1
|
Jameel MI, Duncan L, Mooney K, Anderson JT. Herbivory and water availability interact to shape the adaptive landscape in the perennial forb, Boechera stricta. Evolution 2025; 79:557-573. [PMID: 39713890 PMCID: PMC11965616 DOI: 10.1093/evolut/qpae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Abiotic and biotic factors interact to influence phenotypic evolution; however, identifying the causal agents of selection that drive the evolution and expression of traits remains challenging. In a field common garden, we manipulated water availability and herbivore abundance across 3 years, and evaluated clinal variation in functional traits and phenology, phenotypic plasticity, local adaptation, and selection using diverse accessions of the perennial forb, Boechera stricta. Consistent with expectations, drought stress exacerbated damage from herbivores. We found significant plasticity and genetic clines in foliar and phenological traits. Water availability and herbivory interacted to exert selection, even on traits like flowering duration, which showed no clinal variation. Furthermore, the direction of selection on specific leaf area in response to water availability mirrored the genetic cline and plasticity, suggesting that variation in water levels across the landscape influences the evolution of this trait. Finally, both herbivory and water availability likely contribute to local adaptation. This work emphasizes the additive and synergistic roles of abiotic and biotic factors in shaping phenotypic variation across environmental gradients.
Collapse
Affiliation(s)
- M Inam Jameel
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lisa Duncan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| | - Kailen Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
- Rocky Mountain Biological Laboratory, Gothic, CO, United States
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, United States
- Rocky Mountain Biological Laboratory, Gothic, CO, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Pozzi ACM, Shaw RG, May G. The geographic scale of population-level variation in growth and nodulation differs for two species of prairie clover. AMERICAN JOURNAL OF BOTANY 2025; 112:e16450. [PMID: 39754326 DOI: 10.1002/ajb2.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 01/06/2025]
Abstract
PREMISE Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria. METHODS Seed representing two species, Dalea candida and D. purpurea, from the same five source populations were planted into an experimental site in Minnesota. We assessed variation within and among source populations in plant growth and in numbers of nodules and evaluated the relationship of growth and nodulation levels. RESULTS Plant growth varied among source populations, with greater differences among populations of D. purpurea than of D. candida. We did not detect a relationship between plant growth and distance of source populations from the experimental site. Populations of both species were equally likely to develop nodules at the experimental site, but the numbers of nodules were lowest for the most distantly sourced populations. Plant growth was positively correlated with the number of nodules, and this relationship varied considerably within and among populations. CONCLUSIONS Environmental heterogeneity at local and regional scales maintains substantial levels of genetic variation in plant populations within remnant prairie preserves. Further, association with rhizobia at a restoration site can improve growth of widely sourced plant populations. The in situ maintenance of plant genetic variation and species diversity provides resources for conservation and maintenance of prairie biomes.
Collapse
Affiliation(s)
- Adrien C M Pozzi
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, 69622, France
| | - Ruth G Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
| |
Collapse
|
3
|
Balestrazzi A, Calvio C, Macovei A, Pagano A, Laux P, Moutahir H, Rajjou L, Tani E, Chachalis D, Katsis C, Ghaouti L, Gmouh S, Majid S, Elleuch A, Hanin M, Khemakhem B, El Abed H, Nunes J, Araújo S, Benhamrouche A, Bersi M. Seed quality as a proxy of climate-ready orphan legumes: the need for a multidisciplinary and multi-actor vision. FRONTIERS IN PLANT SCIENCE 2024; 15:1388866. [PMID: 39148611 PMCID: PMC11325182 DOI: 10.3389/fpls.2024.1388866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024]
Abstract
In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the 'orphan' definition suggests, their seed systems are still underestimated and seed production is scanty. Seed priming is an effective, sustainable strategy to boost seed quality in orphan legumes for which up-to-date guidelines are required to guarantee reliable and reproducible results. How far are we along this path? What do we expect from seed priming? This brings to other relevant questions. What is the socio-economic relevance of orphan legumes in the Mediterranean Basin? How to potentiate a broader cultivation in specific regions? The case study of the BENEFIT-Med (Boosting technologies of orphan legumes towards resilient farming systems) project, developed by multidisciplinary research networks, envisions a roadmap for producing new knowledge and innovative technologies to improve seed productivity through priming, with the long-term objective of promoting sustainability and food security for/in the climate-sensitive regions. This review highlights the existing drawbacks that must be overcome before orphan legumes could reach the state of 'climate-ready crops'. Only by the integration of knowledge in seed biology, technology and agronomy, the barrier existing between research bench and local agricultural fields may be overcome, generating high-impact technical innovations for orphan legumes. We intend to provide a powerful message to encourage future research in line with the United Nations Agenda 2030 for Sustainable Development.
Collapse
Affiliation(s)
- Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Patrick Laux
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Hassane Moutahir
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Loїc Rajjou
- Université Paris-Saclay, National Research Institute for Agriculture, Food and the Environment (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Dimosthenis Chachalis
- Department of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | | | - Lamiae Ghaouti
- Department of Plant Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Said Gmouh
- Laboratory Laboratory of Engineering and Materials (LIMAT), Faculty of Sciences Ben M'sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Sanaa Majid
- Laboratory GeMEV, Faculty of Sciences Aïn Chock, University Hassan II of Casablanca, Casablanca, Morocco
| | - Amine Elleuch
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Moez Hanin
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Bassem Khemakhem
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Hanen El Abed
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Joao Nunes
- Center Bio R&D Unit, Association BLC3-Technology and Innovation Campus, Oliveira do Hospital, Portugal
| | - Susana Araújo
- Center Bio R&D Unit, Association BLC3-Technology and Innovation Campus, Oliveira do Hospital, Portugal
| | - Aziz Benhamrouche
- Institute of Architecture and Earth Science, University Ferhat Abbas-Setif 1, Setif, Algeria
| | - Mohand Bersi
- Institute of Architecture and Earth Science, University Ferhat Abbas-Setif 1, Setif, Algeria
| |
Collapse
|
4
|
Christie K, Pierson NR, Holeski LM, Lowry DB. Resurrected seeds from herbarium specimens reveal rapid evolution of drought resistance in a selfing annual. AMERICAN JOURNAL OF BOTANY 2023; 110:e16265. [PMID: 38102863 DOI: 10.1002/ajb2.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
PREMISE Increased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. METHODS We utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations of Plantago patagonica from the semi-arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. RESULTS Descendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above- and below-ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. CONCLUSIONS Our results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi-arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Natalie R Pierson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|