1
|
Hu D, Thériault BL, Talebian V, Hoffer L, Owen J, Lim J, Blencowe BJ, Lima-Fernandes E, Saraon P, Marcellus R, Al-Awar R. CDC40 suppression induces CDCA5 splicing defects and anti-proliferative effects in lung cancer cells. Sci Rep 2025; 15:315. [PMID: 39747150 PMCID: PMC11696760 DOI: 10.1038/s41598-024-83337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
High mortality and low response rates in lung cancer patients call for novel therapeutic targets. Data mining of whole-genome genetic dependency screens suggest Cell Division Cycle 40 (CDC40) to be an essential protein for lung cancer cell survival. We characterized CDC40 knockdown effects in multiple lung cancer cell lines, revealing induced cell cycle defects that resulted in strong growth inhibition and activation of apoptosis. Global transcriptional and splicing changes were also investigated, where CDC40 knockdown resulted in perturbation of splicing- and translation-related genes as well as more transcripts with intron retention. In the transcript of the cell cycle regulatory protein CDCA5, CDC40 knockdown was shown to induce retention of the first intron, leading to an increase in the unspliced CDCA5 transcript and subsequent decrease in CDCA5 protein expression. Additionally, protein-protein interactions of CDC40 were explored and spliceosome components were found to be its main binding partners, further highlighting the role of CDC40 in splicing. CDC40 mutation analysis suggests that it may be difficult to disrupt key interactions using small molecules within a large complex. Our results demonstrate that CDC40 is essential for lung cancer cell growth, and that its inhibition may represent a viable therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Die Hu
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Brigitte L Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- Currently at Fusion Pharmaceuticals Inc, Hamilton, ON, L8P 0A6, Canada
| | - Vida Talebian
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Laurent Hoffer
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Julie Owen
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Justin Lim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Evelyne Lima-Fernandes
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Punit Saraon
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- RA Capital Management, L.P, Boston, MA, 02116, USA
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Sidpra J, Sudhakar S, Biswas A, Massey F, Turchetti V, Lau T, Cook E, Alvi JR, Elbendary HM, Jewell JL, Riva A, Orsini A, Vignoli A, Federico Z, Rosenblum J, Schoonjans AS, de Wachter M, Delgado Alvarez I, Felipe-Rucián A, Haridy NA, Haider S, Zaman M, Banu S, Anwaar N, Rahman F, Maqbool S, Yadav R, Salpietro V, Maroofian R, Patel R, Radhakrishnan R, Prabhu SP, Lichtenbelt K, Stewart H, Murakami Y, Löbel U, D’Arco F, Wakeling E, Jones W, Hay E, Bhate S, Jacques TS, Mirsky DM, Whitehead MT, Zaki MS, Sultan T, Striano P, Jansen AC, Lequin M, de Vries LS, Severino M, Edmondson AC, Menzies L, Campeau PM, Houlden H, McTague A, Efthymiou S, Mankad K. The clinical and genetic spectrum of inherited glycosylphosphatidylinositol deficiency disorders. Brain 2024; 147:2775-2790. [PMID: 38456468 PMCID: PMC11292905 DOI: 10.1093/brain/awae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.
Collapse
Affiliation(s)
- Jai Sidpra
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Sniya Sudhakar
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Flavia Massey
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tracy Lau
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Edward Cook
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Javeria Raza Alvi
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Hasnaa M Elbendary
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Jerry L Jewell
- Department of Paediatric Neurology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alessandro Orsini
- Department of Paediatric Neurology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Health Sciences Department, Università degli Studi di Milano, 20142 Milano, Italy
| | - Zara Federico
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Health Sciences Department, Università degli Studi di Milano, 20142 Milano, Italy
| | - Jessica Rosenblum
- Department of Clinical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - An-Sofie Schoonjans
- Department of Paediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Matthias de Wachter
- Department of Paediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | | | - Ana Felipe-Rucián
- Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Nourelhoda A Haridy
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Shahzad Haider
- Department of Paediatrics, Wah Medical College NUMS, Wah Cantonment, Punjab 47000, Pakistan
| | - Mashaya Zaman
- Department of Paediatric Neurology and Development, Dr M.R. Khan Shishu Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Selina Banu
- Department of Paediatric Neurology and Development, Dr M.R. Khan Shishu Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Najwa Anwaar
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Fatima Rahman
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Shazia Maqbool
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Rashmi Yadav
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rajan Patel
- Department of Paediatric Radiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Houston, TX 77030, USA
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Klaske Lichtenbelt
- Department of Clinical Genetics, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Yoshiko Murakami
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Osaka 565, Japan
| | - Ulrike Löbel
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Felice D’Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Emma Wakeling
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Wendy Jones
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Sanjay Bhate
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - David M Mirsky
- Department of Neuroradiology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew T Whitehead
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Tipu Sultan
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Anna C Jansen
- Department of Paediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Maarten Lequin
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Andrew C Edmondson
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lara Menzies
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Philippe M Campeau
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Montreal QC H3T 1C5, Canada
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Kshitij Mankad
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
3
|
Sonti S, Littleton SH, Pahl MC, Zimmerman AJ, Chesi A, Palermo J, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Pack AI, Gehrman PR, Keene AC, Grant SFA. Perturbation of the insomnia WDR90 genome-wide association studies locus pinpoints rs3752495 as a causal variant influencing distal expression of neighboring gene, PIG-Q. Sleep 2024; 47:zsae085. [PMID: 38571402 PMCID: PMC11236950 DOI: 10.1093/sleep/zsae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/28/2024] [Indexed: 04/05/2024] Open
Abstract
Although genome-wide association studies (GWAS) have identified loci for sleep-related traits, they do not directly uncover the underlying causal variants and corresponding effector genes. The majority of such variants reside in non-coding regions and are therefore presumed to impact cis-regulatory elements. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated phosphatidyl inositol glycan (PIG)-Q as a functionally relevant gene at the insomnia "WDR90" GWAS locus. However, importantly that effort did not characterize the corresponding underlying causal variant. Specifically, our previous 3D genomic datasets nominated a shortlist of three neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium within an intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. We sought to investigate the influence of these SNPs collectively and then individually on PIG-Q modulation to pinpoint the causal "regulatory" variant. Starting with gross level perturbation, deletion of the entire region in NPCs via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from individual luciferase reporter assays for each SNP in iPSCs revealed that the region with the rs3752495 risk allele (RA) induced a ~2.5-fold increase in luciferase expression. Importantly, rs3752495 also exhibited an allele-specific effect, with the RA increasing the luciferase expression by ~2-fold versus the non-RA. In conclusion, our variant-to-function approach and in vitro validation implicate rs3752495 as a causal insomnia variant embedded within WDR90 while modulating the expression of the distally located PIG-Q.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber J Zimmerman
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory, Medicine University of Pennsylvania Perelman School of Medicine, Philadelphia PA, USA
| | - Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth B Brown
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip R Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Divisions of Human Genetics and Endocrinology & Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Ronzoni L, Boito S, Meossi C, Cesaretti C, Rinaldi B, Agolini E, Rizzuti T, Pezzoli L, Silipigni R, Novelli A, Iascone M, Persico N, Natacci F. Prenatal ultrasound findings associated with PIGW variants: One more piece in the FRYNS syndrome puzzle? PIGW-related prenatal findings. Prenat Diagn 2022; 42:1493-1502. [PMID: 35788948 DOI: 10.1002/pd.6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We describe the prenatal ultrasound findings and autopsy of three fetuses with multiple congenital anomalies (MCA) whose diagnostic workup suggested the same genetic etiology. We conducted a literature review to corroborate the molecular results and find evidence that the identified variants are responsible for the phenotype seen. METHODS Trio-based Exome Sequencing (ES) analysis was performed on chorionic villus samples. We reviewed available reports dealing with prenatal manifestations of genes involved in the Glycosylphosphatidylinositols (GPI) biosynthesis defects (GPIBDs). RESULTS Prenatal findings shared by all the three pregnancies included facial dysmorphisms, brain malformations of the posterior fossa, skeletal and genitourinary anomalies. ES analysis identified homozygous variants of uncertain significance in PIGW in the three fetuses. Prenatal findings of the three pregnancies overlapped with those previously described for PIGW variants and with those associated with PIGN, PIGV and PIGA variants. CONCLUSION Based on the phenotypic overlap between the prenatal findings in our three cases and other cases with pathogenic variants in other genes involved in GPIBDs, we speculate that the variants identified in the three fetuses are likely causal of their phenotype and that the PIGWclinical spectrum might extend to MCA, mainly involving brain, skeletal and genitourinary systems. Moreover, we suggest that also PIGW could be involved in Fryns/Fryns-like phenotypes.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Meossi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Claudia Cesaretti
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Berardo Rinaldi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tommaso Rizzuti
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Pezzoli
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Natacci
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| |
Collapse
|
5
|
Johnstone DL, Nguyen TTM, Zambonin J, Kernohan KD, St‐Denis A, Baratang NV, Hartley T, Geraghty MT, Richer J, Majewski J, Bareke E, Guerin A, Pendziwiat M, Pena LDM, Braakman HMH, Gripp KW, Edmondson AC, He M, Spillmann RC, Eklund EA, Bayat A, McMillan HJ, Boycott KM, Campeau PM. Early infantile epileptic encephalopathy due to biallelic pathogenic variants in PIGQ: Report of seven new subjects and review of the literature. J Inherit Metab Dis 2020; 43:1321-1332. [PMID: 32588908 PMCID: PMC7689772 DOI: 10.1002/jimd.12278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023]
Abstract
We investigated seven children from six families to expand the phenotypic spectrum associated with an early infantile epileptic encephalopathy caused by biallelic pathogenic variants in the phosphatidylinositol glycan anchor biosynthesis class Q (PIGQ) gene. The affected children were all identified by clinical or research exome sequencing. Clinical data, including EEGs and MRIs, was comprehensively reviewed and flow cytometry and transfection experiments were performed to investigate PIGQ function. Pathogenic biallelic PIGQ variants were associated with increased mortality. Epileptic seizures, axial hypotonia, developmental delay and multiple congenital anomalies were consistently observed. Seizure onset occurred between 2.5 months and 7 months of age and varied from treatable seizures to recurrent episodes of status epilepticus. Gastrointestinal issues were common and severe, two affected individuals had midgut volvulus requiring surgical correction. Cardiac anomalies including arrythmias were observed. Flow cytometry using granulocytes and fibroblasts from affected individuals showed reduced expression of glycosylphosphatidylinositol (GPI)-anchored proteins. Transfection of wildtype PIGQ cDNA into patient fibroblasts rescued this phenotype. We expand the phenotypic spectrum of PIGQ-related disease and provide the first functional evidence in human cells of defective GPI-anchoring due to pathogenic variants in PIGQ.
Collapse
Affiliation(s)
- Devon L. Johnstone
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | | | - Jessica Zambonin
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of GeneticsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Kristin D. Kernohan
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Division of Metabolics and Newborn Screening, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Anik St‐Denis
- Research Center, CHU Sainte JustineUniversity of MontrealMontrealQuebecCanada
| | - Nissan V. Baratang
- Research Center, CHU Sainte JustineUniversity of MontrealMontrealQuebecCanada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | - Michael T. Geraghty
- Division of Metabolics and Newborn Screening, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Julie Richer
- Department of GeneticsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Jacek Majewski
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- McGill University and Genome Quebec Innovation CentreMontrealQuebecCanada
| | - Eric Bareke
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- McGill University and Genome Quebec Innovation CentreMontrealQuebecCanada
| | - Andrea Guerin
- Division of Medical Genetics, Department of PediatricsQueen's UniversityKingstonOntarioCanada
| | - Manuela Pendziwiat
- Department of NeuropediatricsChristian‐Albrechts‐University of KielKielGermany
| | - Loren D. M. Pena
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Hilde M. H. Braakman
- Department of NeurologyAcademic Center for Epileptology Kempenhaeghe & Maastricht University Medical CenterHeezeThe Netherlands
- Department of Pediatric Neurology, Amalia Children's HospitalRadboud University Medical Center & Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Karen W. Gripp
- Division of Medical GeneticsA. I. DuPont Hospital for Children/NemoursWilmingtonDelawareUSA
| | - Andrew C. Edmondson
- Department of Pediatrics, Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Miao He
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Rebecca C. Spillmann
- Division of Medical Genetics, Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Erik A. Eklund
- Department of Pediatric Neurology, Region Skåne and Clinical SciencesLund University Skåne University Hospital (SUS)LundSweden
| | - Allan Bayat
- Department of Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Institute for Regional Health Services ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Hugh J. McMillan
- Division of Neurology, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Kym M. Boycott
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of GeneticsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Philippe M. Campeau
- Research Center, CHU Sainte JustineUniversity of MontrealMontrealQuebecCanada
- Department of Pediatrics, Sainte‐Justine HospitalUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
6
|
Wu T, Yin F, Guang S, He F, Yang L, Peng J. The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet J Rare Dis 2020; 15:129. [PMID: 32466763 PMCID: PMC7254680 DOI: 10.1186/s13023-020-01401-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
Glycosylphosphatidylinositol biosynthesis defects cause rare genetic disorders characterised by developmental delay/intellectual disability, seizures, dysmorphic features, and diverse congenital anomalies associated with a wide range of additional features (hypotonia, hearing loss, elevated alkaline phosphatase, and several other features). Glycosylphosphatidylinositol functions as an anchor to link cell membranes and protein. These proteins function as enzymes, adhesion molecules, complement regulators, or co-receptors in signal transduction pathways. Biallelic variants involved in the glycosylphosphatidylinositol anchored proteins biosynthetic pathway are responsible for a growing number of disorders, including multiple congenital anomalies-hypotonia-seizures syndrome; hyperphosphatasia with mental retardation syndrome/Mabry syndrome; coloboma, congenital heart disease, ichthyosiform dermatosis, mental retardation, and ear anomalies/epilepsy syndrome; and early infantile epileptic encephalopathy-55. This review focuses on the current understanding of Glycosylphosphatidylinositol biosynthesis defects and the associated genes to further understand its wide phenotype spectrum.
Collapse
Affiliation(s)
- Tenghui Wu
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fei Yin
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Shiqi Guang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fang He
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Li Yang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jing Peng
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|