1
|
Schaeper JJ, Liberman MC, Salditt T. Imaging of excised cochleae by micro-CT: staining, liquid embedding, and image modalities. J Med Imaging (Bellingham) 2023; 10:053501. [PMID: 37753271 PMCID: PMC10519431 DOI: 10.1117/1.jmi.10.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Purpose Assessing the complex three-dimensional (3D) structure of the cochlea is crucial to understanding the fundamental aspects of signal transduction in the inner ear and is a prerequisite for the development of novel cochlear implants. X-ray phase-contrast computed tomography offers destruction-free 3D imaging with little sample preparation, thus preserving the delicate structure of the cochlea. The use of heavy metal stains enables higher contrast and resolution and facilitates segmentation of the cochlea. Approach For μ-CT of small animal and human cochlea, we explore the heavy metal osmium tetroxide (OTO) as a radiocontrast agent and delineate laboratory μ - CT from synchrotron CT. We investigate how phase retrieval can be used to improve the image quality of the reconstructions, both for stained and unstained specimens. Results Image contrast for soft tissue in an aqueous solution is insufficient under the in-house conditions, whereas the OTO stain increases contrast for lipid-rich tissue components, such as the myelin sheaths in nervous tissue, enabling contrast-based rendering of the different components of the auditory nervous system. The overall morphology of the cochlea with the three scalae and membranes is very well represented. Further, the image quality of the reconstructions improves significantly when a phase retrieval scheme is used, which is also suitable for non-ideal laboratory μ - CT settings. With highly brilliant synchrotron radiation (SR), we achieve high contrast for unstained whole cochleae at the cellular level. Conclusions The OTO stain is suitable for 3D imaging of small animal and human cochlea with laboratory μ - CT , and relevant pathologies, such as a loss of sensory cells and neurons, can be visualized. With SR and optimized phase retrieval, the cellular level can be reached even for unstained samples in aqueous solution, as demonstrated by the high visibility of single hair cells and spiral ganglion neurons.
Collapse
Affiliation(s)
- Jannis Justus Schaeper
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| | - Michael Charles Liberman
- Massachusetts Eye and Ear Infirmary, Eaton-Peabody Laboratories, Boston, Massachusetts, United States
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, Massachusetts, United States
| | - Tim Salditt
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| |
Collapse
|
2
|
Johnson Chacko L, Lahlou H, Steinacher C, Assou S, Messat Y, Dudás J, Edge A, Crespo B, Crosier M, Sergi C, Schrott-Fischer A, Zine A. Transcriptome-Wide Analysis Reveals a Role for Extracellular Matrix and Integrin Receptor Genes in Otic Neurosensory Differentiation from Human iPSCs. Int J Mol Sci 2021; 22:10849. [PMID: 34639189 PMCID: PMC8509699 DOI: 10.3390/ijms221910849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
We analyzed transcriptomic data from otic sensory cells differentiated from human induced pluripotent stem cells (hiPSCs) by a previously described method to gain new insights into the early human otic neurosensory lineage. We identified genes and biological networks not previously described to occur in the human otic sensory developmental cell lineage. These analyses identified and ranked genes known to be part of the otic sensory lineage program (SIX1, EYA1, GATA3, etc.), in addition to a number of novel genes encoding extracellular matrix (ECM) (COL3A1, COL5A2, DCN, etc.) and integrin (ITG) receptors (ITGAV, ITGA4, ITGA) for ECM molecules. The results were confirmed by quantitative PCR analysis of a comprehensive panel of genes differentially expressed during the time course of hiPSC differentiation in vitro. Immunocytochemistry validated results for select otic and ECM/ITG gene markers in the in vivo human fetal inner ear. Our screen shows ECM and ITG gene expression changes coincident with hiPSC differentiation towards human otic neurosensory cells. Our findings suggest a critical role of ECM-ITG interactions with otic neurosensory lineage genes in early neurosensory development and cell fate determination in the human fetal inner ear.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (L.J.C.); (C.S.); (J.D.)
| | - Hanae Lahlou
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02101, USA; (H.L.); (A.E.)
| | - Claudia Steinacher
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (L.J.C.); (C.S.); (J.D.)
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France;
| | - Yassine Messat
- LBN, Laboratory of Bioengineering and Nanoscience, Univ Montpellier, 34090 Montpellier, France;
| | - József Dudás
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (L.J.C.); (C.S.); (J.D.)
| | - Albert Edge
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02101, USA; (H.L.); (A.E.)
| | - Berta Crespo
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1 N1EH, UK;
| | - Moira Crosier
- Human Development Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 4EP, UK;
| | - Consolato Sergi
- Anatomic Pathology Division, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada;
| | - Anneliese Schrott-Fischer
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (L.J.C.); (C.S.); (J.D.)
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, Univ Montpellier, 34090 Montpellier, France;
| |
Collapse
|
3
|
Synchrotron Radiation-Based Reconstruction of the Human Spiral Ganglion: Implications for Cochlear Implantation. Ear Hear 2021; 41:173-181. [PMID: 31008733 DOI: 10.1097/aud.0000000000000738] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To three-dimensionally reconstruct Rosenthal's canal (RC) housing the human spiral ganglion (SG) using synchrotron radiation phase-contrast imaging (SR-PCI). Straight cochlear implant electrode arrays were inserted to better comprehend the electro-cochlear interface in cochlear implantation (CI). DESIGN SR-PCI was used to reconstruct the human cochlea with and without cadaveric CI. Twenty-eight cochleae were volume rendered, of which 12 underwent cadaveric CI with a straight electrode via the round window (RW). Data were input into the 3D Slicer software program and anatomical structures were modeled using a threshold paint tool. RESULTS The human RC and SG were reproduced three-dimensionally with artefact-free imaging of electrode arrays. The anatomy of the SG and its relationship to the sensory organ (Corti) and soft and bony structures were assessed. CONCLUSIONS SR-PCI and computer-based three-dimensional reconstructions demonstrated the relationships among implanted electrodes, angular insertion depths, and the SG for the first time in intact, unstained, and nondecalcified specimens. This information can be used to assess stimulation strategies and future electrode designs, as well as create place-frequency maps of the SG for optimal stimulation strategies of the human auditory nerve in CI.
Collapse
|
4
|
Keppeler D, Kampshoff CA, Thirumalai A, Duque-Afonso CJ, Schaeper JJ, Quilitz T, Töpperwien M, Vogl C, Hessler R, Meyer A, Salditt T, Moser T. Multiscale photonic imaging of the native and implanted cochlea. Proc Natl Acad Sci U S A 2021; 118:e2014472118. [PMID: 33903231 PMCID: PMC8106341 DOI: 10.1073/pnas.2014472118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cochlea of our auditory system is an intricate structure deeply embedded in the temporal bone. Compared with other sensory organs such as the eye, the cochlea has remained poorly accessible for investigation, for example, by imaging. This limitation also concerns the further development of technology for restoring hearing in the case of cochlear dysfunction, which requires quantitative information on spatial dimensions and the sensorineural status of the cochlea. Here, we employed X-ray phase-contrast tomography and light-sheet fluorescence microscopy and their combination for multiscale and multimodal imaging of cochlear morphology in species that serve as established animal models for auditory research. We provide a systematic reference for morphological parameters relevant for cochlear implant development for rodent and nonhuman primate models. We simulate the spread of light from the emitters of the optical implants within the reconstructed nonhuman primate cochlea, which indicates a spatially narrow optogenetic excitation of spiral ganglion neurons.
Collapse
Affiliation(s)
- Daniel Keppeler
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christoph A Kampshoff
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Anupriya Thirumalai
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Carlos J Duque-Afonso
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jannis J Schaeper
- Institute for X-ray Physics, University of Göttingen, 37075 Göttingen, Germany
| | - Tabea Quilitz
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Mareike Töpperwien
- Institute for X-ray Physics, University of Göttingen, 37075 Göttingen, Germany
| | - Christian Vogl
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | | | - Alexander Meyer
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, 37075 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany;
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Yin HX, Zhang P, Wang Z, Liu YF, Liu Y, Xiao TQ, Yang ZH, Xian JF, Zhao PF, Li J, Lv H, Ding HY, Liu XH, Zhu JM, Wang ZC. Investigation of inner ear anatomy in mouse using X-ray phase contrast tomography. Microsc Res Tech 2019; 82:953-960. [PMID: 30636063 DOI: 10.1002/jemt.23121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022]
Abstract
A thorough understanding of inner ear anatomy is important for investigators. However, investigation of the mouse inner ear is difficult due to the limitations of imaging techniques. X-ray phase contrast tomography increases contrast 100-1,000 times compared with conventional X-ray imaging. This study aimed to investigate inner ear anatomy in a fresh post-mortem mouse using X-ray phase contrast tomography and to provide a comprehensive atlas of microstructures with less tissue deformation. All experiments were performed in accordance with our institution's guidelines on the care and use of laboratory animals. A fresh mouse cadaver was scanned immediately after sacrifice using an inline phase contrast tomography system. Slice images were reconstructed using a filtered back-projection (FBP) algorithm. Standardized axial and coronal planes were adjusted with a multi-planar reconstruction method. Some three-dimensional (3D) objects were reconstructed by surface rendering. The characteristic features of microstructures, including otoconia masses of the saccular and utricular maculae, superior and inferior macula cribrosae, single canal, modiolus, and osseous spiral lamina, were described in detail. Spatial positions and relationships of the vestibular structures were exhibited in 3D views. This study investigated mouse inner ear anatomy and provided a standardized presentation of microstructures. In particular, otoconia masses were visualized in their natural status without contrast for the first time. The comprehensive anatomy atlas presented in this study provides an excellent reference for morphology studies of the inner ear.
Collapse
Affiliation(s)
- Hong-Xia Yin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yun-Fu Liu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- Comparative Medical Center, Peking Union Medical College and Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Beijing, China
| | - Ti-Qiao Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun-Fang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peng-Fei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He-Yu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue-Huan Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian-Ming Zhu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Johnson Chacko L, Wertjanz D, Sergi C, Dudas J, Fischer N, Eberharter T, Hoermann R, Glueckert R, Fritsch H, Rask-Andersen H, Schrott-Fischer A, Handschuh S. Growth and cellular patterning during fetal human inner ear development studied by a correlative imaging approach. BMC DEVELOPMENTAL BIOLOGY 2019; 19:11. [PMID: 31109306 PMCID: PMC6528216 DOI: 10.1186/s12861-019-0191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/12/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Progressive transformation of the otic placode into the functional inner ear during gestational development in humans leads to the acquisition of hearing perception via the cochlea and balance and spatial orientation via the vestibular organ. RESULTS Using a correlative approach involving micro-computerized tomography (micro-CT), transmission electron microscopy and histological techniques we were able to examine both the morphological and cellular changes associated with human inner ear development. Such an evaluation allowed for the examination of 3D geometry with high spatial and temporal resolution. In concert with gestational progression and growth of the cochlear duct, an increase in the distance between some of the Crista ampullaris is evident in all the specimens examined from GW12 to GW36. A parallel increase in the distances between the macular organs - fetal utricle and saccule - is also evident across the gestational stages examined. The distances between both the utricle and saccule to the three cristae ampullares also increased across the stages examined. A gradient in hair cell differentiation is apparent from apex to base of the fetal cochlea even at GW14. CONCLUSION We present structural information on human inner ear development across multiple levels of biological organization, including gross-morphology of the inner ear, cellular and subcellular details of hearing and vestibular organs, as well as ultrastructural details in the developing sensory epithelia. This enabled the gathering of detailed information regarding morphometric changes as well in realizing the complex developmental patterns of the human inner ear. We were able to quantify the volumetric and linear aspects of selected gestational inner ear specimens enabling a better understanding of the cellular changes across the fetal gestational timeline. Moreover, these data could serve as a reference for better understanding disorders that arise during inner ear development.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - David Wertjanz
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Consolato Sergi
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Theresa Eberharter
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Romed Hoermann
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Helga Fritsch
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Stephan Handschuh
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Tawfik KO, Leader BA, Walters ZA, Choo DI. Relative Preservation of Superior Semicircular Canal Architecture in CHARGE Syndrome. Otolaryngol Head Neck Surg 2019; 160:1095-1100. [PMID: 30667318 DOI: 10.1177/0194599818824306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES (1) Describe common patterns of semicircular canal (SCC) anomalies in CHARGE syndrome (CS) and (2) recognize that in CS, the architecture of the superior SCC may be relatively preserved. STUDY DESIGN This is a retrospective review of temporal bone imaging studies. SETTING Quaternary care center. SUBJECTS AND METHODS A sample of 37 patients with CS. All subjects met clinical diagnostic criteria for CS. The presence/absence of anomalies of the middle ear, mastoid, temporal bone venous anatomy, inner ear, and internal auditory canal was recorded. Anomalies of each SCC were considered separately and by severity (normal, dysplasia, aplasia). RESULTS Thirty-seven subjects (74 temporal bones) were reviewed. Thirty-four (92.0%) patients demonstrated bilateral SCC anomalies. Three (8.0%) had normal SCCs. In patients with SCC anomalies, all canals demonstrated bilateral abnormalities. Thirty-two (86.5%) patients had bilateral horizontal SCC aplasia. These 32 patients also demonstrated posterior SCC aplasia in at least 1 ear. Of 74 temporal bones, 37 (50.0%) had superior SCC dysplasia. All dysplastic superior SCCs showed preservation of the anterior limb. Complete superior SCC aplasia was found in 28 (37.8%) temporal bones. CONCLUSION SCC anomalies occur with high frequency in CS. Complete absence of the horizontal and posterior canals is typical and usually bilateral. By contrast, the superior SCC often demonstrates relative preservation of the anterior limb.
Collapse
Affiliation(s)
- Kareem O Tawfik
- 1 Division of Otolaryngology-Head & Neck Surgery, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Brittany A Leader
- 2 Department of Otolaryngology-Head & Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zoe A Walters
- 3 University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Daniel I Choo
- 2 Department of Otolaryngology-Head & Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,4 Division of Pediatric Otolaryngology-Head & Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Glueckert R, Johnson Chacko L, Schmidbauer D, Potrusil T, Pechriggl EJ, Hoermann R, Brenner E, Reka A, Schrott-Fischer A, Handschuh S. Visualization of the Membranous Labyrinth and Nerve Fiber Pathways in Human and Animal Inner Ears Using MicroCT Imaging. Front Neurosci 2018; 12:501. [PMID: 30108474 PMCID: PMC6079228 DOI: 10.3389/fnins.2018.00501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Design and implantation of bionic implants for restoring impaired hair cell function relies on accurate knowledge about the microanatomy and nerve fiber pathways of the human inner ear and its variation. Non-destructive isotropic imaging of soft tissues of the inner ear with lab-based microscopic X-ray computed tomography (microCT) offers high resolution but requires contrast enhancement using compounds with high X-ray attenuation. We evaluated different contrast enhancement techniques in mice, cat, and human temporal bones to differentially visualize the membranous labyrinth, sensory epithelia, and their innervating nerves together with the facial nerve and middle ear. Lugol’s iodine potassium iodine (I2KI) gave high soft tissue contrast in ossified specimens but failed to provide unambiguous identification of smaller nerve fiber bundles inside small bony canals. Fixation or post-fixation with osmium tetroxide followed by decalcification in EDTA provided superior contrast for nerve fibers and membranous structures. We processed 50 human temporal bones and acquired microCT scans with 15 μm voxel size. Subsequently we segmented sensorineural structures and the endolymphatic compartment for 3D representations to serve for morphometric variation analysis. We tested higher resolution image acquisition down to 3.0 μm voxel size in human and 0.5 μm in mice, which provided a unique level of detail and enabled us to visualize single neurons and hair cells in the mouse inner ear, which could offer an alternative quantitative analysis of cell numbers in smaller animals. Bigger ossified human temporal bones comprising the middle ear and mastoid bone can be contrasted with I2KI and imaged in toto at 25 μm voxel size. These data are suitable for surgical planning for electrode prototype placements. A preliminary assessment of geometric changes through tissue processing resulted in 1.6% volume increase caused during decalcification by EDTA and 0.5% volume increase caused by partial dehydration to 70% ethanol, which proved to be the best mounting medium for microCT image acquisition.
Collapse
Affiliation(s)
- Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Schmidbauer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Biotechnology and Food Engineering, Management Center Innsbruck (MCI), Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Romed Hoermann
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Brenner
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Alen Reka
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Stephan Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
9
|
Fluvastatin protects cochleae from damage by high-level noise. Sci Rep 2018; 8:3033. [PMID: 29445111 PMCID: PMC5813011 DOI: 10.1038/s41598-018-21336-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure to noise and ototoxic drugs are responsible for much of the debilitating hearing loss experienced by about 350 million people worldwide. Beyond hearing aids and cochlear implants, there have been no other FDA approved drug interventions established in the clinic that would either protect or reverse the effects of hearing loss. Using Auditory Brainstem Responses (ABR) in a guinea pig model, we demonstrate that fluvastatin, an inhibitor of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, protects against loss of cochlear function initiated by high intensity noise. A novel synchrotron radiation based X-ray tomographic method that imaged soft tissues at micrometer resolution in unsectioned cochleae, allowed an efficient, qualitative evaluation of the three-dimensional internal structure of the intact organ. For quantitative measures, plastic embedded cochleae were sectioned followed by hair cell counting. Protection in noise-exposed cochleae is associated with retention of inner and outer hair cells. This study demonstrates the potential of HMG-CoA reductase inhibitors, already vetted in human medicine for other purposes, to protect against noise induced hearing loss.
Collapse
|
10
|
Dhanasingh A, Jolly C. An overview of cochlear implant electrode array designs. Hear Res 2017; 356:93-103. [DOI: 10.1016/j.heares.2017.10.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
|
11
|
CT findings of the temporal bone in CHARGE syndrome: aspects of importance in cochlear implant surgery. Eur Arch Otorhinolaryngol 2016; 273:4225-4240. [PMID: 27324890 PMCID: PMC5104824 DOI: 10.1007/s00405-016-4141-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/11/2016] [Indexed: 11/23/2022]
Abstract
To provide an overview of anomalies of the temporal bone in CHARGE syndrome relevant to cochlear implantation (CI), anatomical structures of the temporal bone and the respective genotypes were analysed. In this retrospective study, 42 CTs of the temporal bone of 42 patients with CHARGE syndrome were reviewed in consensus by two head-and-neck radiologists and two otological surgeons. Anatomical structures of the temporal bone were evaluated and correlated with genetic data. Abnormalities that might affect CI surgery were seen, such as a vascular structure, a petrosquamosal sinus (13 %), an underdeveloped mastoid (8 %) and an aberrant course of the facial nerve crossing the round window (9 %) and/or the promontory (18 %). The appearance of the inner ear varied widely: in 77 % of patients all semicircular canals were absent and the cochlea varied from normal to hypoplastic. A stenotic cochlear aperture was observed in 37 %. The middle ear was often affected with a stenotic round (14 %) or oval window (71 %). More anomalies were observed in patients with truncating mutations than with non-truncating mutations. Temporal bone findings in CHARGE syndrome vary widely. Vascular variants, aberrant route of the facial nerve, an underdeveloped mastoid, aplasia of the semicircular canals, and stenotic round window may complicate cochlear implantation.
Collapse
|
12
|
Ha J, Ong F, Wood B, Vijayasekaran S. Radiologic and Audiologic Findings in the Temporal Bone of Patients with CHARGE Syndrome. Ochsner J 2016; 16:125-129. [PMID: 27303220 PMCID: PMC4896654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND CHARGE syndrome is a common congenital anomaly. Hearing loss affects 60%-90% of these children. As temporal bone computed tomography (CT) has become more sophisticated, more abnormalities of the middle and inner ear have been found. We present the detailed CT findings for children with CHARGE syndrome and the correlation of the CT findings with audiograms. METHODS We performed a retrospective medical records review of 12 patients with CHARGE syndrome, identified between 1990-2011 at Princess Margaret Hospital for Children in Western Australia, who underwent temporal bone CT for evaluation of hearing loss. RESULTS We present our findings for the 24 ears in terms of the cochlear, semicircular canal, middle ear, facial nerve, external auditory canal, venous, and jugular anomalies. The internal auditory canal was normal in 83.3% (n=20) of ears. Three (12.5%) ears had enlarged basal turns, and 4 (16.7%) each had hypoplastic and incompletely partitioned apical turns. The majority (n=13, 56.5%) of the vestibules were dysplastic. Up to 70.8% had abnormalities of the semicircular canal. The middle ear cavity was normal in 55% (n=11) of ears; however, up to 80% of the ears had some abnormality of the ossicles, and up to 70% had an abnormality of the facial nerve (7th cranial nerve) segments, especially in the labyrinthine segment. CT findings did not correlate with the audiograms. CONCLUSION The management of children with CHARGE syndrome is complex, requiring early evaluation and close attention of the multidisciplinary team. Early identification of hearing deficits is vital for patients' linguistic development.
Collapse
Affiliation(s)
- Jennifer Ha
- Department of Otolaryngology – Head and Neck Surgery, Princess Margaret Hospital, Subiaco, Australia
- Department of Pediatric Otolaryngology – Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI
| | - Frederick Ong
- Department of Otolaryngology – Head and Neck Surgery, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Bradley Wood
- Department of Diagnostic Imaging, Fremantle Hospital, Fremantle, Australia
| | - Shyan Vijayasekaran
- Department of Otolaryngology – Head and Neck Surgery, Princess Margaret Hospital, Subiaco, Australia
| |
Collapse
|
13
|
Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear. Int J Comput Assist Radiol Surg 2013; 8:481-509. [PMID: 23633112 PMCID: PMC3702969 DOI: 10.1007/s11548-013-0825-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/27/2013] [Indexed: 11/02/2022]
Abstract
PURPOSE This paper presents a highly accurate cross-sectional preparation technique. The research aim was to develop an adequate imaging modality for both soft and bony tissue structures featuring high contrast and high resolution. Therefore, the advancement of an already existing micro-grinding procedure was pursued. The central objectives were to preserve spatial relations and to ensure the accurate three-dimensional reconstruction of histological sections. METHODS Twelve human temporal bone specimens including middle and inner ear structures were utilized. They were embedded in epoxy resin, then dissected by serial grinding and finally digitalized. The actual abrasion of each grinding slice was measured using a tactile length gauge with an accuracy of one micrometre. The cross-sectional images were aligned with the aid of artificial markers and by applying a feature-based, custom-made auto-registration algorithm. To determine the accuracy of the overall reconstruction procedure, a well-known reference object was used for comparison. To ensure the compatibility of the histological data with conventional clinical image data, the image stacks were finally converted into the DICOM standard. RESULTS The image fusion of data from temporal bone specimens' and from non-destructive flat-panel-based volume computed tomography confirmed the spatial accuracy achieved by the procedure, as did the evaluation using the reference object. CONCLUSION This systematic and easy-to-follow preparation technique enables the three-dimensional (3D) histological reconstruction of complex soft and bony tissue structures. It facilitates the creation of detailed and spatially correct 3D anatomical models. Such models are of great benefit for image-based segmentation and planning in the field of computer-assisted surgery as well as in finite element analysis. In the context of human inner ear surgery, three-dimensional histology will improve the experimental evaluation and determination of intra-cochlear trauma after the insertion of an electrode array of a cochlear implant system.
Collapse
|
14
|
Histological and Synchrotron Radiation-Based Computed Microtomography Study of 2 Human-Retrieved Direct Laser Metal Formed Titanium Implants. IMPLANT DENT 2013; 22:175-81. [DOI: 10.1097/id.0b013e318282817d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Goyal V, Rajguru S, Matic AI, Stock SR, Richter CP. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat Rec (Hoboken) 2012; 295:1987-99. [PMID: 23044730 DOI: 10.1002/ar.22583] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/09/2022]
Abstract
This article provides a mini review of the current state of infrared neural stimulation (INS), and new experimental results concerning INS damage thresholds. INS promises to be an attractive alternative for neural interfaces. With this method, one can attain spatially selective neural stimulation that is not possible with electrical stimulation. INS is based on the delivery of short laser pulses that result in a transient temperature increase in the tissue and depolarize the neurons. At a high stimulation rate and/or high pulse energy, the method bears the risk of thermal damage to the tissue from the instantaneous temperature increase or from potential accumulation of thermal energy. With the present study, we determined the injury thresholds in guinea pig cochleae for acute INS using functional measurements (compound action potentials) and histological evaluation. The selected laser parameters for INS were the wavelength (λ = 1,869 nm), the pulse duration (100 μs), the pulse repetition rate (250 Hz), and the radiant energy (0-127 μJ/pulse). For up to 5 hr of continuous irradiation at 250 Hz and at radiant energies up to 25 μJ/pulse, we did not observe any functional or histological damage in the cochlea. Functional loss was observed for energies above 25 μJ/pulse and the probability of injury to the target tissue resulting in functional loss increased with increasing radiant energy. Corresponding cochlear histology from control animals and animals exposed to 98 or 127 μJ/pulse at 250 Hz pulse repetition rate did not show a loss of spiral ganglion cells, hair cells, or other soft tissue structures of the organ of Corti. Light microscopy did not reveal any structural changes in the soft tissue either. Additionally, microcomputed tomography was used to visualize the placement of the optical fiber within the cochlea.
Collapse
Affiliation(s)
- Vinay Goyal
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | | | | | |
Collapse
|
16
|
Janssen N, Bergman JEH, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, Hofstra RMW, van Ravenswaaij-Arts CMA, Hoefsloot LH. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat 2012; 33:1149-60. [DOI: 10.1002/humu.22086] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
|
17
|
Rau C, Hwang M, Lee WK, Richter CP. Quantitative X-ray tomography of the mouse cochlea. PLoS One 2012; 7:e33568. [PMID: 22485145 PMCID: PMC3317668 DOI: 10.1371/journal.pone.0033568] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 11/29/2022] Open
Abstract
Imaging with hard X-rays allows visualizing cochlear structures while maintaining intrinsic qualities of the tissue, including structure and size. With coherent X-rays, soft tissues, including membranes, can be imaged as well as cells making use of the so-called in-line phase contrast. In the present experiments, partially coherent synchrotron radiation has been used for micro-tomography. Three-dimensional reconstructions of the mouse cochlea have been created using the EM3D software and the volume has been segmented in the Amira Software Suite. The structures that have been reconstructed include scala tympani, scala media, scala vestibuli, Reissner's membrane, basilar membrane, tectorial membrane, organ of Corti, spiral limbus, spiral ganglion and cochlear nerve. Cross-sectional areas of the scalae were measured. The results provide a realistic and quantitative reconstruction of the cochlea.
Collapse
Affiliation(s)
- Christoph Rau
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, United Kingdom.
| | | | | | | |
Collapse
|
18
|
Kopecky B, Johnson S, Schmitz H, Santi P, Fritzsch B. Scanning thin-sheet laser imaging microscopy elucidates details on mouse ear development. Dev Dyn 2012; 241:465-80. [PMID: 22271591 PMCID: PMC5010664 DOI: 10.1002/dvdy.23736] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The mammalian inner ear is transformed from a flat placode into a three-dimensional (3D) structure with six sensory epithelia that allow for the perception of sound and both linear and angular acceleration. While hearing and balance problems are typically considered to be adult onset diseases, they may arise as a developmental perturbation to the developing ear. Future prevention of hearing or balance loss requires an understanding of how closely genetic mutations in model organisms reflect the human case, necessitating an objective multidimensional comparison of mouse ears with human ears that have comparable mutations in the same gene. RESULTS Here, we present improved 3D analyses of normal murine ears during embryonic development using optical sections obtained through Thin-Sheet Laser Imaging Microscopy. We chronicle the transformation of an undifferentiated otic vesicle between mouse embryonic day 11.5 to a fully differentiated inner ear at postnatal day 15. CONCLUSIONS Our analysis of ear development provides new insights into ear development, enables unique perspectives into the complex development of the ear, and allows for the first full quantification of volumetric and linear aspects of ear growth. Our data provide the framework for future analysis of mutant phenotypes that are currently under-appreciated using only two dimensional renderings.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
19
|
Hurd EA, Adams ME, Layman WS, Swiderski DL, Beyer LA, Halsey KE, Benson JM, Gong TW, Dolan DF, Raphael Y, Martin DM. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res 2011; 282:184-95. [PMID: 21875659 DOI: 10.1016/j.heares.2011.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt)(/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt)(/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt)(/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt)(/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears.
Collapse
Affiliation(s)
- Elizabeth A Hurd
- Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI 48109-5652, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Moreno LE, Rajguru SM, Matic AI, Yerram N, Robinson AM, Hwang M, Stock S, Richter CP. Infrared neural stimulation: beam path in the guinea pig cochlea. Hear Res 2011; 282:289-302. [PMID: 21763410 DOI: 10.1016/j.heares.2011.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 11/26/2022]
Abstract
It has been demonstrated that INS can be utilized to stimulate spiral ganglion cells in the cochlea. Although neural stimulation can be achieved without direct contact of the radiation source and the tissue, the presence of fluids or bone between the target structure and the radiation source may lead to absorption or scattering of the radiation, which may limit the efficacy of INS. The present study demonstrates the neural structures in the radiation beam path that can be stimulated. Histological reconstructions and microCT of guinea pig cochleae stimulated with an infrared laser suggest that the orientation of the beam from the optical fiber determined the site of stimulation in the cochlea. Best frequencies of the INS-evoked neural responses obtained from the central nucleus of the inferior colliculus matched the histological sites in the spiral ganglion.
Collapse
Affiliation(s)
- Laura E Moreno
- Department of Otolaryngology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Milunsky JM, Maher TM, Zhao G, Wang Z, Mulliken JB, Chitayat D, Clemens M, Stalker HJ, Bauer M, Burch M, Chénier S, Cunningham ML, Drack AV, Janssens S, Karlea A, Klatt R, Kini U, Klein O, Lachmeijer AM, Megarbane A, Mendelsohn NJ, Meschino WS, Mortier GR, Parkash S, Ray CR, Roberts A, Roberts A, Reardon W, Schnur RE, Smith R, Splitt M, Tezcan K, Whiteford ML, Wong DA, Zori R, Lin AE. Genotype-phenotype analysis of the branchio-oculo-facial syndrome. Am J Med Genet A 2010; 155A:22-32. [DOI: 10.1002/ajmg.a.33783] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Layman WS, Hurd EA, Martin DM. Chromodomain proteins in development: lessons from CHARGE syndrome. Clin Genet 2010; 78:11-20. [PMID: 20507341 DOI: 10.1111/j.1399-0004.2010.01446.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In humans, heterozygous mutations in the adenosine triphosphate-dependent chromatin remodeling gene CHD7 cause CHARGE syndrome, a common cause of deaf-blindness, balance disorders, congenital heart malformations, and olfactory dysfunction with an estimated incidence of approximately 1 in 10,000 newborns. The clinical features of CHARGE in humans and mice are highly variable and incompletely penetrant, and most mutations appear to result in haploinsufficiency of functional CHD7 protein. Mice with heterozygous loss of function mutations in Chd7 are a good model for CHARGE syndrome, and analyses of mouse mutant phenotypes have begun to clarify a role for CHD7 during development and into adulthood. Chd7 heterozygous mutant mice have postnatal delayed growth, inner ear malformations, anosmia/hyposmia, and craniofacial defects, and Chd7 homozygous mutants are embryonic lethal. A central question in developmental biology is how chromodomain proteins like CHD7 regulate important developmental processes, and whether they directly activate or repress downstream gene transcription or act more globally to alter chromatin structure and/or function. CHD7 is expressed in a wide variety of tissues during development, suggesting that it has tissue-specific and developmental stage-specific roles. Here, we review recent and ongoing analyses of CHD7 function in mouse models and cell-based systems. These studies explore tissue-specific effects of CHD7 deficiency, known CHD7 interacting proteins, and downstream target sites for CHD7 binding. CHD7 is emerging as a critical regulator of important developmental processes in organs affected by human CHARGE syndrome.
Collapse
Affiliation(s)
- W S Layman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|