1
|
Mao YA, Shi X, Sun P, Spanos M, Zhu L, Chen H, Wang X, Su C, Jin Y, Wang X, Chen X, Xiao J. Nanomedicines for cardiovascular diseases: Lessons learned and pathways forward. Biomaterials 2025; 320:123271. [PMID: 40117750 DOI: 10.1016/j.biomaterials.2025.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular diseases (CVDs) are vital causes of global mortality. Apart from lifestyle intervention like exercise for high-risk groups or patients at early period, various medical interventions such as percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) surgery have been clinically used to reduce progression and prevalence of CVDs. However, invasive surgery risk and severe complications still contribute to ventricular remodeling, even heart failure. Innovations in nanomedicines have fueled impressive medical advances, representing a CVD therapeutic alternative. Currently, clinical translation of nanomedicines from bench to bedside continues to suffer unpredictable biosafety and orchestrated behavior mechanism, which, if appropriately addressed, might pave the way for their clinical implementation in the future. While state-of-the-art advances in CVDs nanomedicines are widely summarized in this review, the focus lies on urgent preclinical concerns and is transitioned to the ongoing clinical trials including stem cells-based, extracellular vesicles (EV)-based, gene, and Chimeric Antigen Receptor T (CAR T) cell therapy whose clinically applicable potential in CVD therapy will hopefully provide first answers. Overall, this review aims to provide a concise but comprehensive understanding of perspectives and challenges of CVDs nanomedicines, especially from a clinical perspective.
Collapse
Affiliation(s)
- Yi-An Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiaozhou Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Pingyuan Sun
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiya Wang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yanjia Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou, 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Liu B, Zhang L, Guan X, Liu J, Shou W, Chen X, Li X, Cao D. Interpenetrating network hydrogel-loaded embryonic stem cell-derived endocardial cells improves cardiac function after myocardial infarction. J Transl Med 2025; 23:603. [PMID: 40448180 DOI: 10.1186/s12967-025-06603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND With an in-depth understanding of cardiac cell differentiation, cell therapy derived from stem cells has shown promising therapeutic effects in the treatment of myocardial infarction (MI). Although many types of cardiac or noncardiac cells have been found to play protective roles in MI, the specific role of endocardial cells (ECCs) in MI has not been reported. METHODS The current study was designed to determine whether human embryonic stem cell (hESC)-derived endocardial cells (hESC-ECCs) could be protective against MI. We first developed a cell delivery system by constructing a photosensitive interpenetrating network hydrogel consisting of gelatin methacryloyl (GelMA) and silk fibroin methacryloyl (SilMA). The sorted hESC-ECCs were loaded into the delivery system and then injected into the pericardium cavity of the MI rats. RESULTS These results show that the cell delivery system has good biocompatibility. Moreover, the delivered endocardial cells improved cardiac function and delayed capillary atrophy after MI. Further mechanistic analysis revealed that hESC-ECCs protect the mitochondria of cardiomyocytes from damage under oxidative stress and potentially promote the angiogenesis of cardiac endothelial cells. CONCLUSION Our results demonstrated that hESC-ECCs have the potential to serve as a cell therapy strategy for MI treatment by maintaining cardiomyocyte survival and facilitating angiogenesis.
Collapse
Affiliation(s)
- Boshi Liu
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Laiping Zhang
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiao Guan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, PR China
| | - Jie Liu
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Weinian Shou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Xin Chen
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Xiaohui Li
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Dayan Cao
- Institute of Materia Medica, Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, PR China.
| |
Collapse
|
3
|
Li JZ, Zhan X, Sun HB, Chi C, Zhang GF, Liu DH, Zhang WX, Sun LH, Kang K. L-arginine from elder human mesenchymal stem cells induces angiogenesis and enhances therapeutic effects on ischemic heart diseases. World J Stem Cells 2025; 17:103314. [PMID: 40308887 PMCID: PMC12038462 DOI: 10.4252/wjsc.v17.i4.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapy may be a future treatment for myocardial infarction (MI). However, few studies have assessed the therapeutic efficacy of adipose tissue-derived MSCs (ADSCs) obtained from elderly patients in comparison to that of bone marrow-derived MSCs (BMSCs) from the same elderly patients. The metabolomics results revealed a significantly higher L-arginine excretion from aged ADSCs vs BMSCs in hypoxic conditions. This was hypothesized as the possible mechanism that ADSCs showed an improved angiogenic capacity and enhanced the therapeutic effect on ischemic heart diseases. AIM To investigate the role of L-arginine in enhancing angiogenesis and cardiac protection by comparing ADSCs and BMSCs in hypoxic conditions for MI therapy. METHODS Metabolomic profiling of supernatants from ADSCs and BMSCs under hypoxic conditions were performed. Then, arginine succinate lyase (ASL) overexpression and short hairpin RNA plasmid were prepared and transfected into BMSCs. Subsequently, in vitro wound healing and Matrigel tube formation assays were used to verify the proangiogenetic effects of ADSC positive control, BMSCs, BMSCs ASL short hairpin RNA, BMSCs ASL overexpressed, and BMSC negative control on cocultured human umbilical vein endothelial cells. All sample sizes, which were determined to meet the statistical requirements and be greater than 3, were established on the basis of previously established literature standards. The protein levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor, etc. were detected. In vivo, the five types of cells were transplanted into the infarcted area of MI rat models, and the therapeutic effects of the transplanted cells were evaluated by echocardiography on cardiac function and by Masson's staining/terminal-deoxynucleotidyl transferase mediated nick end labeling assay/immunofluorescence detection on the infarcted area. RESULTS Metabolomic analysis showed that L-arginine was increased. Using ASL gene transfection, we upregulated the production of L-arginine in aged patient-derived BMSCs in vitro, which in turn enhanced mitogen activated protein kinase and VEGF receptor 2 protein expression, VEGF and basic fibroblast growth factor secretion, and inductive angiogenesis to levels comparable to donor-matched ADSCs. After the cell transplantation in vivo, the modified BMSCs as well as ADSCs exhibited decreased apoptotic cells, enhanced vessel formation, reduced scar size, and improved cardiac function in the MI rat model. The therapeutic efficacy decreased by inhibiting L-arginine synthesis. CONCLUSION L-arginine is important for inducing therapeutic angiogenesis for ADSCs and BMSCs in hypoxic conditions. ADSCs have higher L-arginine secretion, which leads to better angiogenesis induction and cardiac protection. ADSC transplantation is a promising autologous cell therapy strategy in the context of the present aging society.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710014, Shaanxi Province, China
| | - Xu Zhan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hao-Bo Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chao Chi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guo-Fu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dong-Hui Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Xi Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
4
|
Zhang L, Jiang Y, Jia W, Le W, Liu J, Zhang P, Yang H, Liu Z, Liu Y. Modelling myocardial ischemia/reperfusion injury with inflammatory response in human ventricular cardiac organoids. Cell Prolif 2025; 58:e13762. [PMID: 39377453 PMCID: PMC11882745 DOI: 10.1111/cpr.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Current therapeutic drug exploring targeting at myocardial ischemia/reperfusion (I/R) injury is limited due to the lack of humanized cardiac models that resemble myocardial damage and inflammatory response. Herein, we develop ventricular cardiac organoids from human induced pluripotent stem cells (hiPSCs) and simulate I/R injury by hypoxia/reoxygenation (H/R), which results in increased cardiomyocytes apoptosis, elevated oxidative stress, disrupted morphological structure and decreased beat amplitude. RNA-seq reveals a potential role of type I interferon (IFN-I) in this I/R injury model. We then introduce THP-1 cells and reveal inflammatory responses between monocytes/macrophages and H/R-induced ventricular cardiac organoids. Furthermore, we demonstrate Anifrolumab, an FDA approved antagonist of IFN-I receptor, effectively decreases IFN-I secretion and related gene expression, attenuates H/R-induced inflammation and oxidative stress in the co-culture system. This study advances the modelling of myocardial I/R injury with inflammatory response in human cardiac organoids, which provides a reliable platform for preclinical study and drug screening.
Collapse
Affiliation(s)
- Laihai Zhang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wenwen Jia
- National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jie Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Peng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)ShanghaiChina
| | - Huangtian Yang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute for Regenerative Medicine, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)ShanghaiChina
| | - Zhongmin Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute for Regenerative Medicine, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| | - Yang Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute for Regenerative Medicine, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
5
|
Wang F, Zou X, Zheng H, Kong T, Pei D. Human epicardial organoids from pluripotent stem cells resemble fetal stage with potential cardiomyocyte- transdifferentiation. Cell Biosci 2025; 15:4. [PMID: 39825425 PMCID: PMC11740338 DOI: 10.1186/s13578-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells. Epicardium could also integrate and invade into mouse heart with SNAI1 expression, and give birth to numerous cardiomyocyte-like cells. Single-cell RNA seq unveils the heterogeneity and multipotency exhibited by epicardium-derived-cells and fetal-like epicardium. Meanwhile, extracellular matrix and growth factors secreted by epicardial organoid mimics the ecology of subepicardial space between the epicardium and cardiomyocytes. As such, this epicardial organoid offers a unique ground for investigating and exploring the potential of epicardium in heart development and regeneration.
Collapse
Affiliation(s)
- Fanwen Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xinle Zou
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Huilin Zheng
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tianci Kong
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
6
|
Feng Y, Xin Y, Tang W, Zhang P, Jiang Y, Li H, Gong Y, Chen F, Xu Z, Liu Z, Gao L. Repeat administration of human umbilical cord mesenchymal stem cells improves left ventricular diastolic function in mice with heart failure with preserved ejection fraction. Biochem Biophys Res Commun 2024; 737:150525. [PMID: 39142139 DOI: 10.1016/j.bbrc.2024.150525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Currently, no therapy is proven to effectively improve heart failure with preserved ejection fraction (HFpEF). Although stem cell therapy has demonstrated promising results in treating ischemic heart disease, the effectiveness of treating HFpEF with human umbilical cord mesenchymal stem cells (hucMSCs) remains unclear. To answer this question, we administered hucMSCs intravenously (i.v.), either once or repetitively, in a mouse model of HFpEF induced by a high-fat diet and NG-nitroarginine methyl ester hydrochloride. hucMSC treatment improved left ventricular diastolic dysfunction, reduced heart weight and pulmonary edema, and attenuated cardiac modeling (inflammation, interstitial fibrosis, and hypertrophy) in HFpEF mice. Repeat hucMSC administration had better outcomes than a single injection. In vitro, hucMSC culture supernatants reduced maladaptive remodeling in neonatal-rat cardiomyocytes. Ribonucleic acid sequencing and protein level analysis of left ventricle (LV) tissues suggested that hucMSCs activated the protein kinase B (Akt)/forkhead box protein O1 (FoxO1) signaling pathway to treat HFpEF. Inhibition of this pathway reversed the efficacy of hucMSC treatment. In conclusion, these findings indicated that hucMSCs could be a viable therapeutic option for HFpEF.
Collapse
Affiliation(s)
- Yunzhen Feng
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanfeng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, China
| | - Pengfei Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Yun Jiang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Hao Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Yanshan Gong
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Feng Chen
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, China
| | - Zhifeng Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Zhongmin Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China; Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| | - Ling Gao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| |
Collapse
|
7
|
Zhao Q, Pedroza A, Sharma D, Gu W, Dalal A, Weldy C, Jackson W, Li DY, Ryan Y, Nguyen T, Shad R, Palmisano BT, Monteiro JP, Worssam M, Berezwitz A, Iyer M, Shi H, Kundu R, Limbu L, Kim JB, Kundaje A, Fischbein M, Wirka R, Quertermous T, Cheng P. A cell and transcriptome atlas of the human arterial vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612293. [PMID: 39314359 PMCID: PMC11419041 DOI: 10.1101/2024.09.10.612293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Vascular beds show different propensities for different vascular pathologies, yet mechanisms explaining these fundamental differences remain unknown. We sought to build a transcriptomic, cellular, and spatial atlas of human arterial cells across multiple different arterial segments to understand this phenomenon. We found significant cell type-specific segmental heterogeneity. Determinants of arterial identity are predominantly encoded in fibroblasts and smooth muscle cells, and their differentially expressed genes are particularly enriched for vascular disease-associated loci and genes. Adventitial fibroblast-specific heterogeneity in gene expression coincides with numerous vascular disease risk genes, suggesting a previously unrecognized role for this cell type in disease risk. Adult arterial cells from different segments cluster not by anatomical proximity but by embryonic origin, with differentially regulated genes heavily influenced by developmental master regulators. Non-coding transcriptomes across arterial cells contain extensive variation in lnc-RNAs expressed in cell type- and segment-specific patterns, rivaling heterogeneity in protein coding transcriptomes, and show enrichment for non-coding genetic signals for vascular diseases.
Collapse
|
8
|
Han D, Wang F, Shen D. Nanomedicines as Guardians of the Heart: Unleashing the Power of Antioxidants to Alleviate Myocardial Ischemic Injury. Theranostics 2024; 14:5336-5370. [PMID: 39267789 PMCID: PMC11388064 DOI: 10.7150/thno.99961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Ischemic heart disease (IHD) is increasingly recognized as a significant cardiovascular disease with a growing global incidence. Interventions targeting the oxidative microenvironment have long been pivotal in therapeutic strategies. However, many antioxidant drugs face limitations due to pharmacokinetic and delivery challenges, such as short half-life, poor stability, low bioavailability, and significant side effects. Fortunately, nanotherapies exhibit considerable potential in addressing IHD. Nanomedicines offer advantages such as passive/active targeting, prolonged circulation time, enhanced bioavailability, and diverse carrier options. This comprehensive review explores the advancements in nanomedicines for mitigating IHD through oxidative stress regulation, providing an extensive overview for researchers in the field of antioxidant nanomedicines. By inspiring further research, this study aims to accelerate the development of novel therapies for myocardial injury.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|