative stress. The Young's modulus of HUVECs was 10.0 ± 1.4 kPa after treatment with H2O2. However, the Young's modulus increased to 24.42 ± 1.4 kPa when HUVECs were co-incubated with H2O2 and DMI (40 μg mL-1). DMI also maintained cell morphology and cytoskeletal integrity. Meanwhile, DMI alleviates mitochondrial dysfunction by enhancing mitochondrial membrane potential (MMP) and increasing adenosine triphosphate (ATP) levels. The excellent antioxidant effects of DMI result from upregulating the expression levels of superoxide dismutase 2 and catalase, significantly leading to the removal of intracellular excessive ROS. With protecting HUVECs from oxidative stress damage, DMI promotes cell migration and angiogenesis. Consequently, this work not only elaborates on the mechanism by which DMI promotes angiogenesis by anti-oxidative stress, but also provides a new therapeutic option for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Suzhen Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yicong Liu
- Department of Special Needs Ward and General Practice, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Chunli Song
- Department of Special Needs Ward and General Practice, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Wu X, Fei W, Shen T, Ye L, Li C, Chu S, Liu M, Cheng X, Qin J. Unveiling the potential of biomechanics in pioneering innovative strategies for cancer therapy. Theranostics 2025; 15:2903-2932. [PMID: 40083943 PMCID: PMC11898300 DOI: 10.7150/thno.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 03/16/2025] Open
Abstract
Mechanical force transmission is pivotal in tumor biology, profoundly affecting cancer cell behaviors such as proliferation, metastasis, and resistance to therapy. To explore novel biomechanical-based therapeutic strategies for cancer treatment, this paper deciphers the advances in biomechanical measurement approaches and the impact of biomechanical signals on fundamental oncological processes such as tumor microenvironment remodeling, angiogenesis, metastasis, and drug resistance. Then, the mechanisms of biomechanical signal transduction of tumor cells are demonstrated to identify novel targets for tumor therapy. Additionally, this study proposes a novel tumor treatment strategy, the biomechanical regulation tumor nanotherapeutics, including smart biomaterials designed to disturb mechanical signaling pathways and innovative nanodrugs that interfere transduction of biomechanical signals to improve tumor therapeutic outcomes. These methods mark a departure from conventional pharmacological therapies to novel strategies that utilize mechanical forces to impede tumor progression and enhance tumor responsiveness to treatment. In general, this review highlights the critical role of biomechanical signals in cancer biology from a holistic perspective and underscores the potential of biomechanical interventions as a transformative class of therapeutics. By integrating mechanobiology into the development of cancer treatments, this paper paves the way for more precise and effective strategies that leverage the inherent physical properties of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Tao Shen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lei Ye
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Siran Chu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Hangzhou, 310006, China
| | - Jiale Qin
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Hangzhou, 310006, China
| |
Collapse
|
3
|
Yan X, Chen J, Zhou S. Carbon metabolism mechanisms and evolution characteristics analysis of the food-water-energy nexus system under blue-green infrastructure changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175763. [PMID: 39182789 DOI: 10.1016/j.scitotenv.2024.175763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Food, water, and energy comprise a complex system (FWE nexus) that generates much carbon emissions during operation. At the same time, urban blue-green infrastructure (BGI) has a critical carbon sequestration function. This paper combines the functions of the FWE nexus and BGI and uses ecological network analysis (ENA) and the Markov model to measure the carbon metabolism (CM) mechanisms and evolutionary characteristics of BGI and FWE nexus (BGI-FWE nexus) complex systems. The results show that Guangzhou has high carbon emissions, and Zhaoqing and Huizhou have high carbon sequestration. Resident land and industrial and transportation land transfers to different land uses are more likely to produce positive carbon flows, while BGI transfers to other types are more likely to produce negative carbon flows. The study of CM mechanisms reveals a high proportion of competition relationships and a low proportion of mutualism relationships. The ecological utility index (EUI) tends to fall initially and then increase, peaking at 0.84 in 2015-2020, the highest value for the study period. The CM network has less system robustness (SR) and is in an unsustainable state of high redundancy and low efficiency. The mechanism evolution characterization study's findings show a decreased likelihood of remaining original and less stability in the spatial transfer probability matrices of EUI and SR. In this study, we constructed a BGI-FWE nexus research framework based on the different CM functions of BGI and FWE nexus. The research framework contributes to the realization of carbon reduction in the FWE nexus system and is essential for the planning and management of urban BGI.
Collapse
Affiliation(s)
- Xiaodong Yan
- Business School, Hohai University, Nanjing 211100, China
| | - Junfei Chen
- Business School, Hohai University, Nanjing 211100, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China; Jiangsu Research Base of Yangtze Institute for Conservation and High-Quality Development, Nanjing 210098, China.
| | - Shuhan Zhou
- Institute of Cold Regions Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Gao Y, Yin B, Liu X, Wu S. Difunctional Microelectrode Arrays for Single-Cell Electrical Stimulation and pH Detection. Anal Chem 2024; 96:2087-2093. [PMID: 38275169 DOI: 10.1021/acs.analchem.3c04766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Due to its direct effect on biomolecules and cells, electrical stimulation (ES) is now widely used to regulate cell proliferation, differentiation, and neurostimulation and is even used in the clinic for pain relief, treatment of nerve damage, and muscle rehabilitation. Conventional ES is mostly studied on cell populations, but the heterogeneity of cancer cells results in the inability to access the response of individual cells to ES. Therefore, detecting the extracellular pH change (ΔpHe) after ES at the single-cell level is important for the application of ES in tumor therapy. In this study, cellular ΔpHe after periodic impulse electrostimulation (IES) was monitored in situ by using a polyaniline (PANI)-modified gold microelectrode array. The PANI sensor had excellent sensitivity (53.68 mV/pH) and linear correlation coefficient (R2 = 0.999) over the pH range of 5.55-7.41. The cells showed different degrees of ΔpHe after the IES with different intervals and stimulation potential. A shorter pulse interval and a higher stimulation potential could effectively enhance stimulation and increase cellular ΔpHe. At 0.5 V potential stimulation, the cellular ΔpHe increased with decreasing pulse interval. However, if the pulse interval was long enough, even at a higher potential of 0.7 V, there was no significant additional ΔpHe due to the insufficient stimulus strength. Based on the above conclusions, the prepared PANI microelectrode arrays (MEAs) were capable of stimulating and detecting single cells, which contributed to the deeper application of ES in tumor therapy.
Collapse
Affiliation(s)
- Yuan Gao
- School of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Bing Yin
- School of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiaobo Liu
- School of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shuo Wu
- School of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
5
|
Ju X, Kong J, Qi G, Hou S, Diao X, Dong S, Jin Y. A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment. Nat Commun 2024; 15:762. [PMID: 38278810 PMCID: PMC10817919 DOI: 10.1038/s41467-024-45070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
A wearable biological patch capable of producing multiple responses to light and electricity without interfering with daily activities is highly desired for skin cancer treatment, but remains a key challenge. Herein, the skin-mountable electrostimulation-augmented photothermal patch (eT-patch) comprising transparent ionic gel with MXene (Ti3C2Tx) doping is developed and applied for the treatment of melanoma under photostimulation at 0.5 W/cm2. The eT-patch designed has superior photothermal and electrical characteristics owing to ionic gels doped with MXene which provides high photothermal conversion efficiency and electrical conductivity as a medium. Simultaneously, the ionic gel-based eT-patch having excellent optical transparency actualizes real-time observation of skin response and melanoma treatment process under photothermal and electrical stimulation (PES) co-therapy. Systematical cellular study on anti-tumor mechanism of the eT-patch under PES treatment revealed that eT-patch under PES treatment can synergically trigger cancer cell apoptosis and pyroptosis, which together lead to the death of melanoma cells. Due to the obvious advantages of relatively safe and less side effects in healthy organs, the developed eT-patch provides a promising cost-effective therapeutic strategy for skin tumors and will open a new avenue for biomedical applications of ionic gels.
Collapse
Affiliation(s)
- Xingkai Ju
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiao Kong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shuping Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|