1
|
El-Dessouky SH, Sharaf-Eldin WE, Aboulghar MM, Ebrashy A, Senousy SM, Elarab AE, Gaafar HM, Ateya MI, Abdelfattah AN, Saad AK, Zolfokar DS, Fouad MM, Abdella RM, Sharaf MF, Issa MY, Matsa LS, Aref H, Soliman SH, Al-Bellehy MA, Abdel-Aziz NN, ElHodiby ME, Abdou HK, Eid MM, Zaki MS, Abdalla EM. Fetal Phenotyping and Whole Exome Sequencing for 12 Egyptian Families With Serine Biosynthesis Defect: Novel Clinical and Allelic Findings With a Founder Effect. Prenat Diagn 2025; 45:204-217. [PMID: 39638571 DOI: 10.1002/pd.6697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The purpose of this study was to improve our understanding of severe serine biosynthesis defects through a comprehensive description of prenatal, and postnatal manifestations and the mutational spectrum in a new cohort of 12 unrelated Egyptian Families. METHODS Detailed fetal ultrasound examination, postnatal assessment, and whole exome sequencing (WES) were performed in a cohort of 12 fetuses with suspected Neu-Laxova syndrome (NLS), the most severe expression of serine biosynthesis defects. Additionally, a comprehensive review of the literature was conducted by merging the data from all the molecularly-confirmed cases with ours to gain a better understanding of the clinical variability of NLS. RESULTS Novel clinical manifestations including intrauterine convulsions, hemivertebrae, natal teeth, holoprosencephaly, and rhombencephalosynapsis were observed. Molecular analysis identified 7 and 2 likely disease-causing variants in the PSAT1 and PHGDH genes, respectively. Four of them were novel, including the c.734G>A missense variant in PSAT1, which has been proposed to be a founder variant among Egyptians. CONCLUSION The present cohort expands the spectrum of serine biosynthesis disorders. Moreover, it illuminates the role of prenatal exome sequencing in lethal conditions constituting the most severe end of already-known human diseases.
Collapse
Affiliation(s)
- Sara H El-Dessouky
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Wessam E Sharaf-Eldin
- Medical & Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona M Aboulghar
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Alaa Ebrashy
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Sameh M Senousy
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed Ezz Elarab
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Hassan M Gaafar
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Mohamed I Ateya
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Ahmed N Abdelfattah
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed K Saad
- Medical & Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Dalia S Zolfokar
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Mona M Fouad
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Rana M Abdella
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Marwa F Sharaf
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Lova S Matsa
- Genomic Precision Diagnostic Department, Igenomix, Paterna, Spain
| | - Haissam Aref
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Samar H Soliman
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | | | - Nahla N Abdel-Aziz
- Medical & Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Haitham K Abdou
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ebtesam M Abdalla
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
de Koning TJ. White matter abnormalities in amino acid disorders and organic acidurias. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:173-196. [PMID: 39322378 DOI: 10.1016/b978-0-323-99209-1.00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Inborn errors of metabolism (IEMs) are traditionally the domain of pediatricians and internists for metabolic diseases. In general, neurologists only become involved when these disorders are complicated by neurologic symptoms such as seizures, developmental delay, or motor problems. However, in recent years and mainly due to the successes of next-generation sequencing, the number of IEMs primarily presenting with neurologic symptoms and not detected by classic biochemical testing has grown significantly. This in particular relates to disorders in the biosynthesis of amino acids. Therefore, I will start by discussing defects in the synthesis pathways of the amino acids serine, glutamine, proline, and asparagine. In these disorders, the amino acid can be low in body fluids with biochemical testing, but more frequently are completely normal and although are in different metabolic pathways, they share many clinical features such as hypomyelination and white matter abnormalities. Next, I will discuss classic amino acid disorders and organic acid disorders due to defects in breakdown pathways characterized by elevations of key metabolites in body fluids and associated with neurologic abnormalities and white matter changes on MRI.
Collapse
Affiliation(s)
- T J de Koning
- Department of Clinical Sciences, University of Lund, Lund, Sweden; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Department of Genetics and Neurology, Groningen, The Netherlands.
| |
Collapse
|
3
|
Cuinat S, Quélin C, Pasquier L, Loget P, Aussel D, Odent S, Laquerrière A, Proisy M, Mazoyer S, Delous M, Edery P, Chatron N, Lesca G, Putoux A. PHGDH-related microcephalic dwarfism in two fetuses: Expanding the phenotypical spectrum of L-serine biosynthesis defect. Eur J Med Genet 2023; 66:104852. [PMID: 37758168 DOI: 10.1016/j.ejmg.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/09/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Defects in L-serine biosynthesis are a group of autosomal recessive diseases resulting in a wide phenotypic spectrum ranging from viable to lethal presentations and caused by variants in the three genes encoding the L-serine biosynthesis enzymes, PHGDH, PSAT1, and PSPH. Neu-Laxova syndrome (NLS) is the fetal form of this group, characterized by multiple congenital anomalies including severe intrauterine growth retardation, cutaneous lesions extending from ichthyosis to severe restrictive dermopathy with ectropion and eclabion, edema, microcephaly, central nervous system abnormalities, and flexion contractures. Here we report on two unrelated fetuses with an attenuated phenotype of NLS, that initially evoked Taybi-Linder syndrome. They carry biallelic pathogenic variants in the PHGDH gene. These observations expand the phenotypic continuum of L-serine biosynthesis defects, and illustrate the phenotypic overlap between NLS and microcephalic primordial dwarfism.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France.
| | - Chloé Quélin
- CHU Hôpital Sud, Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, France; CHU Pontchaillou, Service d'Anatomie et de Cytologie Pathologiques, Rennes, France
| | - Laurent Pasquier
- CHU Hôpital Sud, Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, France
| | - Philippe Loget
- CHU Pontchaillou, Service d'Anatomie et de Cytologie Pathologiques, Rennes, France
| | - Dominique Aussel
- Clinique La Sagesse, Service de Gynécologie-Obstétrique, Rennes, France
| | - Sylvie Odent
- CHU Hôpital Sud, Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, France
| | - Annie Laquerrière
- CHU de Rouen Laboratoire d'Anatomie et de Cytologie Pathologiques, Institut de biologie clinique, Rouen, France
| | - Maia Proisy
- CHU de Brest, Département de Radiologie, Brest University, 29609, Brest, Cedex, France
| | - Sylvie Mazoyer
- Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028 CNRS UMR5292 UCBL1, Lyon, France
| | - Marion Delous
- Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028 CNRS UMR5292 UCBL1, Lyon, France
| | - Patrick Edery
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France; Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028 CNRS UMR5292 UCBL1, Lyon, France
| | - Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France; Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France; Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France
| | - Audrey Putoux
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France; Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028 CNRS UMR5292 UCBL1, Lyon, France.
| |
Collapse
|
4
|
Fu J, Chen L, Su T, Xu S, Liu Y. Mild phenotypes of phosphoglycerate dehydrogenase deficiency by a novel mutation of PHGDH gene: Case report and literature review. Int J Dev Neurosci 2023; 83:44-52. [PMID: 36308023 DOI: 10.1002/jdn.10236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 02/04/2023] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) deficiency is a rare autosomal recessive genetic disease of serine biosynthesis. Its typical features are congenital microcephaly, epileptic seizures, and psychomotor developmental delay. Here, we reported the first Chinese familial cases with genetically confirmed PHGDH deficiency and reviewed several previous reports. Two siblings in this family presented with microcephaly, psychomotor retardation, and epilepsy in early juvenile. Brain magnetic resonance imaging (MRI) showed only a slight change of enlarged ventricle. Biochemical investigations revealed low serum serine and glycine concentrations. The whole-exome sequencing (WES) results identified a missense variant in the PHGDH gene (NM_006623.4: exon11: c.1211T>A, p. Val404Asp). Although two patients in this Chinese family carried the same pathogenic mutation in the PHGDH, their symptoms and responses to treatment were not exactly the same. We found a novel variant in the PHGDH gene and expanded the genotypic and phenotypic spectrum of serine biosynthesis disorders.
Collapse
Affiliation(s)
- Junyi Fu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqing Chen
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangfeng Su
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Shen Y, Peng Y, Huang P, Zheng Y, Li S, Jiang K, Zhou M, Deng J, Zhu M, Hong D. Juvenile-onset PSAT1-related neuropathy: A milder phenotype of serine deficiency disorder. Front Genet 2022; 13:949038. [PMID: 36061210 PMCID: PMC9428789 DOI: 10.3389/fgene.2022.949038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Primary serine deficiency disorders have a broad range of the phenotypic spectrum. As an inborn error of metabolism, individuals with severe phenotype may be easily recognized with Neu-Laxova syndrome. However, late-onset mild phenotypes may be underdiagnosed and will lead to disastrous consequences due to treatment delays. Materials and Methods: Clinical features of patients with serine deficiency disorders were summarized in two unrelated patients. Skin and sural nerve biopsies were conducted on the patients. Whole exome sequencing (WES) was performed in the index patients. Sanger sequencing was used to analyze family cosegregation. Results: Patient 1 was a 19-year-old male presenting with infancy-onset ichthyosis and juvenile-onset neuropathy. Patient 2 was a 17-year-old male manifesting childhood-onset ichthyosis and juvenile-onset neuropathy. Except for nystagmus, no other developmental or neurodegenerative disorders were found in the patients. Electrophysiological studies indicated a severe sensorimotor axonal neuropathy with a possible demyelinating component. High-dose oral L-serine and glycine completely alleviated skin lesions and only slightly improved neuropathy symptoms. Skin biopsies showed typical features consistent with ichthyosis and severe loss of unmyelinated axons. Sural biopsies revealed a severe loss of axons and a few thinly myelinated fibers. WES found the same homozygous variant c.43G > C (p.A15P) in the PSAT1 gene, which was cosegregated in the two families. Conclusions: The skin and nervous system may be the main affected targets in serine deficiency disorders. Our patients show a more simple and mild phenotype of PSAT1-related serine deficiency disorder. The pathological changes and regenerative ability of skin and peripheral nerves determine their response to serine supplements.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shumeng Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Min Zhu, ; Daojun Hong,
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Min Zhu, ; Daojun Hong,
| |
Collapse
|
6
|
Lee S, Hwang SK, Nam HS, Cho JS, Chung JY. Population Pharmacokinetic Model of AST-001, L-Isomer of Serine, Combining Endogenous Production and Exogenous Administration in Healthy Subjects. Front Pharmacol 2022; 13:891227. [PMID: 35814222 PMCID: PMC9263096 DOI: 10.3389/fphar.2022.891227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
AST-001 is an L-isomer of serine that has protective effects on neurological disorders. This study aimed to establish a population pharmacokinetic (PK) model of AST-001 in healthy Korean to further propose a fixed-dose regimen in pediatrics. The model was constructed using 648 plasma concentrations from 24 healthy subjects, including baseline endogenous levels during 24 h and concentrations after a single dose of 10, 20, and 30 g of AST-001. For the simulation, an empirical allometric power model was applied to the apparent clearance and volume of distribution with body weight. The PK characteristics of AST-001 after oral administration were well described by a two-compartment model with zero-order absorption and linear elimination. The endogenous production of AST-001 was well explained by continuous zero-order production at a rate of 0.287 g/h. The simulation results suggested that 2 g, 4 g, 7 g, 10 g, and 14 g twice-daily regimens for the respective groups of 10–14 kg, 15–24 kg, 25–37 kg, 38–51 kg, 52–60 kg were adequate to achieve sufficient exposure to AST-001. The current population PK model well described both observed endogenous production and exogenous administration of AST-001 in healthy subjects. Using the allometric scaling approach, we suggested an optimal fixed-dose regimen with five weight ranges in pediatrics for the upcoming phase 2 trial.
Collapse
Affiliation(s)
- Soyoung Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, South Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
- Astrogen Inc., Daegu, South Korea
| | | | | | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Bundang Hospital, Seongnam, South Korea
- *Correspondence: Jae-Yong Chung,
| |
Collapse
|
7
|
Eade K, Gantner ML, Hostyk JA, Nagasaki T, Giles S, Fallon R, Harkins-Perry S, Baldini M, Lim EW, Scheppke L, Dorrell MI, Cai C, Baugh EH, Wolock CJ, Wallace M, Berlow RB, Goldstein DB, Metallo CM, Friedlander M, Allikmets R. Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease. Nat Metab 2021; 3:366-377. [PMID: 33758422 PMCID: PMC8084205 DOI: 10.1038/s42255-021-00361-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
Macular telangiectasia type 2 (MacTel) is a progressive, late-onset retinal degenerative disease linked to decreased serum levels of serine that elevate circulating levels of a toxic ceramide species, deoxysphingolipids (deoxySLs); however, causal genetic variants that reduce serine levels in patients have not been identified. Here we identify rare, functional variants in the gene encoding the rate-limiting serine biosynthetic enzyme, phosphoglycerate dehydrogenase (PHGDH), as the single locus accounting for a significant fraction of MacTel. Under a dominant collapsing analysis model of a genome-wide enrichment analysis of rare variants predicted to impact protein function in 793 MacTel cases and 17,610 matched controls, the PHGDH gene achieves genome-wide significance (P = 1.2 × 10-13) with variants explaining ~3.2% of affected individuals. We further show that the resulting functional defects in PHGDH cause decreased serine biosynthesis and accumulation of deoxySLs in retinal pigmented epithelial cells. PHGDH is a significant locus for MacTel that explains the typical disease phenotype and suggests a number of potential treatment options.
Collapse
Affiliation(s)
- Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Joseph A Hostyk
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Regis Fallon
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
| | - Michelle Baldini
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Lea Scheppke
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Carolyn Cai
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Charles J Wolock
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
- Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Murtas G, Marcone GL, Sacchi S, Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci 2020; 77:5131-5148. [PMID: 32594192 PMCID: PMC11105101 DOI: 10.1007/s00018-020-03574-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.
Collapse
Affiliation(s)
- Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
9
|
Abdelfattah F, Kariminejad A, Kahlert AK, Morrison PJ, Gumus E, Mathews KD, Darbro BW, Amor DJ, Walsh M, Sznajer Y, Weiß L, Weidensee S, Chitayat D, Shannon P, Bermejo-Sánchez E, Riaño-Galán I, Hayes I, Poke G, Rooryck C, Pennamen P, Khung-Savatovsky S, Toutain A, Vuillaume ML, Ghaderi-Sohi S, Kariminejad MH, Weinert S, Sticht H, Zenker M, Schanze D. Expanding the genotypic and phenotypic spectrum of severe serine biosynthesis disorders. Hum Mutat 2020; 41:1615-1628. [PMID: 32579715 DOI: 10.1002/humu.24067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
Serine biosynthesis disorders comprise a spectrum of very rare autosomal recessive inborn errors of metabolism with wide phenotypic variability. Neu-Laxova syndrome represents the most severe expression and is characterized by multiple congenital anomalies and pre- or perinatal lethality. Here, we present the mutation spectrum and a detailed phenotypic analysis in 15 unrelated families with severe types of serine biosynthesis disorders. We identified likely disease-causing variants in the PHGDH and PSAT1 genes, several of which have not been reported previously. Phenotype analysis and a comprehensive review of the literature corroborates the evidence that serine biosynthesis disorders represent a continuum with varying degrees of phenotypic expression and suggest that even gradual differences at the severe end of the spectrum may be correlated with particular genotypes. We postulate that the individual residual enzyme activity of mutant proteins is the major determinant of the phenotypic variability, but further functional studies are needed to explore effects at the enzyme protein level.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Anne-Karin Kahlert
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patrick J Morrison
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Evren Gumus
- Division of Medical Genetics, School of Medicine, Harran University, Sanliurfa, Turkey
| | | | | | - David J Amor
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Royal Children's Hospital, Parkville, Victoria, Australia
| | - Maie Walsh
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Yves Sznajer
- Centre de Génétique Humaine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Luisa Weiß
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - David Chitayat
- Department of Obstetrics and Gynecology, The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for SickKids, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eva Bermejo-Sánchez
- ECEMC (Spanish Collaborative Study of Congenital Malformations), Research Unit on Congenital Anomalies (UIAC), Institute of Rare Diseases Research (IIER), Institute of Health Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Isolina Riaño-Galán
- AGC de Pediatría, Hospital Universitario Central de Asturias, Oviedo, Spain.,IUOPA-Departamento de Medicina-ISPA, Universidad de Oviedo, Oviedo, Spain.,CIBER de Epidemiologia y Salud Pública, Madrid, Spain
| | - Ian Hayes
- Genetic Health Service New Zealand, Auckland Hospital, Auckland, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington Regional Hospital, Wellington, New Zealand
| | - Caroline Rooryck
- MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, University of Bordeaux, Bordeaux, France
| | - Perrine Pennamen
- MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, University of Bordeaux, Bordeaux, France
| | | | - Annick Toutain
- Service de Génétique, CHU de Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Marie-Laure Vuillaume
- Service de Génétique, CHU de Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | | | | | - Sönke Weinert
- Department of Cardiology and Angiology, Internal Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Cavole TR, Perrone E, Lucena de Castro FSC, Alvarez Perez AB, Waitzberg AFL, Cernach MCSP. Clinical, molecular, and pathological findings in a Neu-Laxova syndrome stillborn: A Brazilian case report. Am J Med Genet A 2020; 182:1473-1476. [PMID: 32196970 DOI: 10.1002/ajmg.a.61559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/10/2022]
Abstract
Neu-Laxova syndrome (NLS) is a lethal genetic multiple congenital anomaly syndrome of unknown prevalence representing the severe spectrum of serine biosynthesis defects associated with PHGDH, PSAT1, or PSP gene mutations. The purpose of this study was to describe clinical/molecular and pathologic features of a NLS case caused by novel heterozygous missense variant in PHGDH gene identified in his consanguineous parents.
Collapse
Affiliation(s)
- Thiago R Cavole
- Department of Medical Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Eduardo Perrone
- Department of Medical Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Ana B Alvarez Perez
- Department of Medical Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Mirlene C S P Cernach
- Department of Medical Genetics, Universidade Metropolitana de Santos, Sao Paulo, Brazil
| |
Collapse
|
11
|
Mardy AH, Chetty SP, Norton ME, Sparks TN. A system-based approach to the genetic etiologies of non-immune hydrops fetalis. Prenat Diagn 2019; 39:732-750. [PMID: 31087399 DOI: 10.1002/pd.5479] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
A wide spectrum of genetic causes may lead to nonimmune hydrops fetalis (NIHF), and a thorough phenotypic and genetic evaluation are essential to determine the underlying etiology, optimally manage these pregnancies, and inform discussions about anticipated prognosis. In this review, we outline the known genetic etiologies of NIHF by fetal organ system affected, and provide a systematic approach to the evaluation of NIHF. Some of the underlying genetic disorders are associated with characteristic phenotypic features that may be seen on prenatal ultrasound, such as hepatomegaly with lysosomal storage disorders, hyperechoic kidneys with congenital nephrosis, or pulmonary valve stenosis with RASopathies. However, this is not always the case, and the approach to evaluation must include prenatal ultrasound findings as well as genetic testing and many other factors. Genetic testing that has been utilized for NIHF ranges from standard chromosomal microarray or karyotype to gene panels and broad approaches such as whole exome sequencing. Family and obstetric history, as well as pathology examination, can yield additional clues that are helpful in establishing a diagnosis. A systematic approach to evaluation can guide a more targeted approach to genetic evaluation, diagnosis, and management of NIHF.
Collapse
Affiliation(s)
- Anne H Mardy
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| | - Shilpa P Chetty
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| | - Mary E Norton
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| | - Teresa N Sparks
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| |
Collapse
|
12
|
Bourque DK, Cloutier M, Kernohan KD, Bareke E, Grynspan D, Michaud J, Boycott KM. Neu-Laxova syndrome presenting prenatally with increased nuchal translucency and cystic hygroma: The utility of exome sequencing in deciphering the diagnosis. Am J Med Genet A 2019; 179:813-816. [PMID: 30838783 DOI: 10.1002/ajmg.a.61076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/05/2022]
Abstract
Neu-Laxova syndrome (NLS) is a lethal autosomal recessive microcephaly syndrome associated with intrauterine growth restriction (IUGR) and multiple congenital anomalies. Clinical features include central nervous system malformations, joint contractures, ichthyosis, edema, and dysmorphic facial features. Biallelic pathogenic variants in either the PHGDH or PSAT1 genes have been shown to cause NLS. Using exome sequencing, we aimed to identify the underlying genetic diagnosis in three fetuses (from one family) with prenatal skin edema, severe IUGR, micrognathia, renal anomalies, and arthrogryposis and identified a homozygous c.1A>C (p.Met1?, NM_006623.3) variant in the PHGDH gene. Loss of the translation start codon is a novel genetic mechanism for the development of NLS. Prenatal diagnosis of NLS is challenging and few reports describe the fetal pathology. Fetal neuropathologic examination revealed: delayed brain development, congenital agenesis of the corticospinal tracts, and hypoplasia of the hippocampus, cerebellum and brainstem. Each pregnancy also showed increased nuchal translucency (NT) or cystic hygroma. While NLS is rare, it may be a cause of recurrent increased NT/cystic hygroma. This finding provides further support that cystic hygroma has many different genetic causes and that exome sequencing may shed light on the underlying genetic diagnoses in this group of prenatal patients.
Collapse
Affiliation(s)
- Danielle K Bourque
- Regional Genetics Program, CHEO, University of Ottawa, Ottawa, Ontario, Canada
| | - Mireille Cloutier
- Regional Genetics Program, CHEO, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, Québec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Québec, Canada
| | - David Grynspan
- Department of Pathology and Laboratory Medicine, CHEO, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, CHEO, University of Ottawa, Ottawa, Ontario, Canada
| | -
- CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Regional Genetics Program, CHEO, University of Ottawa, Ottawa, Ontario, Canada.,CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Takeichi T, Okuno Y, Kawamoto A, Inoue T, Nagamoto E, Murase C, Shimizu E, Tanaka K, Kageshita Y, Fukushima S, Kono M, Ishikawa J, Ihn H, Takahashi Y, Akiyama M. Reduction of stratum corneum ceramides in Neu-Laxova syndrome caused by phosphoglycerate dehydrogenase deficiency. J Lipid Res 2018; 59:2413-2420. [PMID: 30348640 DOI: 10.1194/jlr.p087536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/21/2018] [Indexed: 01/18/2023] Open
Abstract
Neu-Laxova syndrome (NLS) is a very rare autosomal recessive congenital disorder characterized by disturbed development of the central nervous system and the skin and caused by mutations in any of the three genes involved in de novo l-serine biosynthesis: PHGDH, PSAT1, and PSPH l-Serine is essential for the biosynthesis of phosphatidylserine and sphingolipids. The extracellular lipid of the stratum corneum, of which sphingolipid constitutes a significant part, plays a primary role in skin barrier function. Here, we describe a Japanese NLS pedigree with a previously unreported nonsense mutation in PHGDH and a unique inversion of chromosome 1. In addition, the levels of 11 major ceramide classes in the tape-stripped stratum corneum of the NLS patient's skin were assessed by LC/MS. Notably, lower amounts of ceramides of all classes were found in the patient's stratum corneum than in those of controls. This is the first report to demonstrate the reduction of ceramides in the stratum corneum of an NLS patient due to PHGDH mutations. The clinical findings and a detailed analysis of ceramides from the stratum corneum in the family extend the spectrum of clinical anomalies and give us a clue to the pathomechanisms of ichthyosis in NLS patients with phosphoglycerate dehydrogenase deficiency.
Collapse
Affiliation(s)
- Takuya Takeichi
- Department of Dermatology Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akane Kawamoto
- Biological Science Research Laboratories Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Takeshi Inoue
- Department of Pediatrics Kumamoto University, Kumamoto 860-8556, Japan
| | - Eiko Nagamoto
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Chiaki Murase
- Department of Dermatology Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Eri Shimizu
- Analytical Science Research Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Kenichi Tanaka
- Department of Pediatrics Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuichi Kageshita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Michihiro Kono
- Department of Dermatology Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Junko Ishikawa
- Biological Science Research Laboratories Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masashi Akiyama
- Department of Dermatology Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
14
|
Barekatain B, Sadeghnia A, Rouhani E, Soofi GJ. A New Case of Neu-Laxova Syndrome: Infant with Facial Dysmorphism, Arthrogryposis, Ichthyosis, and Microcephalia. Adv Biomed Res 2018; 7:68. [PMID: 29862217 PMCID: PMC5952546 DOI: 10.4103/abr.abr_143_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neu–Laxova syndrome (NLS) is an autosomal recessive disorder characterized by central nervous system anomalies, facial dysmorphic features, anomalies of limb and genitalia, intrauterine growth retardation, skin disorders, and other congenital abnormalities. In this article, we present a newborn infant who was born with facial dysmorphic features, flat nose, ichthyosis, rocker bottom feet, and fixed flexion contractures. We believe that these clinical findings in this patient are consistent with features of NLS.
Collapse
Affiliation(s)
- Behzad Barekatain
- Department of Neonatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Sadeghnia
- Department of Neonatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Rouhani
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
15
|
Identification and targeting of an FGFR fusion in a pediatric thalamic "central oligodendroglioma". NPJ Precis Oncol 2017; 1:29. [PMID: 29872711 PMCID: PMC5871816 DOI: 10.1038/s41698-017-0036-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
Approximately 1–5% of pediatric intracranial tumors originate in the thalamus. While great strides have been made to identify consistent molecular markers in adult oligodendrogliomas, such as the 1p/19q co-deletion, it is widely recognized that pediatric oligodendrogliomas have a vastly different molecular make-up. While pediatric thalamic or “central oligodendrogliomas” are histologically similar to peripheral pediatric oligodendrogliomas, they are behaviorally distinct and likely represent a cohesive, but entirely different entity. We describe a case of a 10-year-old girl who was diagnosed with an anaplastic glioma with features consistent with the aggressive entity often diagnosed as central or thalamic oligodendroglioma. We performed whole-exome (paired tumor and germline DNA) and transcriptome (tumor RNA) sequencing, which demonstrated an FGFR3-PHGDH fusion. We describe this fusion and our rationale for pursuing personalized, targeted therapy for the patient’s tumor that may potentially play a role in the treatment of similar cases.
Collapse
|
16
|
Poli A, Vial Y, Haye D, Passemard S, Schiff M, Nasser H, Delanoe C, Cuadro E, Kom R, Elanga N, Favre A, Drunat S, Verloes A. Phosphoglycerate dehydrogenase (PHGDH) deficiency without epilepsy mimicking primary microcephaly. Am J Med Genet A 2017; 173:1936-1942. [PMID: 28440900 DOI: 10.1002/ajmg.a.38217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 11/07/2022]
Abstract
Phosphoglycerate dehydrogenase (PHGDH) deficiency (OMIM 256520) is a rare autosomal recessive disorder of serine synthesis, with mostly severe congenital microcephaly, caused by mutations in the PHGDH gene. Fourteen patients reported to date show severe, early onset, drug resistant epilepsy. In a cohort of patients referred for primary microcephaly, compound heterozygosity for two unreported variants in PHGDG was identified by exome sequencing in a pair of sibs who died aged 4.5 months and 4.5 years. They had severe neurological involvement with congenital microcephaly, disorganized EEG, and progressive spasticity, but never had seizures. Exome usage in clinical practice is likely to lead to an expansion of the clinical spectrum of known disorders.
Collapse
Affiliation(s)
- Antoine Poli
- Department of Genetics, APHP-Robert DEBRE University Hospital, Paris VII-Denis Diderot Medical School and INSERM UMR1141, Paris, France
| | - Yoann Vial
- Department of Genetics, APHP-Robert DEBRE University Hospital, Paris VII-Denis Diderot Medical School and INSERM UMR1141, Paris, France
| | - Damien Haye
- Department of Genetics, APHP-Robert DEBRE University Hospital, Paris VII-Denis Diderot Medical School and INSERM UMR1141, Paris, France
| | - Sandrine Passemard
- Department of Genetics, APHP-Robert DEBRE University Hospital, Paris VII-Denis Diderot Medical School and INSERM UMR1141, Paris, France
| | - Manuel Schiff
- Department of Child Neurology and Metabolic Disorders, APHP-Robert DEBRE University Hospital, Paris, France
| | - Hala Nasser
- Department of Genetics, APHP-Robert DEBRE University Hospital, Paris VII-Denis Diderot Medical School and INSERM UMR1141, Paris, France.,Department of Child Neurology and Metabolic Disorders, APHP-Robert DEBRE University Hospital, Paris, France
| | - Catherine Delanoe
- Department of Child Neurology and Metabolic Disorders, APHP-Robert DEBRE University Hospital, Paris, France
| | - Emma Cuadro
- Department of Pediatrics, Cayenne General Hospital, French Guiana, France
| | - Rémi Kom
- Department of Pediatrics, Cayenne General Hospital, French Guiana, France
| | - Narcisse Elanga
- Department of Pediatrics, Cayenne General Hospital, French Guiana, France
| | - Anne Favre
- Department of Pediatrics, Cayenne General Hospital, French Guiana, France
| | - Séverine Drunat
- Department of Genetics, APHP-Robert DEBRE University Hospital, Paris VII-Denis Diderot Medical School and INSERM UMR1141, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert DEBRE University Hospital, Paris VII-Denis Diderot Medical School and INSERM UMR1141, Paris, France
| |
Collapse
|
17
|
Darouich S, Boujelbene N, Kehila M, Chanoufi MB, Reziga H, Gaigi S, Masmoudi A. [Neu-Laxova syndrome: Three case reports and a review of the literature]. Ann Pathol 2016; 36:235-44. [PMID: 27475004 DOI: 10.1016/j.annpat.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The Neu-Laxova syndrome (NLS) is a rare autosomal recessive and early lethal disorder. It is characterized by severe intra-uterine growth retardation, abnormal facial features, ichthyotic skin lesions and severe central nervous system malformations, especially microlissencephaly. Others characteristic features associated with fetal hypokinesia sequence, including arthrogryposis, subcutaneous edema and pulmonary hypoplasia, are frequently reported in NLS. PATIENTS AND METHODS The clinicopathological characteristics of NLS are described in three cases with striking prenatal diagnostic findings and detailed post-mortem examinations. A review of the literature is undertaken with a focus on molecular basis. RESULTS We present three new patients with NLS: one stillbirth male and two female newborns, delivered at 29, 35 and 40 weeks of gestational age, respectively. Characteristic ultrasound findings included hydramnios, severe intra-uterine growth restriction, craniofacial and cental nervous system anomalies. The cytogenetic study, performed in one case, was normal. The post-mortem examination revealed characteristic abnormalities in all three cases, that allowed to make a prompt diagnosis of the NLS. Data from these patients suggest that the NLS represents a heterogeneous phenotype. This feature has been highlighted in the literature. CONCLUSION The SNL is a lethal developmental disorder characterized by phenotypic heterogeneity with striking neurological defects. It is underpinned by genetic heterogeneity. It can be caused by mutations in all three genes involved in de novo L-serine biosynthesis: PHGDH, PSAT1 and PSPH. Hence, the NLS constitutes the most severe end of already known human disease, i.e. serine-deficiency disorder.
Collapse
Affiliation(s)
- Sihem Darouich
- Unité de fœtopathologie, hôpital universitaire Habib-Bougatfa, 7000 Bizerte, Tunisie.
| | - Nadia Boujelbene
- Service d'anatomie et de cytologie pathologiques, institut Salah-Azaiez, 1007 Tunis, Tunisie
| | - Mehdi Kehila
- Service de gynéco-obstétrique C, centre de maternité et de néonatologie, 1007 Tunis, Tunisie
| | - Mohamed Badis Chanoufi
- Service de gynéco-obstétrique C, centre de maternité et de néonatologie, 1007 Tunis, Tunisie
| | - Hédi Reziga
- Service de gynéco-obstétrique B, centre de maternité et de néonatologie, 1007 Tunis, Tunisie
| | - Soumeya Gaigi
- Service d'embryo-fœtopathologie, centre de maternité et de néonatologie, 1007 Tunis, Tunisie
| | - Aida Masmoudi
- Service d'embryo-fœtopathologie, centre de maternité et de néonatologie, 1007 Tunis, Tunisie
| |
Collapse
|
18
|
El-Hattab AW. Serine biosynthesis and transport defects. Mol Genet Metab 2016; 118:153-159. [PMID: 27161889 DOI: 10.1016/j.ymgme.2016.04.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 11/23/2022]
Abstract
l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates.
| |
Collapse
|
19
|
El-Hattab AW, Shaheen R, Hertecant J, Galadari HI, Albaqawi BS, Nabil A, Alkuraya FS. On the phenotypic spectrum of serine biosynthesis defects. J Inherit Metab Dis 2016; 39:373-381. [PMID: 26960553 DOI: 10.1007/s10545-016-9921-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
L-serine is a non-essential amino acid that is de novo synthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, L-serine is a precursor of a number of important compounds. Serine biosynthesis defects result from deficiencies in PGDH, PSAT, or PSP and have a broad phenotypic spectrum ranging from Neu-Laxova syndrome, a lethal multiple congenital anomaly disease at the severe end to a childhood disease with intellectual disability at the mild end, with infantile growth deficiency, and severe neurological manifestations as an intermediate phenotype. In this report, we present three subjects with serine biosynthesis effects. The first was a stillbirth with Neu-Laxova syndrome and a homozygous mutation in PHGDH. The second was a neonate with growth deficiency, microcephaly, ichthyotic skin lesions, seizures, contractures, hypertonia, distinctive facial features, and a homozygous mutation in PSAT1. The third subject was an infant with growth deficiency, microcephaly, ichthyotic skin lesions, anemia, hypertonia, distinctive facial features, low serine and glycine in plasma and CSF, and a novel homozygous mutation in PHGDH gene. Herein, we also review previous reports of serine biosynthesis defects and mutations in the PHGDH, PSAT1, and PSPH genes, discuss the variability in the phenotypes associated with serine biosynthesis defects, and elaborate on the vital roles of serine and the potential consequences of its deficiency.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jozef Hertecant
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Hassan I Galadari
- Department of Internal Medicine, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Badi S Albaqawi
- Women Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amira Nabil
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
- College of Medicine, King Saud University, Riyadh, Saudi Arabia.
- Developmental Genetics Unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, MBC-03, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|