1
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Zeng Y, Jiang X. Lactylation: From Homeostasis to Pathological Implications and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70226. [PMID: 40443721 PMCID: PMC12122191 DOI: 10.1002/mco2.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Lactylation, a recently identified post-translational modification, represents a groundbreaking addition to the epigenetic landscape, revealing its pivotal role in gene regulation and metabolic adaptation. Unlike traditional modifications, lactylation directly links metabolic intermediates, such as lactate, to protein function and cellular behavior. Emerging evidence highlights the critical involvement of lactylation in diverse biological processes, including immune response modulation, cellular differentiation, and tumor progression. However, its regulatory mechanisms, biological implications, and disease associations remain poorly understood. This review systematically explores the enzymatic and nonenzymatic mechanisms underlying protein lactylation, shedding light on the interplay between cellular metabolism and epigenetic control. We comprehensively analyze its biological functions in normal physiology, such as immune homeostasis and tissue repair, and its dysregulation in pathological contexts, including cancer, inflammation, and metabolic disorders. Moreover, we discuss advanced detection technologies and potential therapeutic interventions targeting lactylation pathways. By integrating these insights, this review aims to bridge critical knowledge gaps and propose future directions for research. Highlighting lactylation's multifaceted roles in health and disease, this review provides a timely resource for understanding its clinical implications, particularly as a novel target for precision medicine in metabolic and oncological therapies.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of Hematologythe Second Hospital Affiliated to Kunming Medical UniversityKunmingChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yong Zeng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Cheng S, Xiao X, Wang D, Wang X, Yang M. Lactate and lactylation in liver diseases: energy metabolism, inflammatory immunity and tumor microenvironment. Front Immunol 2025; 16:1581582. [PMID: 40421024 PMCID: PMC12104064 DOI: 10.3389/fimmu.2025.1581582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Liver diseases pose a significant threat to human health. Lactate, a byproduct of glycolysis, serves various biological functions, including acting as an energy source, a signaling molecule, and a substrate for lactylation. Lactylation is a novel lactate-dependent post-translational modification that plays a role in tumor proliferation, the regulation of immune cell function, and the modulation of gene expression. In this paper, we summarize the roles of lactate and lactylation in energy metabolism, inflammatory immunity, and the tumor microenvironment, while also elucidating recent research advancements regarding lactate and lactylation in the context of hepatic fibrosis, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Furthermore, lactate and lactylation are proposed as promising new targets for the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Minlan Yang
- School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
3
|
Yang X, Liu R, Jin J, Xv J, Wu J, Jin Y, Zhang Y, Chen S, Sun B, Lin MB, Reziya W, Li J, Sun H, Wang H, Yu B, Fan G, Liu W. Cancer stem cells-derived exosomal TSPAN8 enhances non-stem cancer cells stemness and promotes malignant progression in PDAC. Oncogene 2025:10.1038/s41388-025-03412-1. [PMID: 40251391 DOI: 10.1038/s41388-025-03412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
Cancer stem cells (CSC) play a crucial role in pancreatic ductal adenocarcinoma (PDAC) progression and therapeutic resistance. However, the underlying mechanisms and potential targeted treatment strategies remain poorly understood. In this study, we employed single-cell RNA sequencing and exosomal profiling, identifying TSPAN8-enriched exosomes secreted by CSC, which are associated with poor survival rates in PDAC patients. They enhanced stemness in the surrounding non-stem cancer cells (NSCC) by activating the Sonic Hedgehog (Hh) signalling pathway. This exosomal TSPAN8-Hh signalling axis significantly increases the clonogenic ability, invasiveness, and chemoresistance of PDAC cells. Furthermore, TSPAN8-enriched exosomes promoted a higher stem cell frequency, tumourigenicity, and tumour growth rate in vivo, confirming their critical roles in PDAC malignant progression. Our findings underscore the importance of TSPAN8-enriched exosomes for CSC-NSCC communication during PDAC progression.
Collapse
Affiliation(s)
- Xiaoyi Yang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Precision Research Center for Refractory Diseases, Shanghai Jiao Tong University Pioneer Research Institute for Molecular and Cell Therapies, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Rujiao Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juan Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxuan Xv
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yijie Jin
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaya Zhang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Chen
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mou-Bin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wumaier Reziya
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjian Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Sun
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongxia Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Guangjian Fan
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Precision Research Center for Refractory Diseases, Shanghai Jiao Tong University Pioneer Research Institute for Molecular and Cell Therapies, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenting Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Kim EY, Abides J, Keller CR, Martinez SR, Li W. Tumor Microenvironment Lactate: Is It a Cancer Progression Marker, Immunosuppressant, and Therapeutic Target? Molecules 2025; 30:1763. [PMID: 40333742 PMCID: PMC12029365 DOI: 10.3390/molecules30081763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/09/2025] Open
Abstract
The "Warburg effect" is a term coined a century ago for the preferential use of glycolysis over aerobic respiration in tumor cells for energy production, even under aerobic conditions. Although this is a less efficient mechanism of generating energy from glucose, aerobic glycolysis, in addition to the canonical anaerobic glycolysis, is an effective means of lactate production. The abundant waste product, lactate, yielded by the dual glycolysis in a tumor, has been discovered to be a major biomolecule that drives cancer progression. Lactate is a metabolic energy source that, via cell membrane lactate transporters, shuttles in and out of cancer cells as well as cancer cell-associated stromal cells and immune cells within the tumor microenvironment (TME). Additionally, lactate serves as a pH tuner, signaling ligand and transducer, epigenetic and gene transcription regulator, TME modifier, immune suppressor, chemoresistance modulator, and prognostic marker. With such broad functionalities, the production-consumption-reproduction of TME lactate fuels tumor growth and dissemination. Here, we elaborate on the lactate sources that contribute to the pool of lactate in the TME, the functions of TME lactate, the influence of the TME lactate on immune cell function and local tissue immunity, and anticancer therapeutic approaches adopting lactate manipulations and their efficacies. By scrutinizing these properties of the TME lactate and others that have been well addressed in the field, it is expected that a better weighing of the influence of the TME lactate on cancer development, progression, prognosis, and therapeutic efficacy can be achieved.
Collapse
Affiliation(s)
- Eugene Y. Kim
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Joyce Abides
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Steve R. Martinez
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Providence Regional Cancer Partnership, Providence Regional Medical Center, Everett, WA 98201, USA
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| |
Collapse
|
5
|
Chen G, Liu J, Guo Y, Sun P. Mechanisms for Regulatory Effects of Exercise on Metabolic Diseases from the Lactate-Lactylation Perspective. Int J Mol Sci 2025; 26:3469. [PMID: 40331975 PMCID: PMC12027343 DOI: 10.3390/ijms26083469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic diseases, including cardiovascular diseases, type 2 diabetes mellitus (T2DM), osteoporosis, and non-alcoholic fatty liver disease (NAFLD), constitute a major global health burden associated with chronic morbidity and mortality. Lactate, once considered as a metabolic byproduct, has emerged as a key regulator of cellular reprogramming through lactylation, a novel post-translational modification (PTM) that dynamically couples metabolic flux to chromatin remodeling. Lactylation exerts dual regulatory roles as a signaling molecule via GPR81/GPR4-mediated pathways and as a substrate for the covalent modification of histones and metabolic enzymes. Pathologically, chronic hyperlactatemia suppresses mitochondrial biogenesis, driving metabolic cardiomyopathy through the epigenetic silencing of oxidative metabolism genes. Conversely, exercise-induced lactate surges transiently enhance insulin sensitivity via AMPK/PGC-1α/GLUT4 signaling, resolve inflammation through GPR81-mediated M2 macrophage polarization, and restore mitochondrial function via lactylation-dependent pathways. This review delineates lactylation as a spatiotemporal rheostat: chronic dysregulation perpetuates metabolic disorders, whereas acute exercise-mediated lactylation remodels transcriptional networks to restore metabolic homeostasis. Future research should integrate multiomics to clarify lactylation's spatiotemporal dynamics, tissue-specific thresholds, metabolism-immunity interactions, and metabolic-epigenetic crosstalk for the precision management of metabolic diseases.
Collapse
Affiliation(s)
- Guannan Chen
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (G.C.); (J.L.); (Y.G.)
| | - Jinchao Liu
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (G.C.); (J.L.); (Y.G.)
| | - Yilan Guo
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (G.C.); (J.L.); (Y.G.)
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (G.C.); (J.L.); (Y.G.)
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J, Mei Q. HDAC2-Mediated METTL3 Delactylation Promotes DNA Damage Repair and Chemotherapy Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413121. [PMID: 39950833 PMCID: PMC11984901 DOI: 10.1002/advs.202413121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Indexed: 04/12/2025]
Abstract
The current treatment of triple-negative breast cancer (TNBC) is still primarily based on platinum-based chemotherapy. However, TNBC cells frequently develop resistance to platinum and experience relapse after drug withdrawal. It is crucial to specifically target and eliminate cisplatin-tolerant cells after platinum administration. Here, it is reported that upregulated N 6-methyladenosine (m6A) modification drives the development of resistance in TNBC cells during cisplatin treatment. Mechanistically, histone deacetylase 2 (HDAC2) mediates delactylation of methyltransferase-like 3 (METTL3), facilitating METTL3 interaction with Wilms'-tumor-1-associated protein and subsequently increasing m6A of transcript-associated DNA damage repair. This ultimately promotes cell survival under cisplatin. Furthermore, pharmacological inhibition of HDAC2 using Tucidinostat can enhance the sensitivity of TNBC cells to cisplatin therapy. This study not only elucidates the biological function of lactylated METTL3 in tumor cells but also highlights its negative regulatory effect on cisplatin resistance. Additionally, it underscores the nonclassical functional mechanism of Tucidinostat as a HDAC inhibitor for improving the efficacy of cisplatin against TNBC.
Collapse
Affiliation(s)
- Xiaoniu He
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian Li
- Institute of Molecular Medicine and Experimental ImmunologyUniversity Clinic of Rheinische Friedrich‐Wilhelms‐University53127BonnGermany
| | - Yu Li
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Sijie Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Xia Yan
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Zhangrong Xie
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Guoan Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Jianbo Song
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Qi Mei
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
7
|
Yi D, Zhou K, Pan Y, Cai H, Huang P. The lactylation modification of proteins plays a critical role in tumor progression. Front Oncol 2025; 15:1530567. [PMID: 40190564 PMCID: PMC11970033 DOI: 10.3389/fonc.2025.1530567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Lactylation modifications have been shown to be a novel type of protein post-translational modifications (PTMs), providing a new perspective for understanding the interaction between cellular metabolic reprogramming and epigenetic regulation. Studies have shown that lactylation plays an important role in the occurrence, development, angiogenesis, invasion and metastasis of tumors. It can not only regulate the phenotypic expression and functional polarization of immune cells, but also participate in the formation of tumor drug resistance through a variety of molecular mechanisms. In this review, we review the latest research progress of lactylation modification in tumors, focusing on its mechanism of action in angiogenesis, immune cell regulation in tumor microenvironment (TME), and tumor drug resistance, aiming to provide a theoretical basis and research ideas for the discovery of new therapeutic targets and methods. Through the in-depth analysis of lactylation modification, it is expected to open up a new research direction for tumor treatment and provide potential strategies for overcoming tumor drug resistance and improving clinical efficacy.
Collapse
Affiliation(s)
- Dehao Yi
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Zhou
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yinlong Pan
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan Huang
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Huang M, Jin Y, Zhao D, Liu X. Potential role of lactylation in intrinsic immune pathways in lung cancer. Front Pharmacol 2025; 16:1533493. [PMID: 40166469 PMCID: PMC11955616 DOI: 10.3389/fphar.2025.1533493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Lung cancer, one of the most lethal malignancies, has seen its therapeutic strategies become a focal point of significant scientific attention. Intrinsic immune signaling pathways play crucial roles in anti-tumor immunity but face clinical application challenges despite promising preclinical outcomes. Lactylation, an emerging research focus, may influences lung cancer progression by modulating the functions of histones and non-histone proteins. Recent findings have suggested that lactylation regulates key intrinsic immune molecules, including cGAS-STING, TLR, and RIG-I, thereby impacting interferon expression. However, the precise mechanisms by which lactylation governs intrinsic immune signaling in lung cancer remain unclear. This review presents a comprehensive and systematic analysis of the relationship between lactylation and intrinsic immune signaling pathways in lung cancer and emphasizes the innovative perspective of linking lactylation-mediated epigenetic modifications with immune regulation. By thoroughly examining current research findings, this review uncovers potential regulatory mechanisms and highlights the therapeutic implications of targeting lactylation in lung cancer. Future investigations into the intricate interactions between lactylation and intrinsic immunity are anticipated to unveil novel therapeutic targets and strategies, potentially improving patient survival outcomes.
Collapse
Affiliation(s)
- Mengdie Huang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Jin
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Zhao
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Zhang H, Liu Y, Li X, Ding C, Xia C, Huang H, Liu H, Chen J. A novel lactylation-related gene signature to predict prognosis and treatment response in lung adenocarcinoma. Front Oncol 2025; 15:1549724. [PMID: 40161374 PMCID: PMC11949803 DOI: 10.3389/fonc.2025.1549724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Background Lactylation, a novel post-translational modification, has emerged as a critical regulatory mechanism in various biological processes, including tumor progression. However, its role and associated gene signatures in lung adenocarcinoma (LUAD) remain unclear. Methods RNA sequencing data of LUAD patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Unsupervised clustering was used to identify lactylation-related genes. A risk prognostic model was constructed using least absolute shrinkage and selection operator regression analysis and subsequently validated. A nomogram was then employed to optimize the clinical applicability of the risk score. Additionally, various algorithms were used to explore the relationship between the risk score and immune infiltration levels, with model genes analyzed based on single-cell sequencing. The effects of RCCD1 knockdown on LUAD cell proliferation and migration were evaluated through CCK8 and transwell assays. Results Higher risk scores were associated with poorer overall survival prognosis. Immune analysis revealed that the risk score may play a role in regulating the tumor microenvironment. Additionally, these risk scores were found to be associated with chemotherapy drug sensitivity. A series of experiments further demonstrated that RCCD1 promotes LUAD cell proliferation and migration in vitro. Conclusion This study highlights the critical role of lactylation-related gene signatures in LUAD and their association with immune cell infiltration, providing insights into potential therapeutic targets and biomarkers for clinical application.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ding
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunqiu Xia
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Shi CM, Wang QC, Li XL, Yang YH, Tang XY, Wu Y, Ding T, Zhang XT, Zhang ZY, Han R, Kong J, Liu JF, Yang JT. Global Profiling of Protein Lactylation in Human Hippocampi. Proteomics Clin Appl 2025; 19:e202400061. [PMID: 39610256 DOI: 10.1002/prca.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The hippocampus has long been associated with cognition and memory function, the implications of lysine lactylation (Kla), a recently identified post-translational modification (PTM), in the role of the hippocampus remain largely unexplored. EXPERIMENTAL DESIGN An LC-MS/MS bottom-up proteomics analysis of three human hippocampal tissue samples was applied to profile the lactylation map in human hippocampi under normal physiological conditions. RESULTS We identified 2579 quantifiable Class I lactylated sites in 853 proteins, of which contained four types of modification motifs. Cellular localization analysis implies that a majority of lactylated proteins were distributed in the cytoplasm. Functional enrichment analysis showed that lactylated proteins were mainly involved in energy metabolic pathways. In addition, we found that the lactylation on histones exhibits a certain degree of conservation across different tissues. Compared with previously reported lactylation databases, 213 lactylated proteins were identified for the first time in this study. CONCLUSION AND CLINICAL RELEVANCE The first global lactylated proteins atlas of human hippocampi was reported in this study. Our work provides a reliable foundation for further research on lactylation in the hippocampus under physiological conditions.
Collapse
Affiliation(s)
- Chun-Mei Shi
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qiao-Chu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiao-Lu Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ye-Hong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiao-Yue Tang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xu-Tong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhi-Yi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ron Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jie Kong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiang-Feng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jun-Tao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Kiełbowski K, Bakinowska E, Becht R, Pawlik A. Metabolism of Tryptophan, Glutamine, and Asparagine in Cancer Immunotherapy-Synergism or Mechanism of Resistance? Metabolites 2025; 15:144. [PMID: 40137109 PMCID: PMC11944271 DOI: 10.3390/metabo15030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Amino acids are crucial components of proteins, key molecules in cellular physiology and homeostasis. However, they are also involved in a variety of other mechanisms, such as energy homeostasis, nitrogen exchange, further synthesis of bioactive compounds, production of nucleotides, or activation of signaling pathways. Moreover, amino acids and their metabolites have immunoregulatory properties, significantly affecting the behavior of immune cells. Immunotherapy is one of the oncological treatment methods that improves cytotoxic properties of one's own immune system. Thus, enzymes catalyzing amino acid metabolism, together with metabolites themselves, can affect immune antitumor properties and responses to immunotherapy. In this review, we will discuss the involvement of tryptophan, glutamine, and asparagine metabolism in the behavior of immune cells targeted by immunotherapy and summarize results of the most recent investigations on the impact of amino acid metabolites on immunotherapy.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| |
Collapse
|
12
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 PMCID: PMC11814237 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
13
|
Shi P, Ma Y, Zhang S. Non-histone lactylation: unveiling its functional significance. Front Cell Dev Biol 2025; 13:1535611. [PMID: 39925738 PMCID: PMC11802821 DOI: 10.3389/fcell.2025.1535611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Lactylation, a newly discovered protein posttranslational modification (PTM) in 2019, primarily occurs on lysine residues. Lactylation of histones was initially identified, and subsequent studies have increasingly demonstrated its widespread presence on non-histone proteins. Recently, high-throughput proteomics studies have identified a large number of lactylated proteins and sites, revealing their global regulatory role in disease development. Notably, this modification is catalyzed by lactyltransferase and reversed by delactylase, with numerous new enzymes, such as AARS1/2, reported to be involved. Specifically, these studies have revealed how lactylation exerts its influence through alterations in protein spatial conformation, molecular interactions, enzyme activity and subcellular localization. Indeed, lactylation is implicated in various physiological and pathological processes, including tumor development, cardiovascular and cerebrovascular diseases, immune cell activation and psychiatric disorders. This review provides the latest advancements in research on the regulatory roles of non-histone protein lactylation, highlighting its crucial scientific importance for future studies.
Collapse
Affiliation(s)
- Pusong Shi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongjie Ma
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| | - Shaolu Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| |
Collapse
|
14
|
Deng Z, Zhou F, Li M, Jin W, Yu J, Wang G, Qian K, Ju L, Zhang Y, Xiao Y, Wang X. DLGAP5 enhances bladder cancer chemoresistance by regulating glycolysis through MYC stabilization. Theranostics 2025; 15:2375-2392. [PMID: 39990228 PMCID: PMC11840727 DOI: 10.7150/thno.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: Bladder cancer (BLCA), one of the most lethal urological tumors, exhibits high rates of recurrence and chemoresistance, particularly to gemcitabine (GEM). Understanding the mechanisms of GEM resistance is crucial for improving therapeutic outcomes. Our study investigates the role of DLGAP5 in promoting GEM resistance through modulation of glycolysis and MYC protein stability in BLCA cells. Methods: We utilized various BLCA cell lines and clinical tissue samples to analyze the impact of DLGAP5 on GEM resistance. Through biochemical assays, protein interaction studies, and gene expression analyses, we examined how DLGAP5 interacts with USP11 and MYC, assessed the effects on MYC deubiquitination and stability. The influence of these interactions on glycolytic activity and GEM resistance was also evaluated via mouse subcutaneous xenograft model and spontaneous BLCA model. Results: Our findings indicate that DLGAP5 enhances GEM resistance by stabilizing MYC protein via deubiquitination, a process mediated by USP11. DLGAP5 was found to facilitate the interaction between USP11 and MYC, promoting MYC-driven transcription of DLGAP5 itself, thereby creating a positive feedback loop. This loop leads to sustained MYC accumulation and increased glycolytic activity, contributing to GEM resistance in BLCA cells. Conclusion: The study highlights the critical role of DLGAP5 in regulating MYC protein stability and suggests that disrupting the DLGAP5-USP11-MYC axis may provide a novel therapeutic approach to overcome GEM resistance in BLCA. DLGAP5 represents a potential target for therapeutic intervention aimed at mitigating chemoresistance in bladder cancer BLCA.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Jingtian Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yu Xiao
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Liu Q, Liu Z, Zhang X, Zeng A, Song L. Revisiting of Cancer Immunotherapy: Insight from the Dialogue between Glycolysis and PD-1/PD-L1 Axis in the Tumor Microenvironment. Int J Biol Sci 2025; 21:1202-1221. [PMID: 39897050 PMCID: PMC11781164 DOI: 10.7150/ijbs.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
The interplay between metabolic pathways and immune escape has emerged as a captivating research area in oncobiology. Among these, the Warburg effect stands out as a hallmark metabolic reprogramming in cancer, characterized by elevated glucose utilization and excessive lactic acid production through anaerobic glycolysis. Key glycolytic enzymes not only fulfill the bioenergetic demands of cancer cells but also exhibit moonlighting roles, including regulation of epigenetic modifications, protein kinase activity, and immune escape mechanisms, thereby reshaping the tumor microenvironment. Tumor-specific vascular architecture facilitates lactate accumulation, which drives tumor progression by impairing immune cell function and acting as a signaling molecule to recruit immunosuppressive cells and modulate immune checkpoint pathways. The PD-1/PD-L1 co-stimulatory pathway plays a crucial role in negatively modulating the activation, proliferation, and cytokine secretion by T-lymphocytes. This review primarily focuses on elucidating the regulation and mechanisms underlying PD-1/PD-L1 signaling axis during glycolysis in tumor cells as well as surrounding cells. In the era of precision medicine, there is a particular interest in leveraging 18F-FDG PET/CT imaging as a valuable tool to assess PD-L1 expression status for more targeted therapeutic interventions. Additionally, the development of natural compounds capable of modulating metabolism opens new avenues for metabolism-based immunotherapy, though further studies are required to validate their in vivo efficacy.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Jiang ML, Liu L, Wang Z, Yang X, Lin Z, Jiang R, Zhang CJ, Wang W. Kanglaite alleviates lung squamous cell carcinoma through ferroptosis. Int Immunopharmacol 2025; 144:113616. [PMID: 39579539 DOI: 10.1016/j.intimp.2024.113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Kanglaite, a compound predominantly composed of polyunsaturated fatty acids (PUFAs), has been employed in the clinical treatment of adenocarcinoma non-small cell lung cancer (NSCLC) in China for decades. However, its therapeutic efficacy and specific mechanism in the treatment of squamous NSCLC remains unexplored. In this study, we demonstrate that the co-treatment with ferric ion significantly enhances the cytotoxic effects of kanglaite by inducing ferroptosis in NCL-H1703, a cell line of human lung squamous cell carcinoma. Mechanistic investigations reveal that kanglaite induces mitochondrial dysfunction resulting in reactive oxygen species (ROS) excessive production, which is critical for the induction of ferroptosis. Further analysis shows that kanglaite suppresses the PI3K/AKT signaling pathway, leading to increased IP3 generation. IP3 subsequently binds to and activates IP3R, an endoplasmic reticulum (ER) calcium channel, exacerbating the excessive calcium transfer from the ER to mitochondria. The overloaded mitochondrial calcium contributes to its dysfunction and elevates ROS production. To optimize the synergistic effects of ferric ion and kanglaite, we develop a mesoporous silica-based nanodrug delivery system co-loaded with Kanglaite and Fe3O4, which offers several notable advantages, including reduced drug dosage and a faster therapeutic onset. Finally, in an NCL-H1703 xenograft model, the DMSN/Fe3O4-Kanglaite nanodrug significantly inhibited tumor growth. In conclusion, we identified the function and mechanism of kanglaite in treatment of squamous NSCLC and have developed a DMSN/Fe3O4-Kanglaite nanodrug, providing a superior therapeutic approach for the treatment of squamous NSCLC.
Collapse
Affiliation(s)
- Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Li Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 611731, China
| | - Xue Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiyong Lin
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runqiu Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Cun-Jin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Weiyan Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
17
|
Zhao L, Qi H, Lv H, Liu W, Zhang R, Yang A. Lactylation in health and disease: physiological or pathological? Theranostics 2025; 15:1787-1821. [PMID: 39897556 PMCID: PMC11780532 DOI: 10.7150/thno.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025] Open
Abstract
Lactate is an indispensable substance in various cellular physiological functions and plays regulatory roles in different aspects of energy metabolism and signal transduction. Lactylation (Kla), a key pathway through which lactate exerts its functions, has been identified as a novel posttranslational modification (PTM). Research indicates that Kla is an essential balancing mechanism in a variety of organisms and is involved in many key cellular biological processes through different pathways. Kla is closely related to disease development and represents a potential and important new drug target. In line with existing reports, we searched for newly discovered Kla sites on histone and nonhistone proteins; reviewed the regulatory mechanisms of Kla (particularly focusing on the enzymes directly involved in the reversible regulation of Kla, including "writers" (modifying enzymes), "readers" (modification-binding enzymes), and "erasers" (demodifying enzymes); and summarized the crosstalk between different PTMs to help researchers better understand the widespread distribution of Kla and its diverse functions. Furthermore, considering the "double-edged sword" role of Kla in both physiological and pathological contexts, this review highlights the "beneficial" biological functions of Kla in physiological states (energy metabolism, inflammatory responses, cell fate determination, development, etc.) and its "detrimental" pathogenic or inducive effects on pathological processes, particularly malignant tumors and complex nontumor diseases. We also clarify the molecular mechanisms of Kla in health and disease, and discuss its feasibility as a therapeutic target. Finally, we describe the detection technologies for Kla and their potential applications in diagnosis and clinical settings, aiming to provide new insights for the treatment of various diseases and to accelerate translation from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Lijun Zhao
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi 710032, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Haonan Qi
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Huiying Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wenyue Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui Zhang
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - Angang Yang
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi 710032, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
18
|
Zhang X, Liang C, Wu C, Wan S, Xu L, Wang S, Wang J, Huang X, Xu L. A rising star involved in tumour immunity: Lactylation. J Cell Mol Med 2024; 28:e70146. [PMID: 39417674 PMCID: PMC11483924 DOI: 10.1111/jcmm.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, continuous exploration worldwide has revealed that some metabolites produced during cellular and tissue metabolism can act as signalling molecules to exert different effects on the human body. These metabolites may act as cofactors for proteases or as post-translational modifications linked to proteins. Lactate, a traditional metabolite, is found at high levels in the tumour microenvironment (TME). Many studies have shown that lactate influences tumorigenesis and development via different mechanisms, not only through the metabolic reprogramming of tumours but also through its significant impact on tumour immunity. Previously, tumour cells were reported to use glucose and glutamine to fuel lactate metabolism; however, lactate serves not only as an energy source for tumour cells but also as a precursor substance needed for the post-translational modification of proteins. Recent studies identified a novel form of epigenetic modification, lactate-mediated histone lysine lactylation (Kla) and demonstrated that histone lactylation directly stimulates chromatin after gene transcription; consequently, lactylation has become a popular research topic in recent years. This article focuses on the research progress and application prospects of lactylation in the context of tumour immunity.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Changming Liang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Chengwei Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Senlin Wan
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Lishuai Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Song Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Jiawei Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Xiaoxu Huang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Li Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| |
Collapse
|