1
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Moreau C, Paquot A, Ares GS, Dessein AF, Deprez B, Beghyn T, Dobbelaere D. Findings from the individualized management of a patient with Acyl-CoA Oxidase-1 (ACOX1) deficiency: A bedside-to-bench-to-bedside strategy. Mol Genet Metab 2024; 143:108581. [PMID: 39357498 DOI: 10.1016/j.ymgme.2024.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Acyl-CoA Oxidase-1 (ACOX1) deficiency (MIM 264470) is an autosomal recessive disease characterized by impairments in the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs, which is the first step in the catalysis of the β-oxidative breakdown of very long chain fatty acids (VLCFA) occuring in peroxisomes. The deleterious accumulation of VLCFA in several organs, including the brain, is a key biochemical feature of this disease which has devastating neurological consequences. ACOX1 deficiency is ultra-rare; as such, few studies have been conducted to determine the leading causes of symptoms or uncover new therapeutics. When confronted with one such case, we decided to bring drug discovery tools to the patient's bedside in an attempt to identify a cure. A skin biopsy was performed on a young patient with ACOX1 deficiency, following which screening technologies and mass spectrometry analysis techniques were applied to design a cellular assay that enabled the direct measurement of the effect of small molecules on the patient's primary fibroblasts. This approach is particularly well adapted to inherited metabolic disorders such as ACOX1 deficiency. Through the evaluation of a proprietary library of repurposable drugs, we found that the anthelmintic drug niclosamide led to a significant reduction in VLCFA in vitro. This drug was subsequently administered to the patient for more than six years. This study outlines the screening and drug selection processes. Additionally, we present our comprehensive clinical and biochemical findings that aided in understanding the patient's natural history and analysis of the progression of the patient's symptoms throughout the treatment period. Although the patient's overall lifespan was extended compared to the average age at death in severe early onset cases of ACOX1 deficiency, we did not observe any definitive evidence of clinical or biochemical improvement during niclosamide treatment. Nonetheless, our study shows a good safety profile of long-term niclosamide administration in a child with a rare neurodegenerative disease, and illustrates the potential of individualized therapeutic strategies in the management of inherited metabolic disorders, which could benefit both patients and the broader scientific and medical communities.
Collapse
Affiliation(s)
- Camille Moreau
- APTEEUS, Campus Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Adrien Paquot
- APTEEUS, Campus Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Gustavo Soto Ares
- Neuroradiology Department, Centre Hospitalier Universitaire de Lille, Roger Salengro Hospital, 59000 Lille, France
| | - Anne-Frédérique Dessein
- Univ. Lille, CHU Lille, Centre de Biologie Pathologie Génétique, UF Métabolisme Général et Maladies Rares, F-59000 Lille, France
| | - Benoit Deprez
- APTEEUS, Campus Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59000 Lille, France; Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, 59000 Lille, France
| | - Terence Beghyn
- APTEEUS, Campus Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Dries Dobbelaere
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Hospital and RADEME Research Team for Rare Metabolic and Developmental Diseases, EA 7364 CHU Lille, 59037 Lille, France.
| |
Collapse
|
4
|
Morito K, Ali H, Kishino S, Tanaka T. Fatty Acid Metabolism in Peroxisomes and Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:31-55. [PMID: 38811487 DOI: 10.1007/5584_2024_802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.
Collapse
Affiliation(s)
- Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
5
|
Kashyap I, Deb R, Battineni A, Nagotu S. Acyl CoA oxidase: from its expression, structure, folding, and import to its role in human health and disease. Mol Genet Genomics 2023; 298:1247-1260. [PMID: 37555868 DOI: 10.1007/s00438-023-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
β-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.
Collapse
Affiliation(s)
- Isha Kashyap
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhigna Battineni
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Burns W, Chaudhari BP, Haffner DN. Neurogenetic and Metabolic Mimics of Common Neonatal Neurological Disorders. Semin Pediatr Neurol 2022; 42:100972. [PMID: 35868729 DOI: 10.1016/j.spen.2022.100972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Neurogenetic and metabolic diseases often present in the neonatal period, masquerading as other disorders, most commonly as neonatal encephalopathy and seizures. Advancements in our understanding of inborn errors of metabolism are leading to an increasing number of therapeutic options. Many of these treatments can improve long-term neurodevelopment and seizure control. However, the treatments are frequently condition-specific. A high index of suspicion is required for prompt identification and treatment. When suspected, simultaneous metabolic and molecular testing are recommended along with concurrent treatment.
Collapse
Affiliation(s)
- William Burns
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH.
| | - Bimal P Chaudhari
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neonatology, Nationwide Children's Hospital, Columbus, OH; Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Darrah N Haffner
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
7
|
Das Y, Swinkels D, Baes M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity. Int J Mol Sci 2021; 22:ijms22084101. [PMID: 33921065 PMCID: PMC8071455 DOI: 10.3390/ijms22084101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors.
Collapse
|
8
|
Morita A, Enokizono T, Ohto T, Tanaka M, Watanabe S, Takada Y, Iwama K, Mizuguchi T, Matsumoto N, Morita M, Takashima S, Shimozawa N, Takada H. Novel ACOX1 mutations in two siblings with peroxisomal acyl-CoA oxidase deficiency. Brain Dev 2021; 43:475-481. [PMID: 33234382 DOI: 10.1016/j.braindev.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022]
Abstract
Peroxisomal acyl-CoA oxidase (ACOX1) deficiency is a rare autosomal recessive single enzyme deficiency characterized by hypotonia, seizures, failure to thrive, developmental delay, and neurological regression starting from approximately 3 years of age. Here, we report two siblings with ACOX1 deficiency born to non-consanguineous Japanese parents. They showed mild global developmental delay from infancy and began to regress at 5 years 10 months and 5 years 6 months of age respectively. They gradually manifested with cerebellar ataxia, dysarthria, pyramidal signs, and dysphasia. Brain MRI revealed T2 high-intensity areas in the cerebellar white matter, bilateral middle cerebellar peduncle, and transverse tracts of the pons, followed by progressive atrophy of these areas. Intriguingly, the ratios of C24:0, C25:0, and C26:0 to C22:0 in plasma, which usually increase in ACOX1 deficiency were within normal ranges in both patients. On the other hand, whole exome sequencing revealed novel compound heterozygous variants in ACOX1: a frameshift variant (c.160delC:p.Leu54Serfs*18) and a missense variant (c.1259 T > C:p.Phe420Ser). The plasma concentration of individual very long chain fatty acids (C24:0, C25:0, and C26:0) was elevated, and we found that peroxisomes in fibroblasts of the patients were larger in size and fewer in number as previously reported in patients with ACOX1 deficiency. Furthermore, the C24:0 β-oxidation activity was dramatically reduced. Our findings suggest that the elevation of individual plasma very long chain fatty acids concentration, genetic analysis including whole exome analysis, and biochemical studies on the patient's fibroblasts should be considered for the correct diagnosis of ACOX1 deficiency.
Collapse
Affiliation(s)
- Atsushi Morita
- Department of Pediatrics, University of Tsukuba Hospital, Japan
| | | | - Tatsuyuki Ohto
- Department of Pediatrics, University of Tsukuba Hospital, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, Japan
| | - Shiena Watanabe
- Department of Pediatrics, University of Tsukuba Hospital, Japan
| | - Yui Takada
- Department of Pediatrics, Ibaraki Western Medical Center, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Masashi Morita
- Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Japan
| | - Shigeo Takashima
- Division of Genomic Research, Life Science Research Center, Gifu University, Japan
| | - Nobuyuki Shimozawa
- Division of Genomic Research, Life Science Research Center, Gifu University, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
9
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Padmanabha H, Arora C, Christopher R, Mahale R, Bhat M, Arunachal G, Shekhar R, Mailankody P, Mathuranath PS. Pseudo-neonatal adrenoleukodystrophy: A rare peroxisomal disorder. Ann Indian Acad Neurol 2021; 25:275-278. [PMID: 35693670 PMCID: PMC9175428 DOI: 10.4103/aian.aian_486_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
|
11
|
Schiller S, Rosewich H, Grünewald S, Gärtner J. Inborn errors of metabolism leading to neuronal migration defects. J Inherit Metab Dis 2020; 43:145-155. [PMID: 31747049 DOI: 10.1002/jimd.12194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
The development and organisation of the human brain start in the embryonic stage and is a highly complex orchestrated process. It depends on series of cellular mechanisms that are precisely regulated by multiple proteins, signalling pathways and non-protein-coding genes. A crucial process during cerebral cortex development is the migration of nascent neuronal cells to their appropriate positions and their associated differentiation into layer-specific neurons. Neuronal migration defects (NMD) comprise a heterogeneous group of neurodevelopmental disorders including monogenetic disorders and residual syndromes due to damaging factors during prenatal development like infections, maternal diabetes mellitus or phenylketonuria, trauma, and drug use. Multifactorial causes are also possible. Classification into lissencephaly, polymicrogyria, schizencephaly, and neuronal heterotopia is based on the visible morphologic cortex anomalies. Characteristic clinical features of NMDs are severe psychomotor developmental delay, severe intellectual disability, intractable epilepsy, and dysmorphisms. Neurometabolic disorders only form a small subgroup within the large group of NMDs. The prototypes are peroxisomal biogenesis disorders, peroxisomal ß-oxidation defects and congenital disorders of O-glycosylation. The rapid evolution of biotechnology has resulted in an ongoing identification of metabolic and non-metabolic disease genes for NMDs. Nevertheless, we are far away from understanding the specific role of cortical genes and metabolites on spatial and temporal regulation of human cortex development and associated malformations. This limited understanding of the pathogenesis hinders the attempt for therapeutic approaches. In this article, we provide an overview of the most important cortical malformations and potential underlying neurometabolic disorders.
Collapse
Affiliation(s)
- Stina Schiller
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - Hendrik Rosewich
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - Stephanie Grünewald
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London, UK
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Raas Q, Saih FE, Gondcaille C, Trompier D, Hamon Y, Leoni V, Caccia C, Nasser B, Jadot M, Ménétrier F, Lizard G, Cherkaoui-Malki M, Andreoletti P, Savary S. A microglial cell model for acyl-CoA oxidase 1 deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:567-576. [DOI: 10.1016/j.bbalip.2018.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
|
13
|
Das Y, Baes M. Peroxisomal Disorders and Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:317-321. [PMID: 31884631 DOI: 10.1007/978-3-030-27378-1_52] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peroxisomal disorders are a group of inherited metabolic diseases, which can be incompatible with life in the postnatal period or allow survival into adulthood. Retinopathy is a recurrent feature in both the severely and mildly affected patients, which can be accompanied with other ophthalmological pathologies. Thanks to next-generation sequencing, patients originally identified with other inherited blinding diseases were reclassified as suffering from peroxisomal disorders. In addition, new peroxisomal gene defects or disease presentations exhibiting retinal degeneration were recently identified. The pathogenic mechanisms underlying retinopathy in peroxisomal disorders remain unresolved.
Collapse
Affiliation(s)
- Yannick Das
- KU Leuven - University of Leuven, Department for Pharmaceutical and Pharmacological Sciences, Lab for Cell Metabolism, Leuven, Belgium
| | - Myriam Baes
- KU Leuven - University of Leuven, Department for Pharmaceutical and Pharmacological Sciences, Lab for Cell Metabolism, Leuven, Belgium.
| |
Collapse
|
14
|
Abstract
Peroxisomes play vital roles in a broad spectrum of cellular metabolic pathways. Defects in genes encoding peroxisomal proteins can result in a wide array of disorders, depending upon the metabolic pathways affected. These disorders can be broadly classified into 2 main groups; peroxisome biogenesis disorders (PBDs) and single peroxisomal enzyme deficiencies. Peroxisomal enzyme deficiencies are result of dysfunction of a specific metabolic pathway, while PBDs are due to generalized peroxisomal dysfunction. Mutations in PEX1 gene are the most common cause of PBDs, accounting for two-thirds of cases. Peroxisomal fission defects is a recently recognized entity, included under the subgroup of PBDs. The aim of this article is to provide a comprehensive review on the clinical and neuroimaging spectrum of peroxisomal disorders.
Collapse
|
15
|
Hu XD, Pan BZ, Fu Q, Niu L, Chen MS, Xu ZF. De novo transcriptome assembly of the eight major organs of Sacha Inchi (Plukenetia volubilis) and the identification of genes involved in α-linolenic acid metabolism. BMC Genomics 2018; 19:380. [PMID: 29788925 PMCID: PMC5964912 DOI: 10.1186/s12864-018-4774-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background Sacha Inchi (Plukenetia volubilis L.), which belongs to the Euphorbiaceae, has been considered a new potential oil crop because of its high content of polyunsaturated fatty acids in its seed oil. The seed oil especially contains high amounts of α-linolenic acid (ALA), which is useful for the prevention of various diseases. However, little is known about the genetic information and genome sequence of Sacha Inchi, which has largely hindered functional genomics and molecular breeding studies. Results In this study, a de novo transcriptome assembly based on transcripts sequenced in eight major organs, including roots, stems, shoot apexes, mature leaves, male flowers, female flowers, fruits, and seeds of Sacha Inchi was performed, resulting in a set of 124,750 non-redundant putative transcripts having an average length of 851 bp and an N50 value of 1909 bp. Organ-specific unigenes analysis revealed that the most organ-specific transcripts are found in female flowers (2244 unigenes), whereas a relatively small amount of unigenes are detected to be expressed specifically in other organs with the least in stems (24 unigenes). A total of 42,987 simple sequence repeats (SSRs) were detected, which will contribute to the marker assisted selection breeding of Sacha Inchi. We analyzed expression of genes related to the α-linolenic acid metabolism based on the de novo assembly and annotation transcriptome in Sacha Inchi. It appears that Sacha Inchi accumulates high level of ALA in seeds by strong expression of biosynthesis-related genes and weak expression of degradation-related genes. In particular, the up-regulation of FAD3 and FAD7 is consistent with high level of ALA in seeds of Sacha Inchi compared with in other organs. Meanwhile, several transcription factors (ABI3, LEC1 and FUS3) may regulate key genes involved in oil accumulation in seeds of Sacha Inchi. Conclusions The transcriptome of major organs of Sacha Inchi has been sequenced and de novo assembled, which will expand the genetic information for functional genomic studies of Sacha Inchi. In addition, the identification of candidate genes involved in ALA metabolism will provide useful resources for the genetic improvement of Sacha Inchi and the metabolic engineering of ALA biosynthesis in other plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-4774-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Di Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bang-Zhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qiantang Fu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Longjian Niu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Mao-Sheng Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
16
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Qiang J, Bao WJ, Tao FY, He J, Li XH, Xu P, Sun LY. The expression profiles of miRNA-mRNA of early response in genetically improved farmed tilapia (Oreochromis niloticus) liver by acute heat stress. Sci Rep 2017; 7:8705. [PMID: 28821885 PMCID: PMC5562739 DOI: 10.1038/s41598-017-09264-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are commercially important fish that are cultured in China. GIFT are highly susceptible to diseases when exposed to high temperatures in summer. Better understanding the GIFT regulatory response to heat stress will not only help in determining the relationship between heat stress signalling pathways and adaption mechanisms, but will also contribute to breeding new high-temperature tolerant strains of GIFT. In this study, we built control (28 °C) and heat-treated (37.5 °C) groups, and extracted RNA from the liver tissues for high-throughput next-generation sequencing to study the miRNA and mRNA expression profiles. We identified 28 differentially expressed (DE) miRNAs and 744 DE mRNAs between the control and heat-treated groups and annotated them using the KEGG database. A total of 38 target genes were predicted for 21 of the DE miRNAs, including 64 negative miRNA-mRNA interactions. We verified 15 DE miRNA-mRNA pairs and 16 other DE mRNAs by quantitative real-time PCR. Important regulatory pathways involved in the early response of GIFT to heat stress included organism system, metabolism, and diseases. Our findings will facilitate the understanding of regulatory pathways affected by acute heat stress, which will help to better prevent heat damage to GIFT.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Wen J Bao
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Fan Y Tao
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Xia H Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.
| | - Lan Y Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| |
Collapse
|
18
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
19
|
[Hereditary peroxisomal diseases]. Presse Med 2016; 45:302-12. [PMID: 26899150 DOI: 10.1016/j.lpm.2015.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/09/2015] [Accepted: 05/26/2015] [Indexed: 11/24/2022] Open
Abstract
Peroxisomes are small intracellular organelles that catalyse key metabolic reactions such as the beta-oxidation of some straight-chain or branched-chain fatty acids and the alpha-oxidation of phytanic acid. These enzyme reactions produce hydrogen peroxide, which is subsequently neutralized by the peroxisomal catalase. Peroxisomes also metabolize glyoxylate to glycine, and catalyze the first steps of plasmalogen biosynthesis. There are more than a dozen inherited peroxisomal disorders in humans. These metabolic diseases are due to monogenic defects that affect either a single function (such as enzyme or a transporter) or more than two distinct functions because of the impairment of several aspects of peroxisome biogenesis. With the notable exception of X-linked adrenoleucodystrophy, these inborn disorders are transmitted as autosomal recessive traits. Their clinical presentation can be very heterogeneous, and include neonatal, infantile or adult forms. The present review describes the symptomatology of these genetic diseases, the underlying genetic and biochemical alterations, and summarizes their diagnostic approach.
Collapse
|
20
|
De Munter S, Verheijden S, Régal L, Baes M. Peroxisomal Disorders: A Review on Cerebellar Pathologies. Brain Pathol 2015; 25:663-78. [PMID: 26201894 PMCID: PMC8029412 DOI: 10.1111/bpa.12290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Peroxisomes are organelles with diverse metabolic tasks including essential roles in lipid metabolism. They are of utmost importance for the normal functioning of the nervous system as most peroxisomal disorders are accompanied with neurological symptoms. Remarkably, the cerebellum exquisitely depends on intact peroxisomal function both during development and adulthood. In this review, we cover all aspects of cerebellar pathology that were reported in peroxisome biogenesis disorders and in diseases caused by dysfunction of the peroxisomal α-oxidation, β-oxidation or ether lipid synthesis pathways. We also discuss the phenotypes of mouse models in which cerebellar pathologies were recapitulated and search for connections with the metabolic abnormalities. It becomes increasingly clear that besides the most severe forms of peroxisome dysfunction that are associated with developmental cerebellar defects, milder impairments can give rise to ataxia later in life.
Collapse
Affiliation(s)
- Stephanie De Munter
- Department of Pharmaceutical and Pharmacological Sciences, Cell MetabolismKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| | - Simon Verheijden
- Department of Clinical and Experimental MedicineTARGIDKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| | - Luc Régal
- Department of Pediatric Neurology and Metabolic DisordersUZ Brussel—University Hospital Brussels1000BrusselsBelgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell MetabolismKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| |
Collapse
|
21
|
Baes M, Van Veldhoven PP. Hepatic dysfunction in peroxisomal disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:956-70. [PMID: 26453805 DOI: 10.1016/j.bbamcr.2015.09.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022]
Abstract
The peroxisomal compartment in hepatocytes hosts several essential metabolic conversions. These are defective in peroxisomal disorders that are either caused by failure to import the enzymes in the organelle or by mutations in the enzymes or in transporters needed to transfer the substrates across the peroxisomal membrane. Hepatic pathology is one of the cardinal features in disorders of peroxisome biogenesis and peroxisomal β-oxidation although it only rarely determines the clinical fate. In mouse models of these diseases liver pathologies also occur, although these are not always concordant with the human phenotype which might be due to differences in diet, expression of enzymes and backup mechanisms. Besides the morphological changes, we overview the impact of peroxisome malfunction on other cellular compartments including mitochondria and the ER. We further focus on the metabolic pathways that are affected such as bile acid formation, and dicarboxylic acid and branched chain fatty acid degradation. It appears that the association between deregulated metabolites and pathological events remains unclear.
Collapse
Affiliation(s)
- Myriam Baes
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Paul P Van Veldhoven
- Laboratory for Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
22
|
Wang RY, Monuki ES, Powers J, Schwartz PH, Watkins PA, Shi Y, Moser A, Shrier DA, Waterham HR, Nugent DJ, Abdenur JE. Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study. J Inherit Metab Dis 2014; 37:791-9. [PMID: 24619150 PMCID: PMC4332804 DOI: 10.1007/s10545-014-9698-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Acyl-CoA oxidase (ACOX1) deficiency is a rare disorder of peroxisomal very-long chain fatty acid oxidation. No reports detailing attempted treatment, longitudinal imaging, or neuropathology exist. We describe the natural history of clinical symptoms and brain imaging in two siblings with ACOX1 deficiency, including the younger sibling's response to allogeneic unrelated donor hematopoietic stem cell transplantation (HSCT). METHODS We conducted retrospective chart review to obtain clinical history, neuro-imaging, and neuropathology data. ACOX1 genotyping were performed to confirm the disease. In vitro fibroblast and neural stem cell fatty acid oxidation assays were also performed. RESULTS Both patients experienced a fatal neurodegenerative course, with late-stage cerebellar and cerebral gray matter atrophy. Serial brain magnetic resonance imaging in the younger sibling indicated demyelination began in the medulla and progressed rostrally to include the white matter of the cerebellum, pons, midbrain, and eventually subcortical white matter. The successfully engrafted younger sibling had less brain inflammation, cortical atrophy, and neuronal loss on neuro-imaging and neuropathology compared to the untreated older sister. Fibroblasts and stem cells demonstrated deficient very long chain fatty acid oxidation. INTERPRETATION Although HSCT did not halt the course of ACOX1 deficiency, it reduced the extent of white matter inflammation in the brain. Demyelination continued because of ongoing neuronal loss, which may be due to inability of transplant to prevent progression of gray matter disease, adverse effects of chronic corticosteroid use to control graft-versus-host disease, or intervention occurring beyond a critical point for therapeutic efficacy.
Collapse
Affiliation(s)
- Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's, 1201 W. La Veta Blvd., Orange, CA, 92868, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang E, Prabhu SP. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol Clin North Am 2014; 52:279-319. [PMID: 24582341 DOI: 10.1016/j.rcl.2013.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The leukodystrophies are a diverse set of inherited white matter disorders and are uncommonly encountered by radiologists in everyday practice. As a result, it is challenging to recognize these disorders and to provide a useful differential for the referring physician. In this article, leukodystrophies are reviewed from the perspective of 4 imaging patterns: global myelination delay, periventricular/deep white matter predominant, subcortical white matter predominant, and mixed white/gray matter involvement patterns. Special emphasis is placed on pattern recognition and unusual combinations of findings that may suggest a specific diagnosis.
Collapse
Affiliation(s)
- Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
24
|
Rare copy number variation in cerebral palsy. Eur J Hum Genet 2013; 22:40-5. [PMID: 23695280 DOI: 10.1038/ejhg.2013.93] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/20/2013] [Accepted: 03/24/2013] [Indexed: 12/24/2022] Open
Abstract
Recent studies have established the role of rare copy number variants (CNVs) in several neurological disorders but the contribution of rare CNVs to cerebral palsy (CP) is not known. Fifty Caucasian families having children with CP were studied using two microarray designs. Potentially pathogenic, rare (<1% population frequency) CNVs were identified, and their frequency determined, by comparing the CNVs found in cases with 8329 adult controls with no known neurological disorders. Ten of the 50 cases (20%) had rare CNVs of potential relevance to CP; there were a total of 14 CNVs, which were observed in <0.1% (<8/8329) of the control population. Eight inherited from an unaffected mother: a 751-kb deletion including FSCB, a 1.5-Mb duplication of 7q21.13, a 534-kb duplication of 15q11.2, a 446-kb duplication including CTNND2, a 219-kb duplication including MCPH1, a 169-kb duplication of 22q13.33, a 64-kb duplication of MC2R, and a 135-bp exonic deletion of SLC06A1. Three inherited from an unaffected father: a 386-kb deletion of 12p12.2-p12.1, a 234-kb duplication of 10q26.13, and a 4-kb exonic deletion of COPS3. The inheritance was unknown for three CNVs: a 157-bp exonic deletion of ACOX1, a 693-kb duplication of 17q25.3, and a 265-kb duplication of DAAM1. This is the first systematic study of CNVs in CP, and although it did not identify de novo mutations, has shown inherited, rare CNVs involving potentially pathogenic genes and pathways requiring further investigation.
Collapse
|
25
|
Baarine M, Andréoletti P, Athias A, Nury T, Zarrouk A, Ragot K, Vejux A, Riedinger JM, Kattan Z, Bessede G, Trompier D, Savary S, Cherkaoui-Malki M, Lizard G. Evidence of oxidative stress in very long chain fatty acid – Treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Neuroscience 2012; 213:1-18. [DOI: 10.1016/j.neuroscience.2012.03.058] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/11/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
26
|
Liang JS, Lu JF. Peroxisomal disorders with infantile seizures. Brain Dev 2011; 33:777-82. [PMID: 21397417 DOI: 10.1016/j.braindev.2011.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 01/03/2023]
Abstract
Peroxisomes are organelles responsible for multiple metabolic pathways including the biosynthesis of plasmalogens and the oxidation of branched-chain as well as very-long-chain fatty acids (VLCFAs). Peroxisomal disorders (PDs) are heterogeneous groups of diseases and affect many organs with varying degrees of involvement. Even pathogenetically distinct PDs share some common symptoms. However, several PDs have uniquely characteristic clinical findings. The durations of survival in PDs are also variable. Infants with PDs are usually presented with developmental delay, visual and hearing impairment. Generalized hypotonia is present in severe cases. Epileptic seizures are also a common characteristic of patients with certain PDs. Nonetheless, the classification and evolution of epilepsy in PDs have not been elucidated in detail. Here, we review the relevant literatures and provide an overview of PDs with particular emphasis on the characteristics of seizures in infants.
Collapse
Affiliation(s)
- Jao-Shwann Liang
- Department of Pediatrics and Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | |
Collapse
|