1
|
Xu H, Dong C, Yu Z, Ozaki Y, Hu Z, Zhang B, Yao W, Yu J, Xie Y. Detection and analysis of microplastics in tissues and blood of human cervical cancer patients. ENVIRONMENTAL RESEARCH 2024; 259:119498. [PMID: 38942254 DOI: 10.1016/j.envres.2024.119498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Microplastics (MPs) can enter the reproductive system and can be potentially harmful to human reproductive health. In this study, 13 types of microplastics (MPs) were identified in patient blood, cancer samples, and paracarcinoma samples using Raman spectroscopy, with polyethylene, polypropylene and polyethylene-co-polypropylene being the most abundant polymer types. Futher, cotton was also found in our study. The diversity and abundance of MPs were higher in blood samples than in cancerous tissues, and there was a significant positive correlation between diversity (p < 0.05). Furthermore, the diversity and abundance of MPs in cancerous tissues were higher than in paracancerous tissues. The dimensional sizes of MPs in these samples were also very similar, with the majority of detected MPs being smaller in size. Correlation analysis showed that patient's age correlated with the abundance of MPs in blood samples, body mass index (BMI) correlated with the abundance of MPs in cancerous tissues. Notably, the frequency with which patients consume bottled water and beverages may also increase the abundance of MPs. This study identifies for the first time the presence of MPs and cotton in cancerous and paracancerous tissues of human cervical cancer patients. This provides new ideas and basic data to study the risk relationship between MP exposure and human health.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Chunlin Dong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Bing Zhang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
2
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
3
|
Sharmin S, Wang Q, Islam MR, Wang W, Enyoh CE. Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment. J Xenobiot 2024; 14:812-826. [PMID: 38921655 PMCID: PMC11204539 DOI: 10.3390/jox14020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Microplastic contamination in agricultural soil is an emerging problem worldwide as it contaminates the food chain. Therefore, this research investigated the distribution of microplastics (MPs) in agricultural soils without mulch at various depths (0-5, 5-10, and 10-15 cm) across different zones: rural, local market, industrial, coastal, and research areas. The detection of MP types and morphology was conducted using FTIR and fluorescence microscopy, respectively. Eight types of MPs were identified, including high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl fluoride (PVF), polyvinyl alcohol (PVA), and polytetrafluoroethylene (PTFE), with concentrations ranging from 0.6 ± 0.21 to 3.71 ± 2.36 MPs/g of soil. The study found no significant trends in MP concentration, with ranges of 0-2.1 ± 0.38, 0-2.87 ± 0.55, and 0-2.0 ± 0.34 MPs/g of soil at depths of 0-5 cm, 5-10 cm, and 10-15 cm, respectively. The highest MP quantity was recorded at 8.67 in coastal area, while the lowest was 6.44 in the local market area. Various MP shapes, e.g., fiber, film, pellet, fragment, and irregular, were observed across all layers. PCA suggested irrigation and organic manure as potential sources of MPs. The estimated concentrations of MPs possessed low non-carcinogenic and carcinogenic risks to the farming community of Bangladesh.
Collapse
Affiliation(s)
- Sumaya Sharmin
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
| | - Md. Rezwanul Islam
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
| | - Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
| |
Collapse
|
4
|
Wang C, Guo M, Yan B, Wei J, Liu F, Li Q, Bo Y. Characteristics of microplastics in the atmosphere of Anyang City. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:350. [PMID: 38460005 DOI: 10.1007/s10661-024-12493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
In order to clarify the characteristics of microplastics in the atmosphere of Anyang city, TSP, PM10, and PM2.5 samples are collected when the ambient air quality is good, slightly polluted, and severely polluted. After pretreatment, the physical and chemical characteristics are observed and identified by using stereomicroscope and micro-infrared spectrometer. The results show that the average abundance of microplastics is 0.19 items/m3, 0.26 items/m3, and 0.42 items/m3, respectively, when the ambient air quality is good, light pollution, and heavy pollution in Anyang City. It can be seen that with the decline of ambient air quality, the average abundance of microplastics in TSP, PM2.5, and PM10 gradually increases. The black fiber strip microplastics account for about 80% of the total TSP, PM2.5, and PM10 in the ambient air of Anyang City, followed by yellow flake and black granular microplastics and a small amount of green, red, and blue fiber strip microplastics. AQI has a good correlation with the abundance of microplastics in TSP, PM10, and PM2.5, and the maximum microplastic trapping effect could be obtained according to the sampling method of PM2.5 in the ambient air. The main components of microplastics are cellophane, followed by PET and EVA. The explorations of human respiratory exposure risk assessment show that with the increase of AQI, the daily intake of microplastics in adults also increased. At high levels of pollution, the human body breathes an average of 222 ± 5 microplastics per day.
Collapse
Affiliation(s)
- Chunyan Wang
- Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, 458000, People's Republic of China
| | - Mengxia Guo
- Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, 458000, People's Republic of China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Jiayu Wei
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Fengxu Liu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiaoli Li
- Henan Yuhe Testing Technology Co., Ltd., Zhengzhou, Henan, 450000, People's Republic of China
| | - Yumei Bo
- Suzhou Youkang Testing Technology Service Co., Ltd., Suzhou, Jiangsu, 215000, People's Republic of China
| |
Collapse
|
5
|
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168946. [PMID: 38043812 DOI: 10.1016/j.scitotenv.2023.168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.
Collapse
Affiliation(s)
- Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Palizhati Rehati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, Hoang HG, Nguyen KN, Tran HT, Hou D, Zhang T, Bolan NS. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166649. [PMID: 37660815 DOI: 10.1016/j.scitotenv.2023.166649] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 μm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
7
|
Seewoo BJ, Goodes LM, Mofflin L, Mulders YR, Wong EV, Toshniwal P, Brunner M, Alex J, Johnston B, Elagali A, Gozt A, Lyle G, Choudhury O, Solomons T, Symeonides C, Dunlop SA. The plastic health map: A systematic evidence map of human health studies on plastic-associated chemicals. ENVIRONMENT INTERNATIONAL 2023; 181:108225. [PMID: 37948868 DOI: 10.1016/j.envint.2023.108225] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The global production and use of plastic materials has increased dramatically since the 1960s and there is increasing evidence of human health impacts related to exposure to plastic-associated chemicals. There is, however, no comprehensive, regulatory, post-market monitoring for human health effects of plastic-associated chemicals or particles and it is unclear how many of these have been investigated for effects in humans, and therefore what the knowledge gaps are. OBJECTIVE To create a systematic evidence map of peer-reviewed human studies investigating the potential effects of exposure to plastic-associated particles/chemicals on health to identify research gaps and provide recommendations for future research and regulation policy. METHODS Medline and Embase databases were used to identify peer-reviewed primary human studies published in English from Jan 1960 - Jan 2022 that investigated relationships between exposures to included plastic-associated particles/chemicals measured and detected in bio-samples and human health outcomes. Plastic-associated particles/chemicals included are: micro and nanoplastics, due to their widespread occurrence and potential for human exposure; polymers, the main building blocks of plastic; plasticizers and flame retardants, the two most common types of plastic additives with the highest concentration ranges in plastic materials; and bisphenols and per- or polyfluoroalkyl substances, two chemical classes of known health concern that are common in plastics. We extracted metadata on the population and study characteristics (country, intergenerational, sex, age, general/special exposure risk status, study design), exposure (plastic-associated particle/chemical, multiple exposures), and health outcome measures (biochemical, physiological, and/or clinical), from which we produced the interactive database 'Plastic Health Map' and a narrative summary. RESULTS We identified 100,949 unique articles, of which 3,587 met our inclusion criteria and were used to create a systematic evidence map. The Plastic Health Map with extracted metadata from included studies are freely available at https://osf.io/fhw7d/ and summary tables, plots and overall observations are included in this report. CONCLUSIONS We present the first evidence map compiling human health research on a wide range of plastic-associated chemicals from several different chemical classes, in order to provide stakeholders, including researchers, regulators, and concerned individuals, with an efficient way to access published literature on the matter and determine knowledge gaps. We also provide examples of data clusters to facilitate systematic reviews and research gaps to help direct future research efforts. Extensive gaps are identified in the breadth of populations, exposures and outcomes addressed in studies of potential human health effects of plastic-associated chemicals. No studies of the human health effects of micro and/or nanoplastics were found, and no studies were found for 26/1,202 additives included in our search that are of known hazard concern and confirmed to be in active production. Few studies have addressed recent "substitution" chemicals for restricted additives such as organophosphate flame retardants, phthalate substitutes, and bisphenol analogues. We call for a paradigm shift in chemical regulation whereby new plastic chemicals are rigorously tested for safety before being introduced in consumer products, with ongoing post-introduction biomonitoring of their levels in humans and health effects throughout individuals' life span, including in old age and across generations.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M Goodes
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise Mofflin
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R Mulders
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch Vs Wong
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Priyanka Toshniwal
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Brunner
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jennifer Alex
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Brady Johnston
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Ahmed Elagali
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Aleksandra Gozt
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Greg Lyle
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia
| | - Omrik Choudhury
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Terena Solomons
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A Dunlop
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
8
|
Horn S, Mölsä KM, Sorvari J, Tuovila H, Heikkilä P. Environmental sustainability assessment of a polyester T-shirt - Comparison of circularity strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163821. [PMID: 37137359 DOI: 10.1016/j.scitotenv.2023.163821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The considerable environmental burden of textiles is currently globally recognized. This burden can be mitigated by applying circular economy (CE) strategies to the commonly linear, short garment life cycles that end with incineration or landfill disposal. Even though all CE strategies strive to promote environmental sustainability, they might not be equally beneficial. Environmental data on different textile products is insufficiently available, which leads to complications when assessing and deciding on different CE strategies to be implemented. This paper studies the environmental impacts of a polyester T-shirt's linear life cycle through life cycle assessment (LCA) and evaluates the benefits attainable by adopting different CE strategies, and their order of priority, while noting uncertainty arising from poor data quality or unavailability. The LCA is complemented by assessing health and environmental risks related to the different options. Most of the linear life cycle's LCA-based impacts arise from use-phase washing. Hence, it is possible to reduce the environmental impact notably (37 %) by reducing the washing frequency. Adopting a CE strategy in which the shirt is reused by a second consumer, to double the number of uses, enables an 18 % impact reduction. Repurposing recycled materials to produce the T-shirt and recycling the T-shirt material itself emerged as the least impactful CE strategies. From the risk perspective, reusing the garment is the most efficient way to reduce environmental and health risks while washing frequency has a very limited effect. Combining different CE strategies offers the greatest potential for reducing both environmental impacts as well as risks. Data gaps and assumptions related to the use phase cause the highest uncertainty in the LCA results. To gain the maximum environmental benefits of utilizing CE strategies on polyester garments, consumer actions, design solutions, and transparent data sharing are needed.
Collapse
Affiliation(s)
- Susanna Horn
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Kiia M Mölsä
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jaana Sorvari
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Hannamaija Tuovila
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| | - Pirjo Heikkilä
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| |
Collapse
|
9
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
10
|
Zhao X, Zhou Y, Liang C, Song J, Yu S, Liao G, Zou P, Tang KHD, Wu C. Airborne microplastics: Occurrence, sources, fate, risks and mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159943. [PMID: 36356750 DOI: 10.1016/j.scitotenv.2022.159943] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This paper serves to enhance the current knowledge base of airborne microplastics which is significantly smaller than that of microplastics in marine, freshwater and terrestrial environments. It systematically presents the prevalence, sources, fate, risks and mitigations of airborne microplastics through the review of >140 scientific papers published mainly in the last 10 years. Unlike the extant review, it places an emphasis on the indoor microplastics, the risks of airborne microplastics on animals and plants and their mitigations. The outdoor microplastics are mostly generated by the wear and tear of tires, brake pads, waste incineration and industrial activities. They have been detected in many regions worldwide at concentrations ranging from 0.3 particles/m3 to 154,000 particles/L of air even in the Pyrenees Mountains and the Arctic. As for indoor microplastics, the reported concentrations range from 1 piece/m3 to 9900 pieces/m2/day, and are frequently higher than those of the outdoor microplastics. They come from the wear and tear of walls and ceilings, synthetic textiles and furniture finishings. Airborne microplastics could be suspended and resuspended, entrapped, settle under gravity as well as interact with chemicals, microorganisms and other microplastic particles. In the outdoors, they could also interact with sunlight and be carried by the wind over long distance. Airborne microplastics could adversely affect plants, animals and humans, leading to reduced photosynthetic rate, retarded growth, oxidative stress, inflammatory responses and increased cancer risks in humans. They could be mitigated indirectly through filters attached to air-conditioning system and directly through source reduction, regulation and biodegradable substitutes.
Collapse
Affiliation(s)
- Xinran Zhao
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Yupeng Zhou
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Chenzhe Liang
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Jianchen Song
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Siyun Yu
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Gengxuan Liao
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Peiyan Zou
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA..
| | - Chenmiao Wu
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
11
|
Jung YS, Sampath V, Prunicki M, Aguilera J, Allen H, LaBeaud D, Veidis E, Barry M, Erny B, Patel L, Akdis C, Akdis M, Nadeau K. Characterization and regulation of microplastic pollution for protecting planetary and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120442. [PMID: 36272609 DOI: 10.1016/j.envpol.2022.120442] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are plastic particles <5 mm in diameter. Since the 1950s, there has been an exponential increase in the production of plastics. As of 2015, it is estimated that approximately 6300 million metric tons of plastic waste had been generated of which 79% has accumulated in landfills or the natural environment. Further, it is estimated that if current trends continue, roughly 12,000 million metric tons of plastic waste will accumulate by 2050. Plastics and microplastics are now found ubiquitously-in the air, water, and soil. Microplastics are small enough to enter the tissues of plants and animals and have been detected in human lungs, stools, placentas, and blood. Their presence in human tissues and the food chain is a cause for concern. While direct clinical evidence or epidemiological studies on the adverse effects of microplastic on human health are lacking, in vitro cellular and tissue studies and in vivo animal studies suggest potential adverse effects. With the ever-increasing presence of plastic waste in our environment, it is critical to understand their effects on our environment and on human health. The use of plastic additives, many of which have known toxic effects are also of concern. This review provides a brief overview of microplastics and the extent of the microplastic problem. There have been a few inroads in regulating plastics but currently these are insufficient to adequately mitigate plastic pollution. We also review recent advances in microplastic testing methodologies, which should support management and regulation of plastic wastes. Significant efforts to reduce, reuse, and recycle plastics are needed at the individual, community, national, and international levels to meet the challenge. In particular, significant reductions in plastic production must occur to curb the impacts of plastic on human and worldwide health, given the fact that plastic is not truly recyclable.
Collapse
Affiliation(s)
- Youn Soo Jung
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Harry Allen
- U.S. Environmental Protection Agency Region 9, San Francisco, CA, USA
| | - Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
| | - Michele Barry
- Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
| | - Barbara Erny
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Lisa Patel
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard Strasse, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard Strasse, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Bhat MA, Gedik K, Gaga EO. Atmospheric micro (nano) plastics: future growing concerns for human health. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:233-262. [PMID: 36276170 PMCID: PMC9574822 DOI: 10.1007/s11869-022-01272-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/06/2022] [Indexed: 05/14/2023]
Abstract
Abstract Plastics are an integral but largely inconspicuous part of daily human routines. The present review paper uses cross-disciplinary scientific literature to examine and assess the possible effects of nanoplastics (NPs) concerning microplastics (MPs) on human health and summarizes crucial areas for future research. Although research on the nature and consequences of MPs has seen a substantial rise, only limited studies have concentrated on the atmospheric nanosized polymeric particles. However, due to the intrinsic technological complications in separating and computing them, their existence has been difficult to determine correctly. There is a consensus that these are not only existing in the environment but can get directly released or as the outcome of weathering of larger fragments, and it is believed to be that combustion can be the tertiary source of polymeric particles. NPs can have harmful consequences on human health, and their exposure may happen via ingestion, inhalation, or absorption by the skin. The atmospheric fallout of micro (nano) plastics may be responsible for contaminating the environment. Apart from this, different drivers affect the concentration of micro (nano) plastics in every environment compartment like wind, water currents, vectors, soil erosion, run-off, etc. Their high specific surface for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. These NPs could potentially cause physical damage by the particles themselves and biological stress by NPs alone or by leaching additives. However, there is minimal understanding of the occurrence, distribution, abundance, and fate of NPs in the environment, partially due to the lack of suitable techniques for separating and identifying NPs from complex environmental matrices. Highlights Micro (nano) plastics generated may reach the soil, water, and atmospheric compartments.Atmospheric currents serve as a way to transport, leading to micro (nano) plastics pollution.Exposure to micro (nano) plastics may happen via ingestion, inhalation, or absorption by the skin.Nanoplastics may be environmentally more harmful than other plastic particles; the focus should be on defining the exact size range.Visual classification of micro (nano) plastics is poor in reliability and may also contribute to microplastics being misidentified. Graphical abstract
Collapse
Affiliation(s)
- Mansoor Ahmad Bhat
- Faculty of Engineering, Department of Environmental Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Kadir Gedik
- Faculty of Engineering, Department of Environmental Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
- Environmental Research Center (ÇEVMER), Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Eftade O. Gaga
- Faculty of Engineering, Department of Environmental Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
- Environmental Research Center (ÇEVMER), Eskişehir Technical University, 26555 Eskişehir, Turkey
| |
Collapse
|
13
|
Joyce H, Frias J, Kavanagh F, Lynch R, Pagter E, White J, Nash R. Plastics, prawns, and patterns: Microplastic loadings in Nephrops norvegicus and surrounding habitat in the North East Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154036. [PMID: 35202687 DOI: 10.1016/j.scitotenv.2022.154036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics (MPs), a contaminant of emerging concern, has attracted increasing attention in commercially important seafood species such as Nephrops norvegicus. This species lend themselves well as bioindicators of environmental contamination owing to their availability, spatial and depth distribution, interactions with seafloor sediment and position in the ecosystem and food chain. This study assesses the abundance of MPs in N. norvegicus and in benthic sediments across six functional units in the North East Atlantic. Assessment of the relationship between MP abundance in N. norvegicus, their biological parameters and their surrounding environment was examined. Despite the lack of statistical significance, MP abundances, size, shape, and polymer type recorded in N. norvegicus mirrored those found in the surrounding environment samples. The three main polymers identified in both organisms and sediment were polystyrene, polyamide (nylons), and polypropylene. The level of MP contamination in N. norvegicus could be related to local sources, with relatively low abundances recorded in this study for the North East Atlantic in comparison to other regional studies. Furthermore, larger organisms contained a lower abundance of MPs, demonstrating no accumulation of MPs in N. norvegicus. Based on the results of this study, data on MP ingestion could be used to study trends in the amount and composition of litter ingested by marine animals towards fulfilling requirements of descriptor 10 of the Marine Strategy Framework Directive.
Collapse
Affiliation(s)
- Haleigh Joyce
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland.
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Fiona Kavanagh
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Rachel Lynch
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Elena Pagter
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Jonathan White
- Marine Institute, Rinville, Oranmore, Galway H91 R673, Ireland
| | - Róisín Nash
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| |
Collapse
|
14
|
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, Roeder F, Tengelmann C, Wimmer BH, Laforsch C, Kress H. From properties to toxicity: Comparing microplastics to other airborne microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128151. [PMID: 35042167 DOI: 10.1016/j.jhazmat.2021.128151] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) debris is considered as a potentially hazardous material. It is omnipresent in our environment, and evidence that MP is also abundant in the atmosphere is increasing. Consequently, the inhalation of these particles is a significant exposure route to humans. Concerns about potential effects of airborne MP on human health are rising. However, currently, there are not enough studies on the putative toxicity of airborne MP to adequately assess its impact on human health. Therefore, we examined potential drivers of airborne MP toxicity. Physicochemical properties like size, shape, ζ-potential, adsorbed molecules and pathogens, and the MP's bio-persistence have been proposed as possible drivers of MP toxicity. Since their role in MP toxicity is largely unknown, we reviewed the literature on toxicologically well-studied non-plastic airborne microparticles (asbestos, silica, soot, wood, cotton, hay). We aimed to link the observed health effects and toxicology of these microparticles to the abovementioned properties. By comparing this information with studies on the effects of airborne MP, we analyzed possible mechanisms of airborne MP toxicity. Thus, we provide a basis for a mechanistic understanding of airborne MP toxicity. This may enable the assessment of risks associated with airborne MP pollution, facilitating effective policymaking and product design.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Julian Bender
- Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jonas Kitzinger
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Felix Meyer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anja Frm Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Franz Roeder
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Caroline Tengelmann
- Medical Faculty, University of Würzburg, Würzburg, Germany; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
15
|
Blackburn K, Green D. The potential effects of microplastics on human health: What is known and what is unknown. AMBIO 2022; 51:518-530. [PMID: 34185251 PMCID: PMC8800959 DOI: 10.1007/s13280-021-01589-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 05/11/2023]
Abstract
Microplastic contamination is ubiquitous in aquatic and terrestrial environments, found in water, sediments, within organisms and in the atmosphere and the biological effects on animal and plant life have been extensively investigated in recent years. There is growing evidence that humans are exposed to microplastics via ingestion of food and drink and through inhalation. Despite the prevalence of contamination, there has been limited research on the effects of microplastics on human health and most studies, to date, analyse the effects on model organisms with the likely impacts on human health being inferred by extrapolation. This review summarises the latest findings in the field with respect to the prevalence of microplastics in the human-environment, to what extent they might enter and persist in the body, and what effect, if any, they are likely to have on human health. Whilst definitive evidence linking microplastic consumption to human health is currently lacking, results from correlative studies in people exposed to high concentrations of microplastics, model animal and cell culture experiments, suggest that effects of microplastics could include provoking immune and stress responses and inducing reproductive and developmental toxicity. Further research is required to explore the potential implications of this recent contaminant in our environment in more rigorous clinical studies.
Collapse
Affiliation(s)
- Kirsty Blackburn
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Room 302 Science Centre, Cambridge, CB1 1PT UK
- Biomedical Sciences Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Dannielle Green
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Room 302 Science Centre, Cambridge, CB1 1PT UK
| |
Collapse
|
16
|
Venkataramana C, Botsa SM, Shyamala P, Muralikrishna R. Photocatalytic degradation of polyethylene plastics by NiAl 2O 4 spinels-synthesis and characterization. CHEMOSPHERE 2021; 265:129021. [PMID: 33248731 DOI: 10.1016/j.chemosphere.2020.129021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Over past twenty years, daily usage of Microplastics (MPs) and their pollution are gradually increasing. Especially, the polyethylene bags were used for food storage. So their productivity as well discarding after use are rapidly growing and shown their great impact on the environment. Hence, there is need to control the plastics from environment decomposition. For that, we have attempted that preparation of NiAl2O4 Spinels by two different methods such as co-precipitation and hydrothermal. The synthesized spinels were thoroughly studied by some instrumental techniques like X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV-Vis) spectrophotometer). The photocatalytic experiment was adopted for the degradation of commercially available polyethylene bags using prepared spinels. The obtained results from FTIR after degradation process confirmed that the polyethylene sheet was degraded in 5 h with the help of prepared spinels and the weight loss is 12.5% obtained using hydrothermally prepared spinels. This study shows new path to develop more functional materials for the degradation of MPs.
Collapse
Affiliation(s)
- Challarapu Venkataramana
- Department of Physical, Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam, 530003, India
| | - Sathish Mohan Botsa
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India.
| | - P Shyamala
- Department of Physical, Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam, 530003, India
| | - R Muralikrishna
- Department of Physical, Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
17
|
Danopoulos E, Jenner LC, Twiddy M, Rotchell JM. Microplastic Contamination of Seafood Intended for Human Consumption: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:126002. [PMID: 33355482 PMCID: PMC7757379 DOI: 10.1289/ehp7171] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Microplastics (MPs) have contaminated all compartments of the marine environment including biota such as seafood; ingestion from such sources is one of the two major uptake routes identified for human exposure. OBJECTIVES The objectives were to conduct a systematic review and meta-analysis of the levels of MP contamination in seafood and to subsequently estimate the annual human uptake. METHODS MEDLINE, EMBASE, and Web of Science were searched from launch (1947, 1974, and 1900, respectively) up to October 2020 for all studies reporting MP content in seafood species. Mean, standard deviations, and ranges of MPs found were collated. Studies were appraised systematically using a bespoke risk of bias (RoB) assessment tool. RESULTS Fifty studies were included in the systematic review and 19 in the meta-analysis. Evidence was available on four phyla: mollusks, crustaceans, fish, and echinodermata. The majority of studies identified MP contamination in seafood and reported MP content < 1 MP / g , with 26% of studies rated as having a high RoB, mainly due to analysis or reporting weaknesses. Mollusks collected off the coasts of Asia were the most heavily contaminated, coinciding with reported trends of MP contamination in the sea. According to the statistical summary, MP content was 0 - 10.5 MPs / g in mollusks, 0.1 - 8.6 MPs / g in crustaceans, 0 - 2.9 MPs / g in fish, and 1 MP / g in echinodermata. Maximum annual human MP uptake was estimated to be close to 55,000 MP particles. Statistical, sample, and methodological heterogeneity was high. DISCUSSION This is the first systematic review, to our knowledge, to assess and quantify MP contamination of seafood and human uptake from its consumption, suggesting that action must be considered in order to reduce human exposure via such consumption. Further high-quality research using standardized methods is needed to cement the scientific evidence on MP contamination and human exposures. https://doi.org/10.1289/EHP7171.
Collapse
|
18
|
Danopoulos E, Twiddy M, Rotchell JM. Microplastic contamination of drinking water: A systematic review. PLoS One 2020; 15:e0236838. [PMID: 32735575 PMCID: PMC7394398 DOI: 10.1371/journal.pone.0236838] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Microplastics (MPs) are omnipresent in the environment, including the human food chain; a likely important contributor to human exposure is drinking water. OBJECTIVE To undertake a systematic review of MP contamination of drinking water and estimate quantitative exposures. METHODS The protocol for the systematic review employed has been published in PROSPERO (PROSPERO 2019, Registration number: CRD42019145290). MEDLINE, EMBASE and Web of Science were searched from launch to the 3rd of June 2020, selecting studies that used procedural blank samples and a validated method for particle composition analysis. Studies were reviewed within a narrative analysis. A bespoke risk of bias (RoB) assessment tool was used. RESULTS 12 studies were included in the review: six of tap water (TW) and six of bottled water (BW). Meta-analysis was not appropriate due to high statistical heterogeneity (I2>95%). Seven studies were rated low RoB and all confirmed MP contamination of drinking water. The most common polymers identified in samples were polyethylene terephthalate (PET) and polypropylene (PP), Methodological variability was observed throughout the experimental protocols. For example, the minimum size of particles extracted and analysed, which varied from 1 to 100 μm, was seen to be critical in the data reported. The maximum reported MP contamination was 628 MPs/L for TW and 4889 MPs/L for BW, detected in European samples. Based on typical consumption data, this may be extrapolated to a maximum yearly human adult uptake of 458,000 MPs for TW and 3,569,000 MPs for BW. CONCLUSIONS This is the first systematic review that appraises the quality of existing evidence on MP contamination of drinking water and estimates human exposures. The precautionary principle should be adopted to address concerns on possible human health effects from consumption of MPs. Future research should aim to standardise experimental protocols to aid comparison and elevate quality.
Collapse
Affiliation(s)
| | - Maureen Twiddy
- Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Jeanette M. Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
19
|
Potent Impact of Plastic Nanomaterials and Micromaterials on the Food Chain and Human Health. Int J Mol Sci 2020; 21:ijms21051727. [PMID: 32138322 PMCID: PMC7084205 DOI: 10.3390/ijms21051727] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
Plastic products are inexpensive, convenient, and are have many applications in daily life. We overuse plastic-related products and ineffectively recycle plastic that is difficult to degrade. Plastic debris can be fragmented into smaller pieces by many physical and chemical processes. Plastic debris that is fragmented into microplastics or nanoplastics has unclear effects on organismal systems. Recently, this debris was shown to affect biota and to be gradually spreading through the food chain. In addition, studies have indicated that workers in plastic-related industries develop many kinds of cancer because of chronic exposure to high levels of airborne microplastics. Microplastics and nanoplastics are everywhere now, contaminating our water, air, and food chain. In this review, we introduce a classification of plastic polymers, define microplastics and nanoplastics, identify plastics that contaminate food, describe the damage and diseases caused by microplastics and nanoplastics, and the molecular and cellular mechanisms of this damage and disease as well as solutions for their amelioration. Thus, we expect to contribute to the understanding of the effects of microplastics and nanoplastics on cellular and molecular mechanisms and the ways that the uptake of microplastics and nanoplastics are potentially dangerous to our biota. After understanding the issues, we can focus on how to handle the problems caused by plastic overuse.
Collapse
|
20
|
Ribeiro F, O'Brien JW, Galloway T, Thomas KV. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Prata JC. Airborne microplastics: Consequences to human health? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:115-126. [PMID: 29172041 DOI: 10.1016/j.envpol.2017.11.043] [Citation(s) in RCA: 697] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
Microplastics have recently been detected in atmospheric fallout in Greater Paris. Due to their small size, they can be inhaled and may induce lesions in the respiratory system dependent on individual susceptibility and particle properties. Even though airborne microplastics are a new topic, several observational studies have reported the inhalation of plastic fibers and particles, especially in exposed workers, often coursing with dyspnea caused by airway and interstitial inflammatory responses. Even though environmental concentrations are low, susceptible individuals may be at risk of developing similar lesions. To better understand airborne microplastics risk to human health, this work summarizes current knowledge with the intention of developing awareness and future research in this area.
Collapse
Affiliation(s)
- Joana Correia Prata
- University Fernando Pessoa, Fernando Pessoa Energy, Environment and Health Research Unit (FP ENAS), Praça 9 de Abril, 349, Porto, Portugal.
| |
Collapse
|
22
|
Hua Z, Zheng X, Xue H, Wang J, Yao J. Long-term trends and survival analysis of esophageal and gastric cancer in Yangzhong, 1991-2013. PLoS One 2017; 12:e0173896. [PMID: 28288195 PMCID: PMC5348038 DOI: 10.1371/journal.pone.0173896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To describe the long-term trends of the incidence, mortality and survival of upper digestive tract cancers in a high-risk area of China. METHODS We extracted esophageal and gastric cancer cases diagnosed from 1991 to 2013 through the Yangzhong Cancer Registry and calculated the crude and age-standardized incidence and mortality rates. Cancer trends were calculated using the Joinpoint Regression Program and were reported using the annual percentage change (APC). The cancer-specific survival rates were evaluated and compared between groups using the Kaplan-Meier method and log-rank test. RESULTS The age-standardized incidence rate of esophageal cancer declined from 107.06 per 100,000 person-years (male: 118.05 per 100,000 person-years; female: 97.42 per 100,000 person-years) in 1991 to 37.04 per 100,000 person-years (male: 46.43 per 100,000 person-years; female: 27.26 per 100,000 person-years) in 2013, with an APC of -2.5% (95% confidence interval (CI): -3.4%, -1.5%) for males and -4.9% (95% CI:-5.8%, -3.9%) for females. The age-standardized incidence rate of gastric cancer was 165.11 per 100,000 person-years (male: 225.39 per 100,000 person-years; female: 113.34 per 100,000 person-years) in 1991 and 53.46 per 100,000 person-years (male: 76.51 per 100,000 person-years; female: 32.43 per 100,000 person-years) in 2013, with the APC of -3.6% (95% CI: -4.5%, -2.7%) for males and -4.8% (95% CI: -5.7%, -3.9%) for females. The median survival time was 3.0 years for patients with esophageal or gastric cancer. Cancer cases detected after 2004 had a better prognosis. CONCLUSIONS The age-standardized incidence rates of both esophageal and gastric cancer continuously decreased since 1991 through 2013, whereas the mortality rate remained stable before 2004 and significantly declined following the massive endoscopic screening program initiated in 2004. The survival probability of patients with esophageal and gastric cancer has improved obviously in recent decades.
Collapse
Affiliation(s)
- Zhaolai Hua
- Department of Epidemiology, Yangzhong Cancer Research Institute, Yangzhong, China
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xianzhi Zheng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hengchuan Xue
- Department of Thoracic Surgery, People’s Hospital of Yangzhong, Yangzhong, China
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- The Innovation Center for Social Risk Governance in Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Gastroenterology, Zhenjiang First People’s Hospital, Zhenjiang, China
| |
Collapse
|
23
|
Zheng X, Mao X, Xu K, Lü L, Peng X, Wang M, Xu G, Hua Z, Wang J, Xue H, Wang J, Lu C. Massive Endoscopic Screening for Esophageal and Gastric Cancers in a High-Risk Area of China. PLoS One 2015; 10:e0145097. [PMID: 26699332 PMCID: PMC4689398 DOI: 10.1371/journal.pone.0145097] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/28/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE This study aims to describe the findings from a massive endoscopic screening program in a high-risk area of China and to evaluate the prognosis of patients diagnosed through endoscopic screening compared with those diagnosed at usual hospital visits because of illness. METHODS In 2006, an early detection and treatment program was initiated in Yangzhong county, China. Local residents aged 40-69 years were eligible for free endoscopic screening. Endoscopic examination was performed with Lugol's iodine staining, followed by biopsies. Patients diagnosed with esophageal or gastric cancer were referred for treatment and followed to assess their long-term survival status. RESULTS From 2006 through 2012, we screened 12453 participants, including 5334 (42.8%) men and 7119 (57.2%) women. The average age was 52.8 ± 8.0 years. We detected 166 patients with upper digestive tract cancers, including 106 cancers in the esophagus (detection rate: 0.85%) and 60 cancers in the stomach (detection rate: 0.48%). Of these patients, 98.11% with esophageal cancer and 100% with gastric cancer were defined as at the early stage. In the process of follow-up, 17 patients died from cancer-related causes, and the median survival time was greater than 85 months. The overall survival rates for 1, 3 and 5 years were 98.0%, 90.0% and 89.0%, respectively. A significant positive effect was observed for the long-term survival of patients diagnosed through massive endoscopic screening. CONCLUSIONS In a high-risk population, massive endoscopic screening can identify early stage carcinoma of esophageal and gastric cancers and improve patients' prognosis through early detection and treatment.
Collapse
Affiliation(s)
- Xianzhi Zheng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People’s Hospital, Wuxi, 214200, China
| | - Kun Xu
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lingshuang Lü
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xianzhen Peng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Min Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guisheng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhaolai Hua
- Yangzhong Cancer Research Institute, Yangzhong People’s Hospital, Yangzhong, 212200, China
| | - Jianping Wang
- Yangzhong Cancer Research Institute, Yangzhong People’s Hospital, Yangzhong, 212200, China
| | - Hengchuan Xue
- Yangzhong Cancer Research Institute, Yangzhong People’s Hospital, Yangzhong, 212200, China
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Innovation Center for Social Risk Governance in Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- * E-mail: (Jianming Wang); (CL)
| | - Cheng Lu
- Department of Breast, Nanjing Maternity and Child Health Hospital of Nanjing Medical University, Nanjing, 210004, China
- * E-mail: (Jianming Wang); (CL)
| |
Collapse
|