1
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Jiang D, Guo R, Dai R, Knoedler S, Tao J, Machens HG, Rinkevich Y. The Multifaceted Functions of TRPV4 and Calcium Oscillations in Tissue Repair. Int J Mol Sci 2024; 25:1179. [PMID: 38256251 PMCID: PMC10816018 DOI: 10.3390/ijms25021179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) specifically functions as a mechanosensitive ion channel and is responsible for conveying changes in physical stimuli such as mechanical stress, osmotic pressure, and temperature. TRPV4 enables the entry of cation ions, particularly calcium ions, into the cell. Activation of TRPV4 channels initiates calcium oscillations, which trigger intracellular signaling pathways involved in a plethora of cellular processes, including tissue repair. Widely expressed throughout the body, TRPV4 can be activated by a wide array of physicochemical stimuli, thus contributing to sensory and physiological functions in multiple organs. This review focuses on how TRPV4 senses environmental cues and thereby initiates and maintains calcium oscillations, critical for responses to organ injury, tissue repair, and fibrosis. We provide a summary of TRPV4-induced calcium oscillations in distinct organ systems, along with the upstream and downstream signaling pathways involved. In addition, we delineate current animal and disease models supporting TRPV4 research and shed light on potential therapeutic targets for modulating TRPV4-induced calcium oscillation to promote tissue repair while reducing tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Ruiji Guo
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02152, USA
| | - Jin Tao
- Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China;
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| |
Collapse
|
3
|
Trompeter N, Gardinier JD, DeBarros V, Boggs M, Gangadharan V, Cain WJ, Hurd L, Duncan RL. Insulin-like growth factor-1 regulates the mechanosensitivity of chondrocytes by modulating TRPV4. Cell Calcium 2021; 99:102467. [PMID: 34530313 PMCID: PMC8541913 DOI: 10.1016/j.ceca.2021.102467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Both mechanical and biochemical stimulation are required for maintaining the integrity of articular cartilage. However, chondrocytes respond differently to mechanical stimuli in osteoarthritic cartilage when biochemical signaling pathways, such as Insulin-like Growth Factor-1 (IGF-1), are altered. The Transient Receptor Potential Vanilloid 4 (TRPV4) channel is central to chondrocyte mechanotransduction and regulation of cartilage homeostasis. Here, we propose that changes in IGF-1 can modulate TRPV4 channel activity. We demonstrate that physiologic levels of IGF-1 suppress hypotonic-induced TRPV4 currents and intracellular calcium flux by increasing apparent cell stiffness that correlates with actin stress fiber formation. Disruption of F-actin following IGF-1 treatment results in the return of the intracellular calcium response to hypotonic swelling. Using point mutations of the TRPV4 channel at the microtubule-associated protein 7 (MAP-7) site shows that regulation of TRPV4 by actin is mediated via the interaction of actin with the MAP-7 domain of TRPV4. We further highlight that ATP release, a down-stream response to mechanical stimulation in chondrocytes, is mediated by TRPV4 during hypotonic challenge. This response is significantly abrogated with IGF-1 treatment. As chondrocyte mechanosensitivity is greatly altered during osteoarthritis progression, IGF-1 presents as a promising candidate for prevention and treatment of articular cartilage damage.
Collapse
Affiliation(s)
- Nicholas Trompeter
- Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Joseph D Gardinier
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States; Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Victor DeBarros
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Mary Boggs
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Vimal Gangadharan
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - William J Cain
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Lauren Hurd
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Randall L Duncan
- Biomedical Engineering, University of Delaware, Newark, DE, United States; Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States; Department of Biology, University of Michigan-Flint, Flint, MI, United States.
| |
Collapse
|
4
|
Ürel-Demir G, Şimşek-Kiper PÖ, Öncel İ, Utine GE, Haliloğlu G, Boduroğlu K. Natural history of TRPV4-Related disorders: From skeletal dysplasia to neuromuscular phenotype. Eur J Paediatr Neurol 2021; 32:46-55. [PMID: 33774370 DOI: 10.1016/j.ejpn.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
TRPV4-related disorders constitute a broad spectrum of clinical phenotypes including several genetic skeletal and neuromuscular disorders, in which clinical variability and somewhat overlapping features are present. These disorders have previously been considered to be clinically distinct phenotypes before their molecular basis was discovered. However, with the identification of TRPV4 variants in the etiology, they are referred as TRPV4-related disorders (TRPV4-pathies), and are now mainly grouped into skeletal dysplasias and neuromuscular disorders. The skeletal dysplasia group includes metatropic dysplasia, parastremmatic dysplasia, spondyloepiphyseal dysplasia Maroteaux type, spondylometaphyseal dysplasia Kozlowski type, autosomal dominant brachyolmia, and familial digital arthropathy-brachydactyly, whereas the neuromuscular group includes congenital distal spinal muscular atrophy (SMA), scapuloperoneal SMA and Charcot-Marie-Tooth neuropathy type 2C with common manifestations of peripheral neuropathy, joint contractures, and respiratory system involvement. Apart from familial digital arthropathy-brachydactyly, skeletal dysplasia associated with TRPV4 pathogenic variants share some clinical features such as short stature with short trunk, spinal and pelvic changes with varying degrees of long bone involvement. Of note, there is considerable phenotypic overlap within and between both groups. Herein, we report on the clinical and molecular spectrum of 11 patients from six different families diagnosed with TRPV4-related disorders. This study yet represents the largest cohort of patients with TRPV4 variants from a single center in Turkey.
Collapse
Affiliation(s)
- Gizem Ürel-Demir
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Pelin Özlem Şimşek-Kiper
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İbrahim Öncel
- Department of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Department of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroğlu
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Sun X, Kato H, Sato H, Torio M, Han X, Zhang Y, Hirofuji Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Impaired neurite development and mitochondrial dysfunction associated with calcium accumulation in dopaminergic neurons differentiated from the dental pulp stem cells of a patient with metatropic dysplasia. Biochem Biophys Rep 2021; 26:100968. [PMID: 33748438 PMCID: PMC7960789 DOI: 10.1016/j.bbrep.2021.100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid member 4 (TRPV4) is a Ca2+ permeable nonselective cation channel, and mutations in the TRPV4 gene cause congenital skeletal dysplasias and peripheral neuropathies. Although TRPV4 is widely expressed in the brain, few studies have assessed the pathogenesis of TRPV4 mutations in the brain. We aimed to elucidate the pathological associations between a specific TRPV4 mutation and neurodevelopmental defects using dopaminergic neurons (DNs) differentiated from dental pulp stem cells (DPSCs). DPSCs were isolated from a patient with metatropic dysplasia and multiple neuropsychiatric symptoms caused by a gain-of-function TRPV4 mutation, c.1855C>T (p.L619F). The mutation was corrected by CRISPR/Cas9 to obtain isogenic control DPSCs. Mutant DPSCs differentiated into DNs without undergoing apoptosis; however, neurite development was significantly impaired in mutant vs. control DNs. Mutant DNs also showed accumulation of mitochondrial Ca2+ and reactive oxygen species, low adenosine triphosphate levels despite a high mitochondrial membrane potential, and lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial content. These results suggested that the persistent Ca2+ entry through the constitutively activated TRPV4 might perturb the adaptive coordination of multiple mitochondrial functions, including oxidative phosphorylation, redox control, and biogenesis, required for dopaminergic circuit development in the brain. Thus, certain mutations in TRPV4 that are associated with skeletal dysplasia might have pathogenic effects on brain development, and mitochondria might be a potential therapeutic target to alleviate the neuropsychiatric symptoms of TRPV4-related diseases.
Collapse
Key Words
- ATP, adenosine triphosphate
- DN, dopaminergic neuron
- DPSC, dental pulp stem cell
- Dental pulp stem cells
- Dopaminergic neuron
- MD, metatropic dysplasia
- MPP, mitochondrial membrane potential
- Metatropic dysplasia
- Mitochondria
- NURR1, nuclear receptor related 1
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- ROS, reactive oxygen species
- RPL13A, 60S ribosomal protein L13a
- Reactive oxygen species
- SOD, superoxide dismutase
- TRPV4, transient receptor potential vanilloid member 4
- Transient receptor potential vanilloid 4
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Ragamin A, Gomes CC, Bindels-de Heus K, Sandoval R, Bassenden AV, Dib L, Kok F, Alves J, Mathijssen I, Medici-Van den Herik E, Eveleigh R, Gayden T, Pullens B, Berghuis A, van Slegtenhorst M, Wilke M, Jabado N, Mancini GMS, Gomez RS. De novo TRPV4 Leu619Pro variant causes a new channelopathy characterised by giant cell lesions of the jaws and skull, skeletal abnormalities and polyneuropathy. J Med Genet 2021; 59:305-312. [PMID: 33685999 PMCID: PMC8867273 DOI: 10.1136/jmedgenet-2020-107427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pathogenic germline variants in Transient Receptor Potential Vanilloid 4 Cation Channel (TRPV4) lead to channelopathies, which are phenotypically diverse and heterogeneous disorders grossly divided in neuromuscular disorders and skeletal dysplasia. We recently reported in sporadic giant cell lesions of the jaws (GCLJs) novel, somatic, heterozygous, gain-of-function mutations in TRPV4, at Met713. METHODS Here we report two unrelated women with a de novo germline p.Leu619Pro TRPV4 variant and an overlapping systemic disorder affecting all organs individually described in TRPV4 channelopathies. RESULTS From an early age, both patients had several lesions of the nervous system including progressive polyneuropathy, and multiple aggressive giant cell-rich lesions of the jaws and craniofacial/skull bones, and other skeletal lesions. One patient had a relatively milder disease phenotype possibly due to postzygotic somatic mosaicism. Indeed, the TRPV4 p.Leu619Pro variant was present at a lower frequency (variant allele frequency (VAF)=21.6%) than expected for a heterozygous variant as seen in the other proband, and showed variable regional frequency in the GCLJ (VAF ranging from 42% to 10%). In silico structural analysis suggests that the gain-of-function p.Leu619Pro alters the ion channel activity leading to constitutive ion leakage. CONCLUSION Our findings define a novel polysystemic syndrome due to germline TRPV4 p.Leu619Pro and further extend the spectrum of TRPV4 channelopathies. They further highlight the convergence of TRPV4 mutations on different organ systems leading to complex phenotypes which are further mitigated by possible post-zygotic mosaicism. Treatment of this disorder is challenging, and surgical intervention of the GCLJ worsens the lesions, suggesting the future use of MEK inhibitors and TRPV4 antagonists as therapeutic modalities for unmet clinical needs.
Collapse
Affiliation(s)
- Aviel Ragamin
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carolina C Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Karen Bindels-de Heus
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Renata Sandoval
- Oncogenetics, Hospital Sírio-Libanês, Brasília, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | | | - Luciano Dib
- Post Graduation Program, School of Dentistry, Paulista University (UNIP), Sao Paulo, Brazil
| | - Fernando Kok
- Department of Neurology, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Julieta Alves
- Division of Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Irene Mathijssen
- Department of Plastic and Reconstructive Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Robert Eveleigh
- Canadian Centre for Computational Genomics (C3G), Montreal, Québec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Tenzin Gayden
- Department of Human Genetics, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Bas Pullens
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Albert Berghuis
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nada Jabado
- Department of Human Genetics, McGill University Faculty of Medicine, Montreal, Québec, Canada.,Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Quebec, Canada
| | - Grazia Maria Simonetta Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Masuda K, Han X, Kato H, Sato H, Zhang Y, Sun X, Hirofuji Y, Yamaza H, Yamada A, Fukumoto S. Dental Pulp-Derived Mesenchymal Stem Cells for Modeling Genetic Disorders. Int J Mol Sci 2021; 22:ijms22052269. [PMID: 33668763 PMCID: PMC7956585 DOI: 10.3390/ijms22052269] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.
Collapse
Affiliation(s)
- Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan;
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| |
Collapse
|
8
|
Fu S, Meng H, Inamdar S, Das B, Gupta H, Wang W, Thompson CL, Knight MM. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction. Osteoarthritis Cartilage 2021; 29:89-99. [PMID: 33395574 PMCID: PMC7799379 DOI: 10.1016/j.joca.2020.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage health is maintained in response to a range of mechanical stimuli including compressive, shear and tensile strains and associated alterations in osmolality. The osmotic-sensitive ion channel Transient Receptor Potential Vanilloid 4 (TRPV4) is required for mechanotransduction. Mechanical stimuli inhibit interleukin-1β (IL-1β) mediated inflammatory signalling, however the mechanism is unclear. This study aims to clarify the role of TRPV4 in this response. DESIGN TRPV4 activity was modulated glycogen synthase kinase (GSK205 antagonist or GSK1016790 A (GSK101) agonist) in articular chondrocytes and cartilage explants in the presence or absence of IL-1β, mechanical (10% cyclic tensile strain (CTS), 0.33 Hz, 24hrs) or osmotic loading (200mOsm, 24hrs). Nitric oxide (NO), prostaglandin E2 (PGE2) and sulphated glycosaminoglycan (sGAG) release and cartilage biomechanics were analysed. Alterations in post-translational tubulin modifications and primary cilia length regulation were examined. RESULTS In isolated chondrocytes, mechanical loading inhibited IL-1β mediated NO and PGE2 release. This response was inhibited by GSK205. Similarly, osmotic loading was anti-inflammatory in cells and explants, this response was abrogated by TRPV4 inhibition. In explants, GSK101 inhibited IL-1β mediated NO release and prevented cartilage degradation and loss of mechanical properties. Upon activation, TRPV4 cilia localisation was increased resulting in histone deacetylase 6 (HDAC6)-dependent modulation of soluble tubulin and altered cilia length regulation. CONCLUSION Mechanical, osmotic or pharmaceutical activation of TRPV4 regulates HDAC6-dependent modulation of ciliary tubulin and is anti-inflammatory. This study reveals for the first time, the potential of TRPV4 manipulation as a novel therapeutic mechanism to supress pro-inflammatory signalling and cartilage degradation.
Collapse
Affiliation(s)
- S Fu
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - H Meng
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - S Inamdar
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - B Das
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - H Gupta
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - W Wang
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - C L Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - M M Knight
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| |
Collapse
|
9
|
Espadas-Álvarez H, Martínez-Rendón J, Larre I, Matamoros-Volante A, Romero-García T, Rosenbaum T, Rueda A, García-Villegas R. TRPV4 activity regulates nuclear Ca 2+ and transcriptional functions of β-catenin in a renal epithelial cell model. J Cell Physiol 2020; 236:3599-3614. [PMID: 33044004 DOI: 10.1002/jcp.30096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/11/2022]
Abstract
TRPV4 is a nonselective cationic channel responsive to several physical and chemical stimuli. Defects in TRPV4 channel function result in human diseases, such as skeletal dysplasias, arthropathies, and peripheral neuropathies. Nonetheless, little is known about the role of TRPV4 in other cellular functions, such as nuclear Ca2+ homeostasis or Ca2+ -regulated transcription. Here, we confirmed the presence of the full-length TRPV4 channel in the nuclei of nonpolarized Madin-Darby canine kidney cells. Confocal Ca2+ imaging showed that activation of the channel increases cytoplasmic and nuclear Ca2+ leading to translocation of TRPV4 out of the nucleus together with β-catenin, a transcriptional regulator in the Wnt signaling pathway fundamental in embryogenesis, organogenesis, and cellular homeostasis. TRPV4 inhibits β-catenin transcriptional activity through a direct interaction dependent upon channel activity. This interaction also occurs in undifferentiated osteoblastoma and neuroblastoma cell models. Our results suggest a mechanism in which TRPV4 may regulate differentiation in several cellular contexts.
Collapse
Affiliation(s)
- Heidi Espadas-Álvarez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Jacqueline Martínez-Rendón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research and Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | | | - Tatiana Romero-García
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
10
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
11
|
Accelerated osteoblastic differentiation in patient-derived dental pulp stem cells carrying a gain-of-function mutation of TRPV4 associated with metatropic dysplasia. Biochem Biophys Res Commun 2020; 523:841-846. [PMID: 31954514 DOI: 10.1016/j.bbrc.2019.12.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
Abstract
Metatropic dysplasia (MD) is a congenital skeletal dysplasia characterized by severe platyspondyly and dumbbell-like long-bone deformities. These skeletal phenotypes are predominantly caused by autosomal dominant gain-of-function (GOF) mutations in transient receptor potential vanilloid 4 (TRPV4), which encodes a nonselective Ca2+-permeable cation channel. Previous studies have shown that constitutive TRPV4 channel activation leads to irregular chondrogenic proliferation and differentiation, and thus to the disorganized endochondral ossification seen in MD. Therefore, the present study investigated the role of TRPV4 in osteoblast differentiation and MD pathogenesis. Specifically, the behavior of osteoblasts differentiated from patient-derived dental pulp stem cells carrying a heterozygous single base TRPV4 mutation, c.1855C > T (p.L619F) was compared to that of osteoblasts differentiated from isogenic control cells (in which the mutation was corrected using the CRISPR/Cas9 system). The mutant osteoblasts exhibited enhanced calcification (indicated by intense Alizarin Red S staining), increased intracellular Ca2+ levels, strongly upregulated runt-related transcription factor 2 and osteocalcin expression, and increased expression and nuclear translocation of nuclear factor-activated T cell c1 (NFATc1) compared to control cells. These results suggest that the analyzed TRPV4 GOF mutation disrupts osteoblastic differentiation and induces MD-associated disorganized endochondral ossification by increasing Ca2+/NFATc1 pathway activity. Thus, inhibiting the NFATc1 pathway may be a promising potential therapeutic strategy to attenuate skeletal deformities in MD.
Collapse
|
12
|
Atobe M. Activation of Transient Receptor Potential Vanilloid (TRPV) 4 as a Therapeutic Strategy in Osteoarthritis. Curr Top Med Chem 2019; 19:2254-2267. [DOI: 10.2174/1568026619666191010162850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023]
Abstract
Transient receptor potential vanilloid (TRPV) 4 belongs to the TRPV subfamily of TRP ion
channels. TRPV4 channels play a critical role in chondrocytes and thus TRPV4 is an attractive target of
Disease-Modifying Osteoarthritis Drugs (DMOADs). Initial investigations of small molecules by Glaxo
Smith Klein (GSK) as both agonists and antagonists via oral/intravenous administration have led to the
use of existing agonists as lead compounds for biological studies. Our recent results suggest that local
injection of a TRPV4 agonist is a potential treatment for osteoarthritis (OA). This review briefly summarizes
updates regarding TRPV4 agonists based on recent advances in drug discovery, and particularly
the local administration of TRPV4 agonists.
Collapse
Affiliation(s)
- Masakazu Atobe
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| |
Collapse
|
13
|
Martínez-Juárez A, Moreno-Mendoza N. Mechanisms related to sexual determination by temperature in reptiles. J Therm Biol 2019; 85:102400. [PMID: 31657741 DOI: 10.1016/j.jtherbio.2019.102400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
A number of strategies have emerged that appear to relate to the evolution of mechanisms for sexual determination in vertebrates, among which are genetic sex determination caused by sex chromosomes and environmental sex determination, where environmental factors influence the phenotype of the sex of an individual. Within the reptile group, some orders such as: Chelonia, Crocodylia, Squamata and Rhynchocephalia, manifest one of the most intriguing and exciting environmental sexual determination mechanisms that exists, comprising temperature-dependent sex determination (TSD), where the temperature of incubation that the embryo experiences during its development is fundamental to establishing the sex of the individual. This makes them an excellent model for the study of sexual determination at the molecular, cellular and physiological level, as well as in terms of their implications at an evolutionary and ecological level. There are different hypotheses concerning how this process is triggered and this review aims to describe any new contributions to particular TSD hypotheses, analyzing them from the "eco-evo-devo" perspective.
Collapse
Affiliation(s)
- Adriana Martínez-Juárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico.
| |
Collapse
|
14
|
McDonough RC, Shoga JS, Price C. DREADD-based synthetic control of chondrocyte calcium signaling in vitro. J Orthop Res 2019; 37:1518-1529. [PMID: 30908734 DOI: 10.1002/jor.24285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Calcium is a critical second messenger involved in chondrocyte mechanotransduction. Several distinct calcium signaling mechanisms implicated in chondrocyte mechanotransduction have been identified using mechanical perturbations or soluble signaling factors. However, these commonly used stimuli can lack specificity in the mechanisms by which they initiate calcium signaling. Synthetic tools allowing for more precise and selective regulation of calcium signaling, such as the engineered G-protein-coupled receptors known as DREADDs (Designer Receptors Exclusively Activated by Designer Drugs), may better assist in isolating the roles of intracellular calcium ([Ca2+ ]i ) and cell activation in chondrocyte biology. One DREADD, hM3Dq, is solely activated by clozapine N-oxide (CNO) and regulates calcium activation through the Gq -PLCβ-IP3 -ER pathway. Here, hM3Dq-transfected ATDC5 cells were treated with CNO (100 nM-1 μM) to establish the feasibility of using Gq -DREADDs to drive [Ca2+ ]i activation in chondrocyte-like cells. CNO administration resulted in a coordinated, dose-dependent, and transient calcium response in hM3Dq-transfected cells that resulted primarily from calcium release from the ER. Following activation via CNO administration, hM3Dq-ATDC5 cells exhibited refractory behavior and required a 4-h wash-out period to recover hM3Dq-mediated signaling. However, hM3Dq inactivation did not inhibit alternative calcium activation mechanisms in ATDC5 cells (via GSK101 or hypo-osmotic shock), nor did CNO-driven calcium signaling negatively impact ATDC5 cell health. This study established the successful use of hM3Dq for the safe, targeted, and well-controlled activation of calcium signaling in ATDC5 cells and its use as a potential tool for assessing clinically significant questions regarding calcium signaling in chondrocyte biology, cartilage pathology, and cartilage tissue engineering. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1518-1529, 2019.
Collapse
Affiliation(s)
- Ryan C McDonough
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, 19716, DE
| | - Janty S Shoga
- Department of Biomechanics and Movement Science, University of Delaware, Newark, DE
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, 19716, DE.,Department of Biomechanics and Movement Science, University of Delaware, Newark, DE
| |
Collapse
|
15
|
Nonaka K, Han X, Kato H, Sato H, Yamaza H, Hirofuji Y, Masuda K. Novel gain-of-function mutation of TRPV4 associated with accelerated chondrogenic differentiation of dental pulp stem cells derived from a patient with metatropic dysplasia. Biochem Biophys Rep 2019; 19:100648. [PMID: 31463371 PMCID: PMC6709385 DOI: 10.1016/j.bbrep.2019.100648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 01/16/2023] Open
Abstract
Metatropic dysplasia is a congenital skeletal dysplasia characterized by severe platyspondyly, dumbbell-like deformity of long tubular bones, and progressive kyphoscoliosis with growth. It is caused by mutations in the gene TRPV4, encoding the transient receptor potential vanilloid 4, which acts as a calcium channel. Many heterozygous single base mutations of this gene have been associated with the disorder, showing autosomal dominant inheritance. Although abnormal endochondral ossification has been observed by histological examination of bone in a patient with lethal metatropic dysplasia, the etiology of the disorder remains largely unresolved. As dental pulp stem cells (DPSCs) are mesenchymal stem cells that differentiate into bone lineage cells, DPSCs derived from patients with congenital skeletal dysplasia might be useful as a disease-specific cellular model for etiological investigation. The purpose of this study was to clarify the pathological association between TRPV4 mutation and chondrocyte differentiation by analyzing DPSCs from a patient with non-lethal metatropic dysplasia. We identified a novel heterozygous single base mutation, c.1855C>T in TRPV4. This was predicted to be a missense mutation, p.L619F, in putative transmembrane segment 5. The mutation was repaired by CRISPR/Cas9 system to obtain isogenic control DPSCs for further analysis. The expression of stem cell markers and fibroblast-like morphology were comparable between patient-derived mutant and control DPSCs, although expression of TRPV4 was lower in mutant DPSCs than control DPSCs. Despite the lower TRPV4 expression in mutant DPSCs, the intracellular Ca2+ level was comparable at the basal level between mutant and control DPSCs, while its level was markedly higher following stimulation with 4α-phorbol 12,13-didecanoate (4αPDD), a specific agonist for TRPV4, in mutant DPSCs than in control DPSCs. In the presence of 4αPDD, we observed accelerated early chondrocyte differentiation and upregulated mRNA expression of SRY-box 9 (SOX9) in mutant DPSCs. Our findings suggested that the novel missense mutation c.1855C>T of TRPV4 was a gain-of-function mutation leading to enhanced intracellular Ca2+ level, which was associated with accelerated chondrocyte differentiation and SOX9 upregulation. Our results also suggest that patient-derived DPSCs can be a useful disease-specific cellular model for elucidating the pathological mechanism of metatropic dysplasia. Dental pulp stem cells from a patient with metatropic dysplasia were analyzed. A novel heterozygous single base mutation, c.1855C > T, was identified in TRPV4. The mutation was repaired by gene editing to obtain isogenic control cells. The intracellular Ca2+ level was enhanced in mutant cells by 4αPDD. Chondrocyte differentiation was enhanced in mutant cells by 4αPDD.
Collapse
Affiliation(s)
- Kentaro Nonaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
16
|
Bauer JM, Ditro CP, Mackenzie WG. The Management of Kyphosis in Metatropic Dysplasia. Spine Deform 2019; 7:494-500. [PMID: 31053321 DOI: 10.1016/j.jspd.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 09/08/2018] [Accepted: 09/09/2018] [Indexed: 11/17/2022]
Abstract
DESIGN Retrospective review. OBJECTIVE To describe the presentation and progression, and compare treatments of severe thoracic kyphosis in a cohort of patients with metatropic dysplasia. SUMMARY OF BACKGROUND DATA Metatropic dysplasia is a rare skeletal dysplasia characterized by several abnormalities, including severe platyspondyly and vertebral wedging. These lead to marked kyphoscoliosis that begins in the first year of life and progresses to a stiff, short thorax and restrictive lung disease. There is no study that specifically addresses treatment of kyphosis in this cohort. METHODS A 12-year retrospective chart review at a single institution was performed to identify metatropic dysplasia patients. Comparison between four main treatment groups-observation, bracing, anterior release and growing construct, and anterior release and final fusion-were made radiographically with regard to thoracolumbar, T2-T12, and major Cobb kyphosis; sagittal vertical alignment; and C7-kyphosis apex distance, taken at presentation, pre- and posttreatment, and final follow-up. RESULTS Twenty patients with metatropic dysplasia presented at an average age of 3.1 years with a kyphosis of 75°, and were followed an average of 8.5 years. Those treated surgically presented with an average of 86.7° kyphosis, 88 mm C7-kyphosis apex distance, and 50 mm positive sagittal vertical alignment (SVA). Postsurgical reduction of kyphosis averaged 43° with less than 4° loss of correction in all groups except the constructs involving rib fixation. Recent use of staged thoracoscopic anterior soft tissue release, halo traction, and growing rod construct has produced the most dramatic results with average kyphosis correction of 71° and evidence of anterior bony remodeling. In those treated with observation, kyphosis progressed less than a quarter degree per year. CONCLUSIONS Thoracic kyphosis in metatropic dysplasia does not uniformly progress in all patients and therefore can be initially observed. In those who progress, several surgical options exist including growth-friendly constructs that have demonstrated success without a higher rate of complications. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Jennifer M Bauer
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA; Department of Orthopedics and Sports Medicine, University of Washington, 1959 N.E. Pacific St., Box 356500, Seattle, WA 98195-6500, USA.
| | - Colleen P Ditro
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd, Wilmington, DE 19803, USA
| | - William G Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd, Wilmington, DE 19803, USA
| |
Collapse
|
17
|
Lv M, Zhou Y, Chen X, Han L, Wang L, Lu XL. Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: Roles of calcium sources and cell membrane ion channels. J Orthop Res 2018; 36:730-738. [PMID: 28980722 PMCID: PMC5839963 DOI: 10.1002/jor.23768] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
Mechanical loading on articular cartilage can induce many physical and chemical stimuli on chondrocytes residing in the extracellular matrix (ECM). Intracellular calcium ([Ca2+ ]i ) signaling is among the earliest responses of chondrocytes to physical stimuli, but the [Ca2+ ]i signaling of in situ chondrocytes in loaded cartilage is not fully understood due to the technical challenges in [Ca2+ ]i imaging of chondrocytes in a deforming ECM. This study developed a novel bi-directional microscopy loading device that enables the record of transient [Ca2+ ]i responses of in situ chondrocytes in loaded cartilage. It was found that compressive loading significantly promoted [Ca2+ ]i signaling in chondrocytes with faster [Ca2+ ]i oscillations in comparison to the non-loaded cartilage. Seven [Ca2+ ]i signaling pathways were further investigated by treating the cartilage with antagonists prior to and/or during the loading. Removal of extracellular Ca2+ ions completely abolished the [Ca2+ ]i responses of in situ chondrocytes, suggesting the indispensable role of extracellular Ca2+ sources in initiating the [Ca2+ ]i signaling in chondrocytes. Depletion of intracellular Ca2+ stores, inhibition of PLC-IP3 pathway, and block of purinergic receptors on plasma membrane led to significant reduction in the responsive rate of cells. Three types of ion channels that are regulated by different physical signals, TRPV4 (osmotic and mechanical stress), T-type VGCCs (electrical potential), and mechanical sensitive ion channels (mechanical loading) all demonstrated critical roles in controlling the [Ca2+ ]i responses of in situ chondrocyte in the loaded cartilage. This study provided new knowledge about the [Ca2+ ]i signaling and mechanobiology of chondrocytes in its natural residing environment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:730-738, 2018.
Collapse
Affiliation(s)
- Mengxi Lv
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Xingyu Chen
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716,Corresponding Author: X. Lucas Lu, Ph.D. Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716, Telephone: (302) 831-3581,
| |
Collapse
|
18
|
Gong X, Wang F, Huang Y, Lin X, Chen C, Wang F, Yang L. Magnetic-targeting of polyethylenimine-wrapped iron oxide nanoparticle labeled chondrocytes in a rabbit articular cartilage defect model. RSC Adv 2018; 8:7633-7640. [PMID: 35539110 PMCID: PMC9078383 DOI: 10.1039/c7ra12039g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent form of joint disease and lacks effective treatment. Cell-based therapy through intra-articular injection holds great potential for effective intervention at its early stage. Despite the promising outcomes, major barriers for successful clinical application such as lack of specific targeting of transplanted cells still remain. Here, novel polyethylenimine-wrapped iron oxide nanoparticles (PEI/IONs) were utilized as a magnetic agent, and the in vitro efficiency of PEI/ION labeling, and the influence on the chondrogenic properties of chondrocytes were evaluated; the in vivo feasibility of magnetic-targeting intra-articular injection with PEI/ION labeled autologous chondrocytes was investigated using a rabbit articular cartilage defect model. Our data showed that chondrocytes were conveniently labeled with PEI/IONs in a time- and dose-dependent manner, while the viability was unaffected. No significant decrease in collagen type-II synthesis of labeled chondrocytes was observed at low concentration. Macrographic and histology evaluation at 1 week post intra-articular injection revealed efficient cell delivery at chondral defect sites in the magnetic-targeting group. In addition, chondrocytes in the defect area presented a normal morphology, and the origin of cells within was confirmed by immunohistochemistry staining against BrdU and Prussian blue staining. The present study shows proof of concept experiments in magnetic-targeting of PEI/ION labeled chondrocytes for articular cartilage repair, which might provide new insight to improve current cartilage repair strategies. Magnetic-targeting outcome in the knee joint of experimental rabbit model at 1 week post intra-articular injection.![]()
Collapse
Affiliation(s)
- Xiaoyuan Gong
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Fengling Wang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Yang Huang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Xiao Lin
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Cheng Chen
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Fuyou Wang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Liu Yang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| |
Collapse
|
19
|
Bober MB, Duker AL, Carney M, Ditro CP, Rogers K, Mackenzie WG. Metatropic dysplasia is associated with increased fracture risk. Am J Med Genet A 2016; 170A:1373-6. [DOI: 10.1002/ajmg.a.37576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/19/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Michael B. Bober
- Division of Medical Genetics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Angela L. Duker
- Division of Medical Genetics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Megan Carney
- Division of Medical Genetics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Colleen P. Ditro
- Department of Orthopaedics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Kenneth Rogers
- Department of Orthopaedics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - William G. Mackenzie
- Department of Orthopaedics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| |
Collapse
|