1
|
Gürbüz BB, Gülbakan B, Özgül RK, Yalnızoğlu D, Yılmaz DY, Göçmen R, Koşukcu C, Kandemir N, Acar NV, Salih B, Dursun A. Exploring metabolic alterations in PYCR2 deficiency: Unveiling pathways and clinical presentations of hypomyelinating leukodystrophy 10. Am J Med Genet A 2024; 194:e63645. [PMID: 38709052 DOI: 10.1002/ajmg.a.63645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Proline-5-carboxylate reductase 2, encoded by PYCR2 gene, is an enzyme that catalyzes the last step of proline synthesis from pyrroline-5-carboxylate synthetase to proline. PYCR2 gene defect causes hypomyelinating leukodystrophy 10. Up until now, to our knowledge around 38 patients with PYCR2 defect have been reported. Herein, we describe clinical, neuroradiological, biochemical findings, and metabolomic profiling of three new genetically related cases of PYCR2 defects from a large family. Cerebrospinal fluid (CSF) amino acid levels were measured and untargeted metabolomic profiling of plasma and CSF were conducted and evaluated together with the clinical findings in the patients. While plasma and CSF proline levels were found to be totally normal, untargeted metabolomic profiling revealed mild increases of glutamate, alpha-ketoglutarate, and l-glutamate semialdehyde and marked increases of inosine and xanthine. Our findings and all the previous reports suggest that proline auxotrophy is not the central disease mechanism. Untargeted metabolomics point to mild changes in proline pathway and also in purine/pyrimidine pathway.
Collapse
Affiliation(s)
| | - Basri Gülbakan
- Division of Metabolism, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Rıza Köksal Özgül
- Division of Genetics, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Dilek Yalnızoğlu
- Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Didem Yücel Yılmaz
- Division of Genetics, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Rahşan Göçmen
- Division of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health, Ankara, Turkey
| | - Nurgün Kandemir
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Neşe Vardar Acar
- Faculty of Medicine, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Bekir Salih
- Depatment of Chemistry, Hacettepe University Faculty of Science, Ankara, Turkey
| | - Ali Dursun
- Division of Pediatric Metabolism, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Shangguan S, Zhang X, Ge Y, Han Y, Xiao L, Zhang Y, Xie H, Chen X, Wang X. Confirming the enzymatic activity and neurodevelopmental trajectory of PYCR1 mutation in one child with autosomal-recessive cutis laxa type 2. Mol Genet Genomics 2024; 299:81. [PMID: 39172257 PMCID: PMC11341742 DOI: 10.1007/s00438-024-02173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Autosomal-recessive cutis laxa type 2 (ARCL2) is a rare genetic disorder caused by pyrroline-5-carboxylate reductase 1 (PYCR1) mutations and characterized by loose and sagging skin, typical facial features, intrauterine growth retardation, and developmental delay. To study the effect of PYCR1 mutations on protein function and clinical features, we identified a homozygous missense mutation c.559G > A (p.Ala187Thr) in PYCR1 in a Chinese child with typical clinical features, especially severe developmental delays. The three-dimensional (3D) model showed the modification of the hydrogen bonds produce a misfolding in the mutant PYCR1 protein. Mutagenesis and enzyme assay study revealed decreased activity of the mutant protein in vitro, indicating that this mutation impairs PYCR1 function. Our findings confirmed abnormal enzymatic activity and neurodevelopmental trajectory of this PYCR1 mutation.
Collapse
Affiliation(s)
- Shaofang Shangguan
- Department of Medical Genetics, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Xueyuan Zhang
- Department of Children's Nutrition Research Center, Affiliated Children's Hospital of Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yangyang Ge
- Department of Medical Genetics, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Ye Han
- Department of Neurology, Affiliated Children's hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ling Xiao
- Department of Children's Nutrition Research Center, Affiliated Children's Hospital of Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yu Zhang
- Department of Laboratory Center, Capital Institute of Pediatrics, Beijing, China
| | - Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Xiaoyan Wang
- Department of Children's Nutrition Research Center, Affiliated Children's Hospital of Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
3
|
Beyens A, Pottie L, Sips P, Callewaert B. Clinical and Molecular Delineation of Cutis Laxa Syndromes: Paradigms for Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:273-309. [PMID: 34807425 DOI: 10.1007/978-3-030-80614-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cutis laxa (CL) syndromes are a large and heterogeneous group of rare connective tissue disorders that share loose redundant skin as a hallmark clinical feature, which reflects dermal elastic fiber fragmentation. Both acquired and congenital-Mendelian- forms exist. Acquired forms are progressive and often preceded by inflammatory triggers in the skin, but may show systemic elastolysis. Mendelian forms are often pleiotropic in nature and classified upon systemic manifestations and mode of inheritance. Though impaired elastogenesis is a common denominator in all Mendelian forms of CL, the underlying gene defects are diverse and affect structural components of the elastic fiber or impair metabolic pathways interfering with cellular trafficking, proline synthesis, or mitochondrial functioning. In this chapter we provide a detailed overview of the clinical and molecular characteristics of the different cutis laxa types and review the latest insights on elastic fiber assembly and homeostasis from both human and animal studies.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Department of Dermatology, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Stum MG, Tadenev ALD, Seburn KL, Miers KE, Poon PP, McMaster CR, Robinson C, Kane C, Silva KA, Cliften PF, Sundberg JP, Reinholdt LG, John SWM, Burgess RW. Genetic analysis of Pycr1 and Pycr2 in mice. Genetics 2021; 218:6178002. [PMID: 33734376 DOI: 10.1093/genetics/iyab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.
Collapse
Affiliation(s)
| | | | | | | | - Pak P Poon
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Carolyn Robinson
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Coleen Kane
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Department of Ophthalmology, Howard Hughes Medical Institute, New York, NY 10032, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
5
|
Yıldız Bölükbaşı E, Shabbir RMK, Malik S, Tolun A. Homozygous deletion of MYADML2 in cranial asymmetry, reduced bone maturation, multiple dislocations, lumbar lordosis, and prominent clavicles. J Hum Genet 2021; 66:171-179. [PMID: 32778762 DOI: 10.1038/s10038-020-0817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022]
Abstract
A null mutation in a patient can facilitate phenotype assignment and uncovers the function of that specific gene. We present five sibs of a consanguineous Pakistani family afflicted with a new syndrome with an unusual combination of skeletal anomalies including cranial asymmetry, fused sagittal sutures deviating from the medial axis, mandibular prognathia, maxillary hypoplasia, misaligned and crowded teeth, delayed bone age, multiple dislocations, hypoplastic and malpositioned patellae, humeral intracondylar fissures, scapular dyskinesis, long limbs, lumbar lordosis, protruding chest, prominent clavicles, short 5th digital rays, and ventral transverse digital creases plus features of cutis laxa. We mapped the disease gene locus to a 3.62-Mb region at 17q25.3 and identified a homozygous deletion of maximal 7.3 kb deduced to totally inactivate MYADML2 and downstream gene PYCR1, biallelic variants in which cause autosomal recessive cutis laxa (ARCL). All five affected sibs had the most common features of ARCL but not many of the less common ones. We attributed the anomalies not typical for ARCL to MYADML2 deficit, because no other genetic defect possibly a candidate to underlie the skeletal phenotype was found. MYADML2 is a gene of unknown function, has not been studied, and has not been associated with disease. Our findings present a possible phenotype for MYADML2 deficit that includes impaired bone patterning and maturation, definitely show that the gene is not essential for survival, and provide a start point for future studies on the function of MYADML2 protein. Detection of new patients is needed to confirm and delineate MYADML2-deficiency phenotype.
Collapse
Affiliation(s)
| | - Rana Muhammad Kamran Shabbir
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Malik
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aslıhan Tolun
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
6
|
Gharesouran J, Hosseinzadeh H, Ghafouri-Fard S, Jabbari Moghadam Y, Ahmadian Heris J, Jafari-Rouhi AH, Taheri M, Rezazadeh M. New insight into clinical heterogeneity and inheritance diversity of FBLN5-related cutis laxa. Orphanet J Rare Dis 2021; 16:51. [PMID: 33509220 PMCID: PMC7845118 DOI: 10.1186/s13023-021-01696-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background FBLN5-related cutis laxa (CL) is a rare disorder that involves elastic fiber-enriched tissues and is characterized by lax skin and variable systemic involvement such as pulmonary emphysema, arterial involvement, inguinal hernias, hollow viscus diverticula and pyloric stenosis. This type of CL follows mostly autosomal recessive (AR) and less commonly autosomal dominant patterns of inheritance. Results In this study, we detected a novel homozygous missense variant in exon 6 of FBLN5 gene (c.G544C, p.A182P) by using whole exome sequencing in a consanguineous Iranian family with two affected members. Our twin patients showed some of the clinical manifestation of FBLN5-related CL but they did not present pulmonary complications, gastrointestinal and genitourinary abnormalities. The notable thing about this monozygotic twin sisters is that only one of them showed ventricular septal defect, suggesting that this type of CL has intrafamilial variability. Co-segregation analysis showed the patients’ parents and relatives were heterozygous for detected variation suggesting AR form of the CL. In silico prediction tools showed that this mutation is pathogenic and 3D modeling of the normal and mutant protein revealed relative structural alteration of fibulin-5 suggesting that the A182P can contribute to the CL phenotype via the combined effect of lack of protein function and partly misfolding-associated toxicity. Conclusion We underlined the probable roles and functions of the involved domain of fibulin-5 and proposed some possible mechanisms involved in AR form of FBLN5-related CL. However, further functional studies and subsequent clinical and molecular investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Jabbari Moghadam
- Department of Otorhinolaryngology, School of Medicine, Sina Medical Research and Training Hospital, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Pediatrics, School of Medicine, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Liang ST, Audira G, Juniardi S, Chen JR, Lai YH, Du ZC, Lin DS, Hsiao CD. Zebrafish Carrying pycr1 Gene Deficiency Display Aging and Multiple Behavioral Abnormalities. Cells 2019; 8:cells8050453. [PMID: 31091804 PMCID: PMC6562453 DOI: 10.3390/cells8050453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is a natural process that internal gene control and external stimuli mediate. Clinical data pointed out that homozygotic or heterozygotic mutation in the pyrroline-5-carboxylate reductase 1 (PYCR1) gene in humans caused cutis laxa (ARCL) disease, with progeroid appearance, lax and wrinkled skin, joint laxity, osteopenia, and mental retardation phenotypes. In this study, we aimed to generate pycr1 knockout (KO) zebrafish and carried out biochemical characterizations and behavior analyses. Marked apoptosis and senescence were detected in pycr1 KO zebrafish, which started from embryos/larvae stage. Biochemical assays showed that adult pycr1 KO fish have significantly reduced proline and extracellular matrix contents, lowered energy, and diminished superoxide dismutase (SOD) and telomerase activity when compared to the wild type fish, which suggested the pycr1 KO fish may have dysfunction in mitochondria. The pycr1 KO fish were viable; however, displayed progeria-like phenotype from the 4 months old and reach 50% mortality around six months old. In adult stage, we found that pycr1 KO fish showed reduced locomotion activity, aggression, predator avoidance, social interaction interest, as well as dysregulated color preference and circadian rhythm. In summary, we have identified multiple behavioral alterations in a novel fish model for aging with pycr1 gene loss-of-function by behavioral tests. This animal model may not only provide a unique vertebrate model to screen potential anti-aging drugs in the future, but also be an excellent in vivo model towards a better understanding of the corresponding behavioral alterations that accompany aging.
Collapse
Affiliation(s)
- Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Jung-Ren Chen
- Department of Biological Science & Technology, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Zheng-Cai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 252, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 252, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan.
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
8
|
Huang YW, Chiang MF, Ho CS, Hung PL, Hsu MH, Lee TH, Chu LJ, Liu H, Tang P, Victor Ng W, Lin DS. A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. Aging Dis 2018; 9:1043-1057. [PMID: 30574417 PMCID: PMC6284769 DOI: 10.14336/ad.2018.0222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Aging is a complex biological process. A study of pyrroline-5-carboxylate reductase 1 (PYCR1) deficiency, which causes a progeroid syndrome, may not only shed light on its genetic contribution to autosomal recessive cutis laxa (ARCL) but also help elucidate the functional mechanisms associated with aging. In this study, we used RNA-Seq technology to examine gene expression changes in primary skin fibroblasts from healthy controls and patients with PYCR1 mutations. Approximately 22 and 32 candidate genes were found to be up- and downregulated, respectively, in fibroblasts from patients. Among the downregulated candidates in fibroblasts with PYCR1 mutations, a strong reduction in the expression of 17 genes (53.1%) which protein products are localized in the extracellular space was detected. These proteins included several important ECM components, periostin (POSTN), elastin (ELN), and decorin (DCN); genetic mutations in these proteins are associated with different phenotypes of aging, such as cutis laxa and joint and dermal manifestations. The differential expression of ten selected extracellular space genes was further validated using quantitative RT-PCR. Ingenuity Pathway Analysis revealed that some of the affected genes may be associated with cardiovascular system development and function, dermatological diseases and conditions, and cardiovascular disease. POSTN, one of the most downregulated gene candidates in affected individuals, is a matricellular protein with pivotal functions in heart valvulogenesis, skin wound healing, and brain development. Perturbation of PYCR1 expression revealed that it is positively correlated with the POSTN levels. Taken together, POSTN might be one of the key molecules that deserves further investigation for its role in this progeroid neurocutaneous syndrome.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan.
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| | - Che-Sheng Ho
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Mei-Hsin Hsu
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Tsung-Han Lee
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory and Department of Parasitology, Chang Gung University, Taoyuan, Taiwan.
| | - Wailap Victor Ng
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang Ming University, Taipei, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Dar-Shong Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
9
|
Arseni L, Lombardi A, Orioli D. From Structure to Phenotype: Impact of Collagen Alterations on Human Health. Int J Mol Sci 2018; 19:ijms19051407. [PMID: 29738498 PMCID: PMC5983607 DOI: 10.3390/ijms19051407] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/29/2018] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic and heterogeneous structure that plays multiple roles in living organisms. Its integrity and homeostasis are crucial for normal tissue development and organ physiology. Loss or alteration of ECM components turns towards a disease outcome. In this review, we provide a general overview of ECM components with a special focus on collagens, the most abundant and diverse ECM molecules. We discuss the different functions of the ECM including its impact on cell proliferation, migration and differentiation by highlighting the relevance of the bidirectional cross-talk between the matrix and surrounding cells. By systematically reviewing all the hereditary disorders associated to altered collagen structure or resulting in excessive collagen degradation, we point to the functional relevance of the collagen and therefore of the ECM elements for human health. Moreover, the large overlapping spectrum of clinical features of the collagen-related disorders makes in some cases the patient clinical diagnosis very difficult. A better understanding of ECM complexity and molecular mechanisms regulating the expression and functions of the various ECM elements will be fundamental to fully recognize the different clinical entities.
Collapse
Affiliation(s)
- Lavinia Arseni
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Anita Lombardi
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| | - Donata Orioli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| |
Collapse
|
10
|
Discriminative Features in Three Autosomal Recessive Cutis Laxa Syndromes: Cutis Laxa IIA, Cutis Laxa IIB, and Geroderma Osteoplastica. Int J Mol Sci 2017; 18:ijms18030635. [PMID: 28294978 PMCID: PMC5372648 DOI: 10.3390/ijms18030635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/10/2023] Open
Abstract
Cutis laxa is a heterogeneous condition characterized by redundant, sagging, inelastic, and wrinkled skin. The inherited forms of this disease are rare and can have autosomal dominant, autosomal recessive, or X-linked inheritance. Three of the autosomal recessive cutis laxa syndromes, namely cutis laxa IIA (ARCL2A), cutis laxa IIB (ARCL2B), and geroderma osteodysplastica (GO), have very similar clinical features, complicating accurate diagnosis. Individuals with these conditions often present with cutis laxa, progeroid features, and hyperextensible joints. These conditions also share additional features, such as short stature, hypotonia, and congenital hip dislocation, but the severity and frequency of these findings are variable in each of these cutis laxa syndromes. The characteristic features for ARCL2A are abnormal isoelectric focusing and facial features, including downslanting palpebral fissures and a long philtrum. Rather, the clinical phenotype of ARCL2B includes severe wrinkling of the dorsum of the hands and feet, wormian bones, athetoid movements, lipodystrophy, cataract and corneal clouding, a thin triangular face, and a pinched nose. Normal cognition and osteopenia leading to pathological fractures, maxillary hypoplasia, and oblique furrowing from the outer canthus to the lateral border of the supraorbital ridge are discriminative features for GO. Here we present 10 Iranian patients who were initially diagnosed clinically using the respective features of each cutis laxa syndrome. Each patient’s clinical diagnosis was then confirmed with molecular investigation of the responsible gene. Review of the clinical features from the cases reported from the literature also supports our conclusions.
Collapse
|
11
|
Zeng T, Zhu L, Liao M, Zhuo W, Yang S, Wu W, Wang D. Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer. Med Oncol 2017; 34:27. [PMID: 28078560 DOI: 10.1007/s12032-016-0870-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Pyrroline-5-carboxylate reductase 1 (PYCR1) is an enzyme involved in cell metabolism, which has been shown to be up-regulated in cancers. However, the functions of PYCR1 in prostate cancers (PCa) are still largely unknown. In the present study, we found that PYCR1 was highly expressed in prostate cancer tissues and then knocked down PYCR1 in PCa cell lines (DU145, PC-3 and LNCap) via lentivirus-mediated gene delivery and analyzed its biological function. Both qRT-PCR and western blotting indicated that PYCR1 was suppressed efficiently after sh-PYCR1 infection. Further analysis indicated knockdown of PYCR1 significantly inhibited PCa cell growth and colony formation ability. The inhibition effects on growth were likely due to G2/M-phase arrest and enhanced cell apoptosis, as determined by flow cytometer analysis. At last, we verified the expression levels of cell cycle regulatory proteins, including CDK1, CDK2, CDK4 and Cyclin B1 were all downregulated and cell apoptotic-related proteins, including cleaved caspase 3 and cleaved PARP were increased in PCa cells after PYCR1 knockdown. Furthermore, PYCR1 has been shown not to be directly regulated by androgen receptor (AR) levels. These results show the functions of PYCR1 in PCa tumorigenesis for the first time and suggest that PYCR1 might be a good potential therapy approach for treating PCa.
Collapse
Affiliation(s)
- Tengyue Zeng
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, No.156, Xi'erhuan North Road, Fuzhou, 350025, China
| | - Libing Zhu
- Department of Urology, Lushan Sanatorium of the PLA, Lushan, 332000, China
| | - Min Liao
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, No.156, Xi'erhuan North Road, Fuzhou, 350025, China
| | - Wenli Zhuo
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, No.156, Xi'erhuan North Road, Fuzhou, 350025, China
| | - Shunliang Yang
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, No.156, Xi'erhuan North Road, Fuzhou, 350025, China
| | - Weizhen Wu
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, No.156, Xi'erhuan North Road, Fuzhou, 350025, China
| | - Dong Wang
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, No.156, Xi'erhuan North Road, Fuzhou, 350025, China.
| |
Collapse
|
12
|
Meng L, Donti T, Xia F, Niu Z, Al Shamsi A, Hertecant J, Al-Jasmi F, Gibson JB, Nagakura H, Zhang J, He W, Eng C, Yang Y, Elsea SH. Homozygous variants in pyrroline-5-carboxylate reductase 2 (PYCR2) in patients with progressive microcephaly and hypomyelinating leukodystrophy. Am J Med Genet A 2016; 173:460-470. [PMID: 27860360 DOI: 10.1002/ajmg.a.38049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
Pyrroline-5-carboxylate reductase 2, encoded by PYCR2, is one of the three homologous enzymes that catalyze the last step of proline synthesis. Homozygous variants in PYCR2 have been reported in patients from multiple consanguineous families with hypomyelinating leukodystrophy 10 (HLD10) (MIM: 616420). Here, we report five additional patients from three families with homozygous nonsense or missense variants in PYCR2, identified through clinical exome sequencing. All patients presented with postnatally acquired microcephaly, moderate to profound global developmental delay, and failure to thrive. Brain MRI in these patients showed thin corpus callosum, delayed myelination, and generalized white-matter volume loss. Additional phenotypes that were less consistent among patients included seizures or seizure-like movements, spasticity and ataxic gait, recurrent vomiting, cortical blindness, dysmorphic features, joint contractures, and irritability. Exome sequencing identified homozygous variants in PYCR2 in the proband from each family: c.28C>T (p.(Glu10Ter)), c.796C>T (p.(Arg266Ter)), and c.577G>A (p.(Val193Met)). Subsequent targeted analyses demonstrated co-segregation of the disease with the variant in the family. Despite the metabolic role of PYCR2, routine serum metabolic test in these patients were normal. To further understand the disease etiology and functions of PYCR2, small molecule metabolomics profiling was performed in plasma from three severely affected patients. No significant changes were identified in proline biosynthesis pathway or related metabolites. Studying the clinical features and the metabolic profiles of the PYCR2-deficient patients provides a more comprehensive picture for this newly identified disorder and facilitates further research on the gene function and disease etiology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Zhiyv Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Jozef Hertecant
- Tawam Hospital, Al Ain, United Arab Emirates.,Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Tawam Hospital, Al Ain, United Arab Emirates.,Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | | | | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| |
Collapse
|
13
|
Fischer-Zirnsak B, Escande-Beillard N, Ganesh J, Tan Y, Al Bughaili M, Lin A, Sahai I, Bahena P, Reichert S, Loh A, Wright G, Liu J, Rahikkala E, Pivnick E, Choudhri A, Krüger U, Zemojtel T, van Ravenswaaij-Arts C, Mostafavi R, Stolte-Dijkstra I, Symoens S, Pajunen L, Al-Gazali L, Meierhofer D, Robinson P, Mundlos S, Villarroel C, Byers P, Masri A, Robertson S, Schwarze U, Callewaert B, Reversade B, Kornak U. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa. Am J Hum Genet 2015; 97:483-92. [PMID: 26320891 DOI: 10.1016/j.ajhg.2015.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 11/24/2022] Open
Abstract
Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling.
Collapse
|
14
|
Mishra S, Das S, Aggarwal S, Rani V. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:384-391. [PMID: 25555260 DOI: 10.1016/j.etap.2014.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those.
Collapse
Affiliation(s)
- Shivangi Mishra
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307 Uttar Pradesh, India
| | - Shefali Das
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307 Uttar Pradesh, India
| | - Shikha Aggarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307 Uttar Pradesh, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307 Uttar Pradesh, India.
| |
Collapse
|
15
|
Gardeitchik T, Mohamed M, Fischer B, Lammens M, Lefeber D, Lace B, Parker M, Kim KJ, Lim BC, Häberle J, Garavelli L, Jagadeesh S, Kariminejad A, Guerra D, Leão M, Keski-Filppula R, Brunner H, Nijtmans L, van den Heuvel B, Wevers R, Kornak U, Morava E. Clinical and biochemical features guiding the diagnostics in neurometabolic cutis laxa. Eur J Hum Genet 2014; 22:888-95. [PMID: 23963297 PMCID: PMC4060105 DOI: 10.1038/ejhg.2013.154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
Patients with cutis laxa (CL) have wrinkled, sagging skin with decreased elasticity. Skin symptoms are associated with variable systemic involvement. The most common, genetically highly heterogeneous form of autosomal recessive CL, ARCL2, is frequently associated with variable metabolic and neurological symptoms. Progeroid symptoms, dysmorphic features, hypotonia and psychomotor retardation are highly overlapping in the early phase of these disorders. This makes the genetic diagnosis often challenging. In search for discriminatory symptoms, we prospectively evaluated clinical, neurologic, metabolic and genetic features in our patient cohort referred for suspected ARCL. From a cohort of 26 children, we confirmed mutations in genes associated with ARCL in 16 children (14 probands), including 12 novel mutations. Abnormal glycosylation and gyration abnormalities were mostly, but not always associated with ATP6V0A2 mutations. Epilepsy was most common in ATP6V0A2 defects. Corpus callosum dysgenesis was associated with PYCR1 and ALDH18A1 mutations. Dystonic posturing was discriminatory for PYCR1 and ALDH18A1 defects. Metabolic markers of mitochondrial dysfunction were found in one patient with PYCR1 mutations. So far unreported white matter abnormalities were found associated with GORAB and RIN2 mutations. We describe a large cohort of CL patients with neurologic involvement. Migration defects and corpus callosum hypoplasia were not always diagnostic for a specific genetic defect in CL. All patients with ATP6V0A2 defects had abnormal glycosylation. To conclude, central nervous system and metabolic abnormalities were discriminatory in this genetically heterogeneous group, although not always diagnostic for a certain genetic defect in CL.
Collapse
Affiliation(s)
- Thatjana Gardeitchik
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Miski Mohamed
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Björn Fischer
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Lammens
- Department of Pathology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk Lefeber
- Department of Neurology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Baiba Lace
- Medical Genetics Clinic, Children's Clinical University Hospital, Riga, Latvia
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Ki-Joong Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Bing C Lim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Johannes Häberle
- Department of Pediatrics, University Children's Hospital, Zürich, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Obstetric and Pediatric Department, Santa Maria Nuova Hospital IRCCS, Reggio Emilia, Italy
| | | | | | - Deanna Guerra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michel Leão
- Pediatric Neurology Unit and Neurogenetics Unit, Hospital S João, Porto, Portugal
| | | | - Han Brunner
- Department of Human Genetics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo Nijtmans
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bert van den Heuvel
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ron Wevers
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
- FG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eva Morava
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Hayward Genetics Center, Tulane University Medical Center, New Orleans, LA, USA
| |
Collapse
|
16
|
Nouri N, Aryani O, Nouri N, Kamalidehghan B, Houshmand M. Cutis laxa type II with mutation in the pyrroline-5-carboxylate reductase 1 gene. Pediatr Dermatol 2013; 30:e265-7. [PMID: 23406396 DOI: 10.1111/pde.12065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A 14-year-old Iranian boy with congenital cutis laxa and several other typical autosomal recessive type II features was examined. Mutation analysis of the pyrroline-5-carboxylate reductase 1 gene revealed a single-base deletion (c.345delC) in exon 4 leading to frame shift and premature termination of translation.
Collapse
Affiliation(s)
- Nayereh Nouri
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Disease Research Center, Isfahan, Iran
| | | | | | | | | |
Collapse
|
17
|
Dimopoulou A, Fischer B, Gardeitchik T, Schröter P, Kayserili H, Schlack C, Li Y, Brum JM, Barisic I, Castori M, Spaich C, Fletcher E, Mahayri Z, Bhat M, Girisha KM, Lachlan K, Johnson D, Phadke S, Gupta N, Simandlova M, Kabra M, David A, Nijtmans L, Chitayat D, Tuysuz B, Brancati F, Mundlos S, Van Maldergem L, Morava E, Wollnik B, Kornak U. Genotype-phenotype spectrum of PYCR1-related autosomal recessive cutis laxa. Mol Genet Metab 2013; 110:352-61. [PMID: 24035636 DOI: 10.1016/j.ymgme.2013.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Autosomal recessive cutis laxa type 2B (ARCL2B; OMIM # 612940) is a segmental progeroid disorder caused by mutations in PYCR1 encoding pyrroline-5-carboxylate reductase 1, which is part of the conserved proline de novo synthesis pathway. Here we describe 33 patients with PYCR1-related ARCL from 27 families with initial diagnoses varying between wrinkly skin syndrome, gerodermia osteodysplastica, De Barsy syndrome or more severe progeria syndromes. Given the difficult differential diagnosis of ARCL syndromes we performed a systematic comparison of clinical features of PYCR1-related ARCL. Intrauterine growth retardation, a characteristic triangular facial gestalt, psychomotor retardation, and hypotonia were the most relevant distinctive hallmarks of ARCL due to proline de novo synthesis defects. Corneal clouding or cataracts, athetoid movements, and finger contractures were rather rare features, but had a high predictive value. In our cohort we identified 20 different PYCR1 mutations of which seven were novel. Most of the mutations accumulated in exons 4 to 6. Missense alterations of highly conserved residues were most frequent followed by splice site changes and a single nonsense mutation. Analysis of genotype-phenotype correlation revealed that patients with mutations in the first two exons had lower average clinical scores and absent or only mild intellectual disability. Structural analyses predicted interference with PYCR1 multimerization for a subset of missense mutations. These findings have implications for the clinics as well as the pathomechanism of PYCR1-related ARCL.
Collapse
Affiliation(s)
- Aikaterini Dimopoulou
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zampatti S, Castori M, Fischer B, Ferrari P, Garavelli L, Dionisi-Vici C, Agolini E, Wischmeijer A, Morava E, Novelli G, Häberle J, Kornak U, Brancati F. De Barsy Syndrome: a genetically heterogeneous autosomal recessive cutis laxa syndrome related to P5CS and PYCR1 dysfunction. Am J Med Genet A 2012; 158A:927-31. [PMID: 22411858 DOI: 10.1002/ajmg.a.35231] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/14/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Stefania Zampatti
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin DS, Chang JH, Liu HL, Wei CH, Yeung CY, Ho CS, Shu CH, Chiang MF, Chuang CK, Huang YW, Wu TY, Jian YR, Huang ZD, Lin SP. Compound heterozygous mutations in PYCR1 further expand the phenotypic spectrum of De Barsy syndrome. Am J Med Genet A 2011; 155A:3095-3099. [PMID: 22052856 DOI: 10.1002/ajmg.a.34326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 09/05/2011] [Indexed: 12/25/2022]
Abstract
De Barsy syndrome (DBS) is characterized by progeroid features, ophthalmological abnormalities, intrauterine growth retardation, and cutis laxa. Recently, PYCR1 mutations were identified in cutis laxa with progeroid features. Herein, we report on a DBS patient born to a nonconsanguineous Chinese family. The exceptional observation of congenital glaucoma, aortic root dilatation, and idiopathic hypertrophic pyloric stenosis in this patient widened the range of symptoms that have been noted in DBS. Mutation analysis of PYCR1 revealed compound heterozygous PYCR1 mutations, including a p.P115fsX7 null mutation allele and a second allele with two missense mutations in cis: p.G248E and p.G297R. The effect of mutation results in a reduction of PYCR1 mRNA expression and PYCR1 protein expression in skin fibroblasts from the patient. The findings presented here suggest a mutation screening of PYCR1 and cardiovascular survey in patients with DBS.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|