1
|
Tajima G, Hara K, Tsumura M, Kagawa R, Okada S, Sakura N, Hata I, Shigematsu Y, Kobayashi M. Screening of MCAD deficiency in Japan: 16years' experience of enzymatic and genetic evaluation. Mol Genet Metab 2016; 119:322-328. [PMID: 27856190 DOI: 10.1016/j.ymgme.2016.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a representative disorder of fatty acid oxidation and is one of the most prevalent inborn errors of metabolism among Caucasian populations. In Japan, however, it was as late as 2000 when the first patient was found, and enzymatic and genetic evaluation of MCAD deficiency began. METHODS We measured octanoyl-CoA dehydrogenase activity in lymphocytes of symptomatic children and newborn screening (NBS)-positive subjects who showed elevated levels of C8-acylcarnitine in blood. The results were further confirmed by direct sequencing of the ACADM gene. RESULTS The disease was diagnosed in 9 out of 18 symptomatic children. The affected patients showed residual activities from 0% to 3% of the normal average value, except for one patient with 10% activity. Concerning 50 NBS-positive subjects, 18 with enzymatic activities around 10% or lower and 14 with activities ranging from 13% to 30% were judged to be affected patients, and biallelic variants were detected in most of the cases tested. Newborns with higher enzymatic activities were estimated to be heterozygous carriers or healthy subjects, though biallelic variants were detected in 5 of them. Genetic analysis detected 22 kinds of variant alleles. The most prevalent was c.449_452delCTGA (p.T150Rfs), which was followed by c.50G>A (p.R17H), c.1085G>A (p.G362E), c.157C>T (p.R53C), and c.843A>T (p.R281S); these five variants accounted for approximately 60% of all the alleles examined. CONCLUSION Our study has revealed the unique genetic backgrounds of MCAD deficiency among Japanese, based on the largest series of non-Caucasian cases. A continuous spectrum of severity was also observed in our series of NBS-positive cases, suggesting that it is essential for every nation and ethnic group to accumulate its own information on gene variants, together with their enzymatic evaluation, in order to establish an efficient NBS system for MCAD deficiency.
Collapse
Affiliation(s)
- Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Keiichi Hara
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Pediatrics, National Hospital Organization Kure Medical Center, 3-1 Aoyama-cho, Kure 737-0023, Japan.
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Nobuo Sakura
- Nursing House for Severe Motor and Intellectual Severities, Suzugamine, 104-27 Minaga, Itsukaichi-cho, Saeki-ku, Hiroshima 731-5122, Japan.
| | - Ikue Hata
- Department of Pediatrics, School of Medical Sciences, University of Fukui, 23 Shimogogetsu, Matsuoka, Eiheiji-cho, Fukui 910-1193, Japan.
| | - Yosuke Shigematsu
- Department of Pediatrics, School of Medical Sciences, University of Fukui, 23 Shimogogetsu, Matsuoka, Eiheiji-cho, Fukui 910-1193, Japan.
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
2
|
Koster KL, Sturm M, Herebian D, Smits SHJ, Spiekerkoetter U. Functional studies of 18 heterologously expressed medium-chain acyl-CoA dehydrogenase (MCAD) variants. J Inherit Metab Dis 2014; 37:917-28. [PMID: 24966162 DOI: 10.1007/s10545-014-9732-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/22/2014] [Accepted: 06/02/2014] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-coenzyme-A dehydrogenase (MCAD) catalyzes the first step of mitochondrial beta-oxidation for medium-chain acyl-CoAs. Mutations in the ACADM gene cause MCAD deficiency presenting with life-threatening symptoms during catabolism. Since fatty-acid-oxidation disorders are part of newborn screening (NBS), many novel mutations with unknown clinical relevance have been identified in asymptomatic newborns. Eighteen of these mutations were separately cloned into the human ACADM gene, heterologously overexpressed in Escherichia coli and functionally characterized by using different substrates, molecular chaperones, and measured at different temperatures. In addition, they were mapped to the three-dimensional MCAD structure, and cross-link experiments were performed. This study identified variants that only moderately affect the MCAD protein in vitro, such as Y42H, E18K, and R6H, in contrast to the remaining 15 mutants. These three mutants display residual octanoyl-CoA oxidation activities in the range of 22 % to 47 %, are as temperature sensitive as the wild type, and reach 100 % activity with molecular chaperone co-overexpression. Projection into the three-dimensional protein structure gave some indication as to possible reasons for decreased enzyme activities. Additionally, six of the eight novel mutations, functionally characterized for the first time, showed severely reduced residual activities < 5 % despite high expression levels. These studies are of relevance because they classify novel mutants in vitro on the basis of their corresponding functional effects. This basic knowledge should be taken into consideration for individual management after NBS.
Collapse
Affiliation(s)
- Kira-Lee Koster
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Moorenstr.5, 40225, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
3
|
Jank JM, Maier EM, Reiß DD, Haslbeck M, Kemter KF, Truger MS, Sommerhoff CP, Ferdinandusse S, Wanders RJ, Gersting SW, Muntau AC. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase. PLoS One 2014; 9:e93852. [PMID: 24718418 PMCID: PMC3981736 DOI: 10.1371/journal.pone.0093852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/12/2014] [Indexed: 12/30/2022] Open
Abstract
The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central β-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD.
Collapse
Affiliation(s)
- Johanna M. Jank
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Esther M. Maier
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dunja D. Reiß
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich, Garching, Germany
| | - Kristina F. Kemter
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Marietta S. Truger
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Sacha Ferdinandusse
- Departments of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J. Wanders
- Departments of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Søren W. Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ania C. Muntau
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
4
|
Couce ML, Sánchez-Pintos P, Diogo L, Leão-Teles E, Martins E, Santos H, Bueno MA, Delgado-Pecellín C, Castiñeiras DE, Cocho JA, García-Villoria J, Ribes A, Fraga JM, Rocha H. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency. Orphanet J Rare Dis 2013; 8:102. [PMID: 23842438 PMCID: PMC3718718 DOI: 10.1186/1750-1172-8-102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/05/2013] [Indexed: 12/30/2022] Open
Abstract
Background Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients. Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients. Methods We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises. Results C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L). The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L). Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation. Conclusions Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine supplementation for maintenance within the normal range. This study contributes to a better understanding of the relationship between genotype and phenotype in newborn patients with MCADD detected through screening which could be useful in improving follow-up strategies and clinical outcome.
Collapse
Affiliation(s)
- Maria Luz Couce
- Unidad de Diagnóstico y Tratamiento de Enfermedades Congénitas del Metabolismo, Departamento de Pediatría, Hospital Clínico Universitario, Universidad de Santiago, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sturm M, Herebian D, Mueller M, Laryea MD, Spiekerkoetter U. Functional effects of different medium-chain acyl-CoA dehydrogenase genotypes and identification of asymptomatic variants. PLoS One 2012; 7:e45110. [PMID: 23028790 PMCID: PMC3444485 DOI: 10.1371/journal.pone.0045110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/17/2012] [Indexed: 12/30/2022] Open
Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (OMIM 201450) is the most common inherited disorder of fatty acid metabolism presenting with hypoglycaemia, hepatopathy and Reye-like symptoms during catabolism. In the past, the majority of patients carried the prevalent c.985A>G mutation in the ACADM gene. Since the introduction of newborn screening many other mutations with unknown clinical relevance have been identified in asymptomatic newborns. In order to identify functional effects of these mutant genotypes we correlated residual MCAD (OMIM 607008) activities as measured by octanoyl-CoA oxidation in lymphocytes with both genotype and relevant medical reports in 65 newborns harbouring mutant alleles. We identified true disease-causing mutations with residual activities of 0 to 20%. In individuals carrying the c.199T>C or c.127G>A mutation on one allele, residual activities were much higher and in the range of heterozygotes (31%-60%). Therefore, both mutations cannot clearly be associated with a clinical phenotype. This demonstrates a correlation between the octanoyl-CoA oxidation rate in lymphocytes and the clinical outcome. With newborn screening, the natural course of disease is difficult to assess. The octanoyl-CoA oxidation rate, therefore, allows a risk assessment at birth and the identification of new ACADM genotypes associated with asymptomatic disease variants.
Collapse
Affiliation(s)
- Marga Sturm
- Department of General Pediatrics, University Childreńs Hospital, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
6
|
Purevsuren J, Hasegawa Y, Fukuda S, Kobayashi H, Mushimoto Y, Yamada K, Takahashi T, Fukao T, Yamaguchi S. Clinical and molecular aspects of Japanese children with medium chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2012; 107:237-40. [PMID: 22796001 DOI: 10.1016/j.ymgme.2012.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/23/2022]
Abstract
We report the outcome of 16 Japanese patients with medium chain acyl-CoA dehydrogenase deficiency. Of them, 7 patients were diagnosed after metabolic crisis, while 9 were detected in the asymptomatic condition. Of the 7 symptomatic cases, 1 died suddenly, and 4 cases had delayed development. All 9 patients identified by neonatal or sibling screening remained healthy. Of 14 mutations identified, 10 were unique for Japanese, and 4 were previously reported in other nationalities. Presymptomatic detection including neonatal screening obviously improves quality of life of Japanese patients, probably regardless of the genotypes.
Collapse
Affiliation(s)
- Jamiyan Purevsuren
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo 693-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Anderson S, Botti C, Li B, Millonig JH, Lyon E, Millson A, Karabin SS, Brooks SS. Medium chain acyl-CoA dehydrogenase deficiency detected among Hispanics by New Jersey newborn screening. Am J Med Genet A 2012; 158A:2100-5. [DOI: 10.1002/ajmg.a.35448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/10/2012] [Indexed: 11/09/2022]
|
8
|
Andresen BS, Lund AM, Hougaard DM, Christensen E, Gahrn B, Christensen M, Bross P, Vested A, Simonsen H, Skogstrand K, Olpin S, Brandt NJ, Skovby F, Nørgaard-Pedersen B, Gregersen N. MCAD deficiency in Denmark. Mol Genet Metab 2012; 106:175-88. [PMID: 22542437 DOI: 10.1016/j.ymgme.2012.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/24/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of fatty acid oxidation. Many countries have introduced newborn screening for MCADD, because characteristic acylcarnitines can easily be identified in filter paper blood spot samples by tandem mass spectrometry (MS/MS), because MCADD is a frequent disease, and because of the success of early treatment initiated before clinical symptoms have emerged. In Denmark we have screened 519,350 newborns for MCADD by MS/MS and identified 58 affected babies. The diagnosis of MCADD was confirmed in all 58 newborns by mutation analysis. This gives an incidence of MCADD detected by newborn screening in Denmark of 1/8954. In sharp contrast to this we found that the incidence of clinically presenting MCADD in Denmark in the 10 year period preceding introduction of MS/MS-based screening was only 1 in 39,691. This means that four times more newborns with MCADD are detected by screening than what is expected based on the number of children presenting clinically in an unscreened population. The mutation spectrum in the newborns detected by screening is different from that observed in clinically presenting patients with a much lower proportion of newborns being homozygous for the prevalent disease-causing c.985A>G mutation. A significant number of the newborns have genotypes with mutations that have not been observed in patients detected clinically. Some of these mutations, like c.199T>C and c.127G>A, are always associated with a milder biochemical phenotype and may cause a milder form of MCADD with a relatively low risk of disease manifestation, thereby explaining part of the discrepancy between the frequency of clinically manifested MCADD and the frequency of MCADD determined by screening. In addition, our data suggest that some of this discrepancy can be explained by a reduced penetrance of the c.985A>G mutation, with perhaps only 50% of c.985A>G homozygotes presenting with disease manifestations. Interestingly, we also report that the observed number of newborns identified by screening who are homozygous for the c.985A>G mutation is twice that predicted from the estimated carrier frequency. We therefore redetermined the carrier frequency in a new sample of 1946 blood spots using a new assay, but this only confirmed that the c.985A>G carrier frequency in Denmark is approximately 1/105. We conclude that MCADD is much more frequent than expected, has a reduced penetrance and that rapid genotyping using the initial blood spot sample is important for correct diagnosis and counseling.
Collapse
Affiliation(s)
- Brage Storstein Andresen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Faculty of Health Science, Skejby Sygehus, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Oerton J, Khalid JM, Besley G, Dalton RN, Downing M, Green A, Henderson M, Krywawych S, Leonard J, Andresen BS, Dezateux C. Newborn screening for medium chain acyl-CoA dehydrogenase deficiency in England: prevalence, predictive value and test validity based on 1.5 million screened babies. J Med Screen 2011; 18:173-81. [PMID: 22166308 PMCID: PMC3243649 DOI: 10.1258/jms.2011.011086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is a rare, life-threatening condition. Early diagnosis by screening asymptomatic newborns may improve outcome, but the benefit to newborns identified with variants not encountered clinically is uncertain. OBJECTIVE To estimate, overall and by ethnic group: screen-positive prevalence and predictive value (PPV); MCADD prevalence; proportion MCADD variants detected of predicted definite or uncertain clinical importance. SETTING All births in areas of high ethnic minority prevalence in England. METHODS Prospective multicentre pilot screening service; testing at age five to eight days; standardized screening, diagnostic and management protocols; independent expert review of screen-positive cases to assign MCADD diagnosis and predicted clinical importance (definite or uncertain). RESULTS Approximately 1.5 million babies (79% white; 10% Asian) were screened. MCADD was confirmed in 147 of 190 babies with a positive screening result (screen-positive prevalence: 1.20 per 10,000; MCADD prevalence: 0.94 per 10,000; PPV 77% [95% CI 71-83]), comprising 103 (70%) with MCADD variants of definite clinical importance (95 white [95%]; 2 Asian [2%]) and 44 (30%) with variants of uncertain clinical importance (29 white [67%]; 12 Asian [28%]). CONCLUSION One baby in every 10,000 born in England is diagnosed with MCADD by newborn screening; around 60 babies each year. While the majority of MCADD variants detected are predicted to be of definite clinical importance, this varies according to ethnic group, with variants of uncertain importance most commonly found in Asian babies. These findings provide support for MCADD screening but highlight the need to take account of the ethnic diversity of the population tested at implementation.
Collapse
Affiliation(s)
- Juliet Oerton
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Relevance of expanded neonatal screening of medium-chain acyl co-a dehydrogenase deficiency: outcome of a decade in galicia (Spain). JIMD Rep 2011. [PMID: 23430840 DOI: 10.1007/8904_2011_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] Open
Abstract
Neonatal screening of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is of major importance due to the significant morbidity and mortality in undiagnosed patients. MCADD screening has been performed routinely in Galicia since July 2000, and until now 199,943 newborns have been screened. We identified 11 cases of MCADD, which gives an incidence of 1/18,134. During this period, no false negative screens have been detected. At diagnosis, all identified newborns were asymptomatic. Our data showed that octanoylcarnitine (C8) and C8/C10 ratio are the best markers for screening of MCADD. C8 was increased in all patients and C8/C10 was increased in all but one patient.The common mutation, c.985A > G, was found in homozygosity in seven newborns and in compound heterozygosity in three, while one patient did not carry the common mutation at all. In addition, two novel mutations c.245G > C (p.W82S) and c.542A > G (p.D181G) were identified. Ten of the 11 identified newborns did not experience any episodes of decompensation. The patient with the highest level of medium chain acylcarnitines at diagnosis, who was homozygous for the c.985A > G mutation, died at the age of 2 years due to a severe infection.This is the first report of the results from neonatal screening for MCADD in Spain. Our data provide further evidence of the benefits of MCADD screening and contribute to better understanding of this disease.
Collapse
|
11
|
Schatz UA, Ensenauer R. The clinical manifestation of MCAD deficiency: challenges towards adulthood in the screened population. J Inherit Metab Dis 2010; 33:513-20. [PMID: 20532824 DOI: 10.1007/s10545-010-9115-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common fatty acid oxidation disorder. Typically, undiagnosed individuals are asymptomatic until an episode of increased energy demand and fasting occurs, resulting in metabolic derangement. Phenotypic heterogeneity has been increasingly realized, with reports of both neonates and adults manifesting with life-threatening symptoms including encephalopathy, rhabdomyolysis, and cardiac failure. If diagnosed presymptomatically, outcome is favorable basically by avoidance of fasting. Early detection by newborn screening (NBS) has significantly reduced the incidence of severe adverse events including deaths. In this manuscript we focus on the natural course of the disease in both children and adults. Although NBS for MCADD has been successfully established, continuing efforts need to be made to avoid acute crises and deterioration of outcome in screened patients entering adolescence and adulthood.
Collapse
Affiliation(s)
- Ulrich A Schatz
- Dr. von Hauner Children's Hospital, Children's Research Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
12
|
Lindner M, Hoffmann GF, Matern D. Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis 2010; 33:521-6. [PMID: 20373143 DOI: 10.1007/s10545-010-9076-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/24/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Experience with new-born screening (NBS) for disorders of fatty-acid oxidation (FAOD) is now becoming available from an increasing number of programs worldwide. The spectrum of FAOD differs widely between ethnic groups. Incidence calculations from reports from Australia, Germany, and the USA of a total of 5,256,999 newborns give a combined incidence of all FAOD of approximately 1:9,300. However, it appears to be much lower in Asians. Consequently, a significant prevalence and evidence for a clear benefit of NBS is proven for medium-chain acyl-CoA dehydrogenase deficiency (MCAD) only in countries with a high percentage of Caucasians, with very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD) and long-chain 3-hydroxy acyl-CoA dehydrogenase deficiency (LCHAD) being additional candidates. The long-term benefit for many disorders has still to be evaluated and will require international collaboration, especially for the rarest disorders. Short-chain acyl-CoA dehydrogenase deficiency (SCAD) [as well as Systemic carnitine transporter deficiency (CTD) and dienoyl-CoA reductase deficiency (DE-RED)] are conditions of uncertain clinical significance, but most FAOD have a spectrum of clinical presentations (healthy-death). Confirmatory diagnostic procedures should be agreed upon to ensure international comparability of results and evidence-based modifications. The case of short-chain acyl-CoA dehydrogenase deficiency (SCAD) deficiency shows that even inclusion of conditions without a clearly known natural course may prove useful with respect to gain of knowledge and consecutive exclusion of a biochemical abnormality without clinical significance, although this line of argument implies the existence of structured follow-up programs and bears ethical controversies. As a final conclusion, the accumulated evidence suggests all FAOD should to be included into tandem mass spectrometry (MS/MS)-based NBS programs provided sufficient laboratory performance is guaranteed.
Collapse
|
13
|
Arnold GL, Saavedra-Matiz CA, Galvin-Parton PA, Erbe R, Devincentis E, Kronn D, Mofidi S, Wasserstein M, Pellegrino JE, Levy PA, Adams DJ, Nichols M, Caggana M. Lack of genotype-phenotype correlations and outcome in MCAD deficiency diagnosed by newborn screening in New York State. Mol Genet Metab 2010; 99:263-8. [PMID: 20036593 DOI: 10.1016/j.ymgme.2009.10.188] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/21/2009] [Accepted: 10/29/2009] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is one of the most common inborn errors of metabolism. Affected patients have impaired ability to break down medium chain fatty acids during fasting, and typically present in the early years of life with hypoketotic hypoglycemia, Reye syndrome-like symptoms, brain damage or death. The development of newborn screening (NBS) for MCAD deficiency has greatly improved outcome, but some patients still appear at risk for severe complications. We reviewed the outcome of patients identified with MCAD deficiency by the New York State NBS process to identify biochemical or genotypic markers which might predict outcome. METHOD All eight NBS follow-up centers in New York State contributed the cases of MCAD deficiency diagnosed by newborn screen, who received diagnostic and follow-up care in their clinic. Data reviewed included gender, age, birthweight, initial NBS octanoylcarnitine level (C8) and C8/C2 ratio, follow-up C8 and hexanoylglycine, race/ethnicity, and presence of neonatal or later symptoms. RESULTS We identified 53 cases of MCAD deficiency. More than one quarter of patients had a post-neonatal symptomatic admission (predominantly lethargy associated with an intercurrent illness). No genotype or C8 level was protective for neonatal or later symptoms. There was a relationship between initial C8 level or C8/C2 ratio and occurrence of later symptoms (7.3 micromol/L in the asymptomatic vs. 19.1 micromol/L in the symptomatic, p<0.0002 for C8, and 0.26 vs. 0.6, respectively, for C8/C2 ratio, p<0.012). Four infants had initial C8 level >30 micromol/L; these infants had a high rate of symptomatic or multiple symptomatic episodes or a history of sibling death from "SIDS", and typically had deletion, nonsense or splice sites mutations. Infants having a history of a symptomatic episode were more likely to have higher initial C8 on NBS and a genotype predicted to strongly affect protein function. In our ethnically diverse group of patients, the c.985A>G mutation was rarely found in non-Caucasians. DISCUSSION No genotype or metabolite profile is protective from symptoms. The strong relationship between initial C8 level and outcome suggests that in at least some cases neonates having high initial C8 levels may be demonstrating an increased susceptibility to catabolic stress, and may merit additional precautions. Our data also suggest that these infants are more likely to carry severe mutations including homozygosity for the common mutation, deletions, nonsense or splice site mutations. The reports of significant lethargy or hypoglycemia during intercurrent illness in over one quarter of cases even when early medical intervention is recommended (and even when initial C8 is not profoundly elevated) underscores the importance of continued vigilance to prevent stressful fasting in this disorder.
Collapse
Affiliation(s)
- Georgianne L Arnold
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 777, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maier EM, Pongratz J, Muntau AC, Liebl B, Nennstiel-Ratzel U, Busch U, Fingerhut R, Olgemöller B, Roscher AA, Röschinger W. Dissection of biochemical borderline phenotypes in carriers and genetic variants of medium-chain acyl-CoA dehyrogenase deficiency: implications for newborn screening [corrected]. Clin Genet 2009; 76:179-87. [PMID: 19780764 DOI: 10.1111/j.1399-0004.2009.01217.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) represents a potentially fatal fatty acid beta-oxidation disorder. Newborn screening (NBS) by tandem mass spectrometry (MS/MS) has been implemented worldwide, but is associated with unresolved questions regarding population heterogeneity, burden on healthy carriers, cut-off policies, false-positive and negative rates. In a retrospective case-control study, 333 NBS samples showing borderline acylcarnitine patterns but not reaching recall criteria were genotyped for the two most common mutations (c.985A>G/c.199C>T) and compared with genotypes and acylcarnitines of 333 controls, 68 false-positives, and 34 patients. c.985A>G was more frequently identified in the study group and false-positives compared to controls (1:4.3/1:2.3 vs. 1:42), whereas c.199C>T was found more frequently only within the false-positives (1:23). Biochemical criteria were devised to differentiate homozygous (c.985A>G), compound heterozygous (c.985A>G/c.199C>T), and heterozygous individuals. Four false-negatives were identified because our initial algorithm required an elevation of octanoylcarnitine (C(8)) and three secondary markers in the initial and follow-up sample. The new approach allowed a reduction of false-positives (by defining high cut-offs: 1.4 micromol/l for C(8); 7 for C(8)/C(12)) and false-negatives (by sequencing the ACADM gene of few suspicious samples). Our validation strategy is able to differentiate healthy carriers from patients doubling the positive predictive value (42-->88%) and to target NBS to MCADD-subsets with potentially higher risk of adverse outcome. It remains controversial, if NBS programs should aim at identifying all subsets of all diseases included. Because the natural course of milder variants cannot be assessed by observational studies, our strategy could serve as a general model for evaluation of MS/MS-based NBS.
Collapse
Affiliation(s)
- E M Maier
- Research Center, Department of Biochemical Genetics and Molecular Biology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Maier EM, Gersting SW, Kemter KF, Jank JM, Reindl M, Messing DD, Truger MS, Sommerhoff CP, Muntau AC. Protein misfolding is the molecular mechanism underlying MCADD identified in newborn screening. Hum Mol Genet 2009; 18:1612-23. [PMID: 19224950 PMCID: PMC2667288 DOI: 10.1093/hmg/ddp079] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Newborn screening (NBS) for medium-chain acyl-CoA dehydrogenase deficiency (MCADD) revealed a higher birth prevalence and genotypic variability than previously estimated, including numerous novel missense mutations in the ACADM gene. On average, these mutations are associated with milder biochemical phenotypes raising the question about their pathogenic relevance. In this study, we analyzed the impact of 10 ACADM mutations identified in NBS (A27V, Y42H, Y133H, R181C, R223G, D241G, K304E, R309K, I331T and R388S) on conformation, stability and enzyme kinetics of the corresponding proteins. Partial to total rescue of aggregation by co-overexpression of GroESL indicated protein misfolding. This was confirmed by accelerated thermal unfolding in all variants, as well as decreased proteolytic stability and accelerated thermal inactivation in most variants. Catalytic function varied from high residual activity to markedly decreased activity or substrate affinity. Mutations mapping to the beta-domain of the protein predisposed to severe destabilization. In silico structural analyses of the affected amino acid residues revealed involvement in functionally relevant networks. Taken together, our results substantiate the hypothesis of protein misfolding with loss-of-function being the common molecular basis in MCADD. Moreover, considerable structural alterations in all analyzed variants do not support the view that novel mutations found in NBS bear a lower risk of metabolic decompensation than that associated with mutations detected in clinically ascertained patients. Finally, the detailed insight into how ACADM missense mutations induce loss of MCAD function may provide guidance for risk assessment and counseling of patients, and in future may assist delineation of novel pharmacological strategies.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Purevsuren J, Kobayashi H, Hasegawa Y, Mushimoto Y, Li H, Fukuda S, Shigematsu Y, Fukao T, Yamaguchi S. A novel molecular aspect of Japanese patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD): c.449-452delCTGA is a common mutation in Japanese patients with MCADD. Mol Genet Metab 2009; 96:77-9. [PMID: 19064330 DOI: 10.1016/j.ymgme.2008.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 12/30/2022]
Abstract
We studied 11 Japanese patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD) and found a common mutation, c.449-452delCTGA, which accounted for 45% of the mutations. Seven of 10 independent patients carried at least one copy of this mutation. Phenotypes of homozygous patients with the c.449-452delCTGA mutation varied from asymptomatic to life-threatening metabolic decompensation in Japanese patients with MCADD, similar to the phenotypic variations in Caucasians. This study suggests the genotypic difference between those of Caucasians and Japanese regarding MCADD.
Collapse
Affiliation(s)
- Jamiyan Purevsuren
- Department of Pediatrics, Shimane University, Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|