1
|
Saenz Hinojosa S, Adrian Jinam T, Hosomichi K, Romero VI. HLA allelic diversity in the Waorani population of Ecuador: Its significance to their ancestry and migration. Hum Immunol 2024; 85:110771. [PMID: 38443236 DOI: 10.1016/j.humimm.2024.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
The Waorani, an isolated indigenous tribe in Ecuador, have long been characterized by limited genetic diversity, with few studies delving into their genetic background. Human Leukocyte Antigen (HLA) genes which are located in the human major histocompatibility complex (MHC) provides valuable insights into population evolution due to its highly polymorphic nature. However, little is known about the HLA diversity and ancestry of the Waorani population. In this study, we sequenced eight HLA genes using Next Generation Sequencing (NGS) from 134 Waorani individuals and obtained up to four-field HLA allele resolution. Cluster and phylogenetic analysis show that the Waorani are genetically distant from other Ecuador populations, but instead show genetic affinities with the Puyanawa and Terena tribes from Brazil, as well as the Mixe tribe from Mexico. The identification of alleles common within the Waorani population, previously linked to specific health conditions, notably paves the way for future association analyses. This extensive study, employing Next-Generation Sequencing (NGS) technology, significantly enriches the sparse and segmented understanding of HLA diversity in the South American region. Our findings enhance the global comprehension of human genetic diversity and underscore the value of studying indigenous populations. Such research is vital for deepening our insights into human migration patterns and evolutionary processes.
Collapse
Affiliation(s)
| | - Timothy Adrian Jinam
- Department of Para-Clinical Sciences, Faculty of Medicine & Health Sciences, University Malaysia Sarawak, Malaysia
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Vanessa I Romero
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador.
| |
Collapse
|
2
|
Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Tamariz L, Lister A, Baca JC, Norris A, Adana-Diaz L. Potential research ethics violations against an indigenous tribe in Ecuador: a mixed methods approach. BMC Med Ethics 2020; 21:100. [PMID: 33069227 PMCID: PMC7568418 DOI: 10.1186/s12910-020-00542-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
Background Biomedical and ethnographic studies among indigenous people are common practice in health and geographical research. Prior health research misconduct has been documented, particularly when obtaining genetic material. The objective of this study was to crossmatch previously published data with the perceptions of the Waorani peoples about the trading of their genetic material and other biological samples. Methods We conducted a mixed methods study design using a tailored 15-item questionnaire in 72 participants and in-depth interviews in 55 participants belonging to 20 Waorani communities about their experiences and perceptions of participating in biomedical research projects. Additionally, we conducted a systematic review of the literature in order to crossmatch the published results of studies stating the approval of an ethics committee and individual consent within their work. Results A total of 40 men (60%) and 32 women (40%), with a mean age of 57 ± 15 years agreed to be interviewed for inclusion. Five main categories around the violation of good clinical practices were identified, concerning the obtention of blood samples from a recently contacted Waorani native community within the Amazonian region of Ecuador. These themes are related to the lack of adequate communication between community members and researchers as well as the voluntariness to participate in health research. Additionally, over 40 years, a total of 38 manuscripts related to the use of biological samples in Waorani indigenous people were published. The majority of the studies (68%) did not state within their article obtaining research ethics board approval, and 71% did not report obtaining the informed consent of the participants prior to the execution of the project. Conclusion Clinical Research on the Waorani community in the Ecuadorian Amazon basin has been performed on several occasions. Unfortunately, the majority of these projects did not follow the appropriate ethical and professional standards in either reporting the results or fulfilling them. The results of our investigation suggest that biological material, including genetic material, has been used by researchers globally, with some omitting the minimum information required to guarantee transparency and good clinical practices. We highlight the importance of stating ethics within research to avoid breaches in research transparency.
Collapse
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Americas, Ecuador Calle de los Colimes y Avenida De los Granados, Quito, 170137, Ecuador.
| | - Katherine Simbaña-Rivera
- One Health Research Group, Faculty of Medicine, Universidad de Las Americas, Ecuador Calle de los Colimes y Avenida De los Granados, Quito, 170137, Ecuador
| | - Lenin Gómez-Barreno
- One Health Research Group, Faculty of Medicine, Universidad de Las Americas, Ecuador Calle de los Colimes y Avenida De los Granados, Quito, 170137, Ecuador
| | - Leonardo Tamariz
- Division of Population Health and Computational Medicine, University of Miami, Florida, USA
| | - Alex Lister
- Public Health Program, Faculty of Medicine, University of Southampton, Southampton, England
| | - Juan Carlos Baca
- Grassland Group, Technical University of Munich, Munich, Germany
| | | | - Lila Adana-Diaz
- Faculty of Psychology, Universidad de Las Americas, Quito, Ecuador
| |
Collapse
|
3
|
Kulski JK, Mawart A, Marie K, Tay GK, AlSafar HS. MHC class I polymorphic Alu insertion (POALIN) allele and haplotype frequencies in the Arabs of the United Arab Emirates and other world populations. Int J Immunogenet 2019; 46:247-262. [PMID: 31021060 DOI: 10.1111/iji.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 01/02/2023]
Abstract
Polymorphic Alu insertions (POALINs) are found throughout the human genome and have been used in various studies to infer geographic origin of human populations. The main aim of this study was to determine the allele and haplotype frequencies of five POALINs, AluHF, AluHG, AluHJ, AluTF and AluMICB, within the major histocompatibility complex (MHC) class I region of 95 UAE Arabs, and correlate their frequencies to those of the HLA-A, HLA-C and HLA-B class I allele lineages. Evolutionary relationships between the POALINs of the Arabs and those previously studied in populations of African, Asian and European descent were compared. At each of the five Alu loci (AluHF, AluHG, AluHJ, AluTF and AluMICB), Alu insertion was designated as Alu(locus)*02 and absence was Alu(locus)*01. The AluHG insertion (AluHG*02) had the highest frequency (0.332), followed by AluHF*02 (0.300), AluHJ*02 (0.263), AluMICB*02 (0.111) and AluTF*02 (0.058). Of the 270 Alu-HLA haplotypes pairs in the UAE Arabs, 110 had no Alu insertion, and 54 had an Alu insertion at >50% per haplotype. An Alu insertion >75% per haplotype was found between AluMICB*02 and HLA-B*14, HLA-B*22, HLA-B*44, HLA-B*55, HLA-B*57 and HLA-B*73, and with HLA-C*01 and HLA-C*18; AluHJ*02 with HLA-A*01, HLA-A*19, HLA-A*24 and HLA-A*32; AluHG*02 with HLA-A*02 and HLA-B*18; and AluHF*02 with HLA-A*10. The genotyped allele and haplotype frequencies of the MHC POALINs in UAE Arabs were compared with the results of 30 previously published Asian, European, American and African populations. Phylogenetic and multidimensional scaling (MDS) analysis of the relative MHC POALINs allele and haplotype frequencies revealed that the UAE Arabs have a similar lineage to Caucasians and the most distant genetic relationship to the Waorani native American population of Ecuador. The structure of both the phylogenetic tree and the MDS analysis supports the Out of Africa theory of human evolution. The nature of the clusters suggests the Arabian Middle East represents a crossroads from which human populations migrated towards Asia in the east and Europe to the north-west.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Aurelie Mawart
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kirsten Marie
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guan K Tay
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba S AlSafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Singh G, Sandhu HS, Sharma R, Srinivas Y, Matharoo K, Singh M, Bhanwer AJS. Genetic variation and population structure of five ethnic groups from Punjab, North-West India: Analysis of MHC class I polymorphic Alu insertions (POALINs). Gene 2019; 701:173-178. [PMID: 30935920 DOI: 10.1016/j.gene.2019.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 01/31/2023]
Abstract
Genetic variation and differentiation of five ethnic groups from Punjab, North-West India was characterized by analyzing data on polymorphic Alu insertions (POALINs) within the class I genomic region of major histocompatibility complex (MHC), which is completely non-existent in Indian population. The haplotype frequency, distribution and heterozygosity among these groups and their potential implications in molecular anthropology and evolutionary studies were also determined. A total of 479 unrelated healthy individuals representing five different ethnic groups: Banias, Brahmins, Khatri, Jat Sikhs and Scheduled Castes were genotyped for five MHC Alu elements (AluHG, AluMICB, AluHJ, AluTF and AluHF) using polymerase chain reaction (PCR). All the loci were found to be polymorphic among the studied populations. No significant deviation from Hardy-Weinberg equilibrium was observed, except for the AluHJ locus in Brahmins. The POALINs varied in allele frequency between 0.0260 and 0.4427. The average heterozygosity among the studied groups ranged from 0.1937 in Banias to 0.2666 in Jat Sikhs. The genetic differentiation among the studied groups was observed to be of the order of 0.01302. Single POALIN haplotypes were found to be more frequent than multiple POALIN haplotypes. The results of inter-population differentiations, haplotype frequencies, genetic distances, multidimensional scaling, phylogenetic and structure analyses indicated close genetic relationships between the five ethnic groups of Punjab, North-West India. Analyses of polymorphic Alu loci of MHC genomic region may represent reliable information about the ancestry, demographic history and geographic origins of the various human populations, facilitating better understanding of the evolutionary, forensic and epidemiological prospective.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Anthropology, Panjab University, Chandigarh 160014, India; Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Harkirat Singh Sandhu
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, NY 10029, USA
| | - Rubina Sharma
- Department of Surgery-Transplant, Regenerative Medicine, DRC-II, University of Nebraska Medical Center, Omaha, NE 68198-5965, USA
| | | | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manroop Singh
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
5
|
The asymmetry of dermatoglyphic finger ridge counts and the geographic altitude of the Jujenean population in northwest Argentina. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2018; 69:364-376. [PMID: 30293668 DOI: 10.1016/j.jchb.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 09/25/2018] [Indexed: 11/23/2022]
Abstract
Asymmetry is omnipresent in the living world and therefore is a measure of developmental noise and instability. The main stressing agent in high-altitude ecosystems is hypobaric hypoxia. The variation in bilateral dermatoglyphic symmetry in populations from the Province of Jujuy in northwest Argentina is analyzed, and these results are compared to those for other populations with different ethnic and environmental backgrounds. Fingerprints were collected from 310 healthy students (140 males and 170 females) aged 18-20 years from three localities in Jujuy Province-Abra Pampa (3484 m above sea level), Humahuaca (2939 m above sea level), and San Salvador de Jujuy (1260 m above sea level). Asymmetry by sex was assessed based on radial and ulnar ridge counts to determine its pattern of variability (directional asymmetry [DA], fluctuating asymmetry [FA] and antisymmetry), and asymmetry and diversity indices were calculated. A bivariate plot and principal component analysis (PCA) were used to compare these indices with those for other populations. Homogeneity was found between populations and sexes when radial and ulnar ridges were counted. FA values did not show significant differences by locality or side (ulnar and radial), but significant differences were found by finger and sex, with males showing significantly greater FA values. The asymmetry and diversity indices clearly group the Andean populations and separate them from populations of different ethnic and geographic origin. Only the diversity index showed significant differences by locality in males, which suggests a substantially different genetic component in Abra Pampa male samples.
Collapse
|
6
|
Román EM, Bejarano IF, Alfaro EL, Abdo G, Dipierri JE. Geographical altitude, size, mass and body surface area in children (1–4 years) in the Province of Jujuy (Argentina). Ann Hum Biol 2014; 42:431-8. [DOI: 10.3109/03014460.2014.959998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Kulski JK, Shigenari A, Inoko H. Variation and linkage disequilibrium between a structurally polymorphic Alu located near the OR12D2 gene of the extended major histocompatibility complex class I region and HLA-A alleles. Int J Immunogenet 2014; 41:250-61. [PMID: 24305111 DOI: 10.1111/iji.12102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/28/2013] [Accepted: 10/31/2013] [Indexed: 02/02/2023]
Abstract
We investigated the genetic structure and population frequency of an Alu repeat dimorphism (absence or presence) located near the OR12D2 gene within the olfactory receptor gene region telomeric of the alpha HLA class I region (HLA-J, -A, -G, -F). The structurally polymorphic Alu insertion (POALIN) locus rs33972478 that we designated as AluOR and its allele and haplotype frequencies and association with HLA-A and six other structurally polymorphic retroelements (3 Alu, 2 SVA and an HERVK9) were determined in 100 Japanese, 174 Caucasians and 100 African American DNA samples. The AluOR insertion varied in population frequency between 14.4% and 31.5% with significant differences between the Japanese and Caucasians, but not between the Caucasian and African Americans. Although AluOR is located 600 kb from the HLA-A gene, there was a significant linkage disequilibrium between the two loci and a high percentage association of the AluOR insertion with HLA-A29 (79%) in Caucasians and HLA-A31 (69.4%) in Japanese. Inferred haplotypes among three-locus to eight-locus haplotype structures showed maximum differences between the populations with the eight-locus haplotypes. The most frequent multilocus haplotype shared between the populations was the HLA-A2 allele in combination with the AluHG insertion. The AluOR whether investigated alone or together with the HLA class I alleles and other dimorphic retroelements is an informative ancestral marker for the identification of lineages and variations within the same and/or different populations and for examining the linkage and crossing-over between the HLA and OR genomic regions in the extended MHC.
Collapse
Affiliation(s)
- J K Kulski
- Centre for Forensic Science, The University of Western Australia, Western Australia, Australia; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Shimokasuya, Isehara, Kanagawa, Japan
| | | | | |
Collapse
|