1
|
Gowda VK, Srinivasan VM, Nayyer A, Pandey H, Lal D. Clinical and neuroimaging variability in two siblings with a novel PCDH12 variant: a case report. Clin Dysmorphol 2025:00019605-990000000-00089. [PMID: 40073205 DOI: 10.1097/mcd.0000000000000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Affiliation(s)
- Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore
| | | | - Amena Nayyer
- Department of Radiology, Pediatric Radiology fellow, Indira Gandhi Institute of Child Health, Bangalore
| | - Himani Pandey
- Department of Molecular Genetics, Redcliffe labs, Noida, Uttar Pradesh
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Ürel-Demir G, Başer B, Göçmen R, Şimşek-Kiper PÖ, Utine GE, Haliloğlu G. Many Faces of Diencephalic-Mesencephalic Junction Dysplasia Syndrome with GSX2 and PCDH12 Variants. Mol Syndromol 2024; 15:275-283. [PMID: 39119454 PMCID: PMC11305698 DOI: 10.1159/000537831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Diencephalic-mesencephalic junction dysplasia syndrome is a rare neurogenetic disorder reported to be caused by variants in several genes. Phenotypic presentation is characterized by clinical findings including developmental delay, hypotonia, spasticity, and dyskinetic movements in combination with distinctive imaging features on brain magnetic resonance imaging (MRI). Methods Whole exome sequencing was conducted to unveil the molecular etiology of patients presenting with neurological manifestations from two unrelated families. Results To the best of our knowledge, here we report the third family affected with diencephalic-mesencephalic junction dysplasia caused by a novel variant in GSX2 and two siblings with a PCDH12 variant exhibiting a less severe phenotype. The siblings with a PCDH12 variant were positioned at the milder end of the phenotypic spectrum. Although both exhibited a clinical phenotype resembling cerebral palsy, one showed partial fusion of the hypothalamus and mesencephalon, whereas MRI was unremarkable in the other. Biallelic GSX2 variants have been implicated in basal ganglia agenesis, and similarly, our patients had basal ganglia hypoplasia along with hypothalamic-mesencephalic fusion. Conclusion Identifying variants associated with the syndrome in different genes will contribute to genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gizem Ürel-Demir
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burak Başer
- Department of Medical Genetics, Mersin City Training and Research Hospital, Mersin, Turkey
| | - Rahşan Göçmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Özlem Şimşek-Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Janzing AM, Eklund E, De Koning TJ, Eggink H. Clinical Characteristics Suggestive of a Genetic Cause in Cerebral Palsy: A Systematic Review. Pediatr Neurol 2024; 153:144-151. [PMID: 38382247 DOI: 10.1016/j.pediatrneurol.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cerebral palsy (CP) is a clinical diagnosis and was long categorized as an acquired disorder, but more and more genetic etiologies are being identified. This review aims to identify the clinical characteristics that are associated with genetic CP to aid clinicians in selecting candidates for genetic testing. METHODS The PubMed database was systematically searched to identify genes associated with CP. The clinical characteristics accompanying these genetic forms of CP were compared with published data of large CP populations resulting in the identification of potential indicators of genetic CP. RESULLTS Of 1930 articles retrieved, 134 were included. In these, 55 CP genes (described in two or more cases, n = 272) and 79 candidate genes (described in only one case) were reported. The most frequently CP-associated genes were PLP1 (21 cases), ARG1 (17 cases), and CTNNB1 (13 cases). Dyskinesia and the absence of spasticity were identified as strong potential indicators of genetic CP. Presence of intellectual disability, no preterm birth, and no unilateral distribution of symptoms were classified as moderate genetic indicators. CONCLUSIONS Genetic causes of CP are increasingly identified. The clinical characteristics associated with genetic CP can aid clinicians regarding to which individual with CP to offer genetic testing. The identified potential genetic indicators need to be validated in large CP cohorts but can provide the first step toward a diagnostic algorithm for genetic CP.
Collapse
Affiliation(s)
- Anna M Janzing
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Eklund
- Faculty of Medicine, Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Tom J De Koning
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands; Faculty of Medicine, Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Youn EY, Parra V, Qian CX. Asynchronous presentation and evolution of homozygous PCDH12 variant-induced exudative retinopathy in two siblings. CANADIAN JOURNAL OF OPHTHALMOLOGY 2023; 58:e271-e272. [PMID: 37536661 DOI: 10.1016/j.jcjo.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Affiliation(s)
| | | | - Cynthia X Qian
- Sainte-Justine Hospital/University of Montreal, Montreal, QC..
| |
Collapse
|
5
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Fairbanks-Santana M, Rozet JM, Guemez-Gamboa A. PCDH12 loss results in premature neuronal differentiation and impeded migration in a cortical organoid model. Cell Rep 2023; 42:112845. [PMID: 37480564 PMCID: PMC10521973 DOI: 10.1016/j.celrep.2023.112845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Biallelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs). Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development, with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit the cell cycle and differentiate earlier when compared with wild type. Furthermore, we show that PCDH12 regulates neuronal migration and suggest that this could be through a mechanism requiring ADAM10-mediated ectodomain shedding and/or membrane recruitment of cytoskeleton regulators. Our results demonstrate a critical involvement of PCDH12 in cortical organoid development, suggesting a potential cause for the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
Affiliation(s)
- Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Sean McDermott
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Devin Davies
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Yang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fikayo Fagbemi
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maya Epstein
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Martín Fairbanks-Santana
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Guemez-Gamboa A. Impaired migration and premature differentiation underlie the neurological phenotype associated with PCDH12 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522934. [PMID: 36711630 PMCID: PMC9881913 DOI: 10.1101/2023.01.05.522934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Bi-allelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs) such as diencephalic-mesencephalic dysplasia syndrome, cerebral palsy, cerebellar ataxia, and microcephaly. Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit cell cycle and differentiate earlier when compared to wildtype. Furthermore, we show that PCDH12 regulates neuronal migration through a mechanism requiring ADAM10-mediated ectodomain shedding and membrane recruitment of cytoskeleton regulators. Our data demonstrate a critical and broad involvement of PCDH12 in cortical development, revealing the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
|
7
|
Jacobs E, Whitehead MT. Clinical spectrum of orbital and ocular abnormalities on fetal MRI. Pediatr Radiol 2023; 53:121-130. [PMID: 35867110 DOI: 10.1007/s00247-022-05439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) may reveal sonographically occult ocular abnormalities. When discovered, acquired causes and genetic associations must be sought. OBJECTIVE We aim to evaluate a fetal cohort with orbit and/or globe malformations to determine whether there are imaging patterns that suggest the underlying cause. MATERIALS AND METHODS We searched all fetal MRI reports performed at an academic children's hospital over 9 consecutive years for orbit and/or globe abnormalities. Each positive exam and all follow-up MRIs were evaluated for interocular distance, globe size, shape and signal, and brain malformations. Genetic and clinical diagnoses were recorded from the medical record. RESULTS Seventy-six of 3,085 fetuses (2.5%) were diagnosed with ocular and/or globe abnormalities; 50% had postnatal follow-up MR exams, all confirming the fetal MRI findings. Ninety-two percent (70/76) had concurrent brain malformations. Sixty-seven percent (51/76) were diagnosed with an underlying disorder and 39% of these were genetically proven. The most common diagnoses with ocular globe abnormalities included CHARGE (coloboma of the eye, heart anomaly, choanal atresia, retardation and genital and ear anomalies) syndrome, trisomy 13 syndrome, dystroglycanopathy, holoprosencephaly and diencephalic-mesencephalic junction dysplasia. Genetic diagnoses were more likely with ocular globe abnormalities than isolated orbital abnormalities (P=0.04). Sixty-seven percent of fetuses with ocular calcifications, hemorrhage and/or lens abnormalities had potential maternal risk factors (P=0.03). CONCLUSION Malformed ocular globes are associated with brain malformations and genetic abnormalities. Ocular calcifications, hemorrhage and/or lens abnormalities may be associated with maternal risk factors. Genetic work-up should be considered when an ocular globe size or shape abnormality is detected.
Collapse
Affiliation(s)
- Erica Jacobs
- The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC, 20052, USA.
| | - Matthew T Whitehead
- The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC, 20052, USA.,Department of Neuroradiology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
8
|
Expanding spectrum of PCDH12 related phenotype begs exploration of multipronged pathomechanisms. Eur J Paediatr Neurol 2022; 36:A2-A3. [PMID: 34998686 DOI: 10.1016/j.ejpn.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
The phenotypic spectrum of PCDH12 associated disorders - Five new cases and review of the literature. Eur J Paediatr Neurol 2022; 36:7-13. [PMID: 34773825 PMCID: PMC9939053 DOI: 10.1016/j.ejpn.2021.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023]
Abstract
PCDH12 is a member of the non-clustered protocadherin family of calcium-dependent cell adhesion proteins, which are involved in the regulation of brain development and endothelial adhesion. To date, only 15 families have been reported with PCDH12 associated disease. The main features previously associated with PCDH12 deficiency are developmental delay, movement disorder, epilepsy, microcephaly, visual impairment, midbrain malformations, and intracranial calcifications. Here, we report novel clinical features such as onset of epilepsy after infancy, episodes of transient developmental regression, and dysplasia of the medulla oblongata associated with three different novel truncating PCDH12 mutations in five cases (three children, two adults) from three unrelated families. Interestingly, our data suggests a clinical overlap with interferonopathies, and we show an elevated interferon score in two pediatric patients. This case series expands the genetic and phenotypic spectrum of PCDH12 associated diseases and highlights the broad clinical variability.
Collapse
|
10
|
Accogli A, El Kosseifi C, Saint-Martin C, Addour-Boudrahem N, Rivière JB, Toffoli D, Lopez I, Qian C, Koenekoop RK, Srour M. PCDH12 variants are associated with basal ganglia anomalies and exudative vitreoretinopathy. Eur J Med Genet 2021; 65:104405. [PMID: 34929393 DOI: 10.1016/j.ejmg.2021.104405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2022]
Abstract
PCDH12 is a member of the non-clustered protocadherins that mediate cell-cell adhesion, playing crucial roles in many biological processes. Among these, PCDH12 promotes cell-cell interactions at inter-endothelial junctions, exerting essential functions in vascular homeostasis and angiogenesis. However, its exact role in eye vascular and brain development is not completely understood. To date, biallelic loss of function variants in PCDH12 have been associated with a neurodevelopmental disorder characterized by the typical neuroradiological findings of diencephalic-mesencephalic junction dysplasia and intracranial calcifications, whereas heterozygous variants have been recently linked to isolated brain calcifications in absence of cognitive impairment or other brain malformations. Recently, the phenotypic spectrum associated with PCDH12 deficiency has been expanded including cerebellar and eye abnormalities. Here, we report two female siblings harboring a novel frameshift homozygous variant (c.2169delT, p.(Val724TyrfsTer8)) in PCDH12. In addition to the typical diencephalic-mesencephalic junction dysplasia, brain MRI showed dysmorphic basal ganglia and thalamus that were reminiscent of a tubulin-like phenotype, mild cerebellar vermis hypoplasia and extensive prominence of perivascular spaces in both siblings. The oldest sister developed profound and progressive monocular visual loss and the eye exam revealed exudative vitreoretinopathy. Similar but milder eye changes were also noted in her younger sister. In summary, our report expands the clinical (brain and ocular) spectrum of PCDH12-related disorders and adds a further line of evidence underscoring the important role of PCDH12 in retinal vascular and brain development.
Collapse
Affiliation(s)
- Andrea Accogli
- Department of Pediatrics, Division of Medical Genetics, McGill University Health Center, Montreal, Canada; Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada.
| | - Charbel El Kosseifi
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, QC, H4A 3J1, Montreal, Canada
| | - Christine Saint-Martin
- Department of Medical Imaging, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | | | - Jean-Baptiste Rivière
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medical Imaging, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Daniela Toffoli
- McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada; Departments of Paediatric Surgery, Human Genetics, and Adult Ophthalmology, McGill University Health Center, Montreal, Quebec, Canada
| | - Irma Lopez
- McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada; Departments of Paediatric Surgery, Human Genetics, and Adult Ophthalmology, McGill University Health Center, Montreal, Quebec, Canada
| | - Cynthia Qian
- Department of Ophthalmology, University of Montreal, Montreal, Canada
| | - Robert K Koenekoop
- McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada; Departments of Paediatric Surgery, Human Genetics, and Adult Ophthalmology, McGill University Health Center, Montreal, Quebec, Canada
| | - Myriam Srour
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medical Imaging, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada; McGill University Health Center (MUHC) Research Institute, QC, H4A 3J1, Montreal, Canada
| |
Collapse
|