1
|
Ciuba K, Piotrowska A, Chaudhury D, Dehingia B, Duński E, Behr R, Soroczyńska K, Czystowska-Kuźmicz M, Abbas M, Bulanda E, Gawlik-Zawiślak S, Pietrzak S, Figiel I, Włodarczyk J, Verkhratsky A, Niedbała M, Kaspera W, Wypych T, Wilczyński B, Pękowska A. Molecular signature of primate astrocytes reveals pathways and regulatory changes contributing to human brain evolution. Cell Stem Cell 2025; 32:426-444.e14. [PMID: 39909043 DOI: 10.1016/j.stem.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Astrocytes contribute to the development and regulation of the higher-level functions of the brain, the critical targets of evolution. However, how astrocytes evolve in primates is unsettled. Here, we obtain human, chimpanzee, and macaque induced pluripotent stem-cell-derived astrocytes (iAstrocytes). Human iAstrocytes are bigger and more complex than the non-human primate iAstrocytes. We identify new loci contributing to the increased human astrocyte. We show that genes and pathways implicated in long-range intercellular signaling are activated in the human iAstrocytes and partake in controlling iAstrocyte complexity. Genes downregulated in human iAstrocytes frequently relate to neurological disorders and were decreased in adult brain samples. Through regulome analysis and machine learning, we uncover that functional activation of enhancers coincides with a previously unappreciated, pervasive gain of "stripe" transcription factor binding sites. Altogether, we reveal the transcriptomic signature of primate astrocyte evolution and a mechanism driving the acquisition of the regulatory potential of enhancers.
Collapse
Affiliation(s)
- Katarzyna Ciuba
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Piotrowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Debadeep Chaudhury
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Eryk Duński
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Platform Stem Cell Biology and Regeneration, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany
| | - Karolina Soroczyńska
- Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | | | - Misbah Abbas
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Edyta Bulanda
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sylwia Gawlik-Zawiślak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Sylwia Pietrzak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Neurosciences, University of the Basque Country, CIBERNED 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Marcin Niedbała
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Tomasz Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bartosz Wilczyński
- Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
3
|
O'Connell M, Harstad E, Aites J, Hayes K, Arnett AB, Scotellaro J, Patel S, Brewster SJ, Barbaresi W, Doan RN. Diverse clinical presentation of SPTBN1 variants: Complex versus primary attention-deficit/hyperactivity disorder. Am J Med Genet A 2025; 197:e63851. [PMID: 39162370 DOI: 10.1002/ajmg.a.63851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) belongs to a phenotypically broad class of mental health disorders impacting social and cognitive functioning. Despite heritability estimates of 77%-88% and a global prevalence of up to 1 in 20 children, most of the underlying genetic etiology of the disorder remains undiscovered, making it challenging to obtain a clinical molecular genetic diagnosis and to develop new treatments (Biological Psychiatry, 2005, 57, 1313; Psychological Bulletin, 2009, 135, 608; Psychological Medicine, 2014, 44, 2223). Here we report the identification of a novel ultra-rare heterozygous loss-of-function (p.Q1625*) variant in a child with complex ADHD (i.e., comorbid mild intellectual disability [ID]) and a missense (p.G1748R) variant (allele frequency of 4.7 × 10-5) in a child with primary ADHD (i.e., absence of comorbid autism spectrum disorder [ASD], ID, or syndromic features) both in the SPTBN1 gene. Missense variants in SPTBN1 have been reported in individuals with developmental disorders, language and communication disorders, and motor delays in recent publications (Nature Genetics, 2021, 53, 1006; American Journal of Medical Genetics Part A, 2021, 185, 2037) and ClinVar, though most variants in ClinVar have uncertain disease associations. The functional impact of these 135 variants, including from the current study, were further assessed using prediction scores from the recently developed AlphaMissense tool and benchmarked against published functional studies on a subset of the variants. While heterozygous SPTBN1 variants have recently been associated with neurodevelopmental disorders characterized by global developmental delay, intellectual disability, and behavioral abnormalities, the two patients in the current study expand the phenotypic spectrum to include ADHD in the absence of more severe neurodevelopmental disorders, such as ASD and moderate to severe ID. Furthermore, the culmination of these data with existing reported cases suggests that variation including loss of function and missense events underlie a broader clinical spectrum than previously understood.
Collapse
Affiliation(s)
- Mia O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Elizabeth Harstad
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer Aites
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katheryn Hayes
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anne B Arnett
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Julia Scotellaro
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Soleha Patel
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stephanie J Brewster
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - William Barbaresi
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan N Doan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Wang L, Yi X, Zhou Y, Gongga L, Yu S, Guo X, Pan X, Su X, Wang P. Hypoxia adaptation mechanism in rats' peripheral auditory system in high altitude migration: a time series transcriptome analysis. Sci Rep 2024; 14:26909. [PMID: 39505982 PMCID: PMC11541580 DOI: 10.1038/s41598-024-78169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
High altitude is characterized by low oxygen, low pressure, and high radiation. When migrates from low to high altitudes, the body's tissues and organs experience hypoxic stress and will present acoustic adaptation as the protective response. However, the mechanisms of acoustic adaptation at high altitudes remain unclear. In this study, cochlear tissues from Wistar rats were collected at 15, 30, 60, 120, and 180 days after high-altitude migration. Transcriptome sequencing was conducted and DESeq algorithm revealed expression patterns of Differentially Expressed Genes(DEGs) after high altitude migration. Day 60 is a critical stage for cochlear tissue "damage" and "repair" in high-altitude conditions. Transmission Electron Microscopy (TEM) observations of structures also support the findings. A time-series gene co-expression network algorithm was used to investigate gene regulatory patterns and key genes after migration. Immunofluorescence, immunohistochemistry, and qPCR were per-formed for key gene validation and localization. At Day 60, the peak DEG count occurs in rats migrating to high altitude, aligning with the critical phase for cochlear tissue damage and repair at high altitudes. Repair hinges on synaptic plasticity and myelination-linked processes, influencing modules M4 to M6. Module M4's activation gradually diminishes from its peak. However, the 'damage' effect is orchestrated by inflammation-related processes in modules M3 to M5, with module M3's activation also waning. Key gene module M4, pivotal for repair during this pivotal phase, encompasses Sptbn5, Cldn1, Gfra2, and Lims2 as its core genes. Immunohistochemistry reveals Sptbn5's presence in cochlear neurons, hair cells, Schwann cells and stria vascularis tissue. Cldn1 and Gfra2 predominantly localize within the cochlear neuron region. These results may suggest new directions for future research on acoustic acclimatization to high altitude.
Collapse
Affiliation(s)
- Luoying Wang
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yulai Zhou
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China
| | - Lanzi Gongga
- Tibet University Medical College, Lhasa, Tibet, 850000, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoqiang Pan
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, China
| | - Xiaoyun Su
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China.
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
5
|
Eising E, Vino A, Mabie HL, Campbell TF, Shriberg LD, Fisher SE. Genome Sequencing of Idiopathic Speech Delay. Hum Mutat 2024; 2024:9692863. [PMID: 40225914 PMCID: PMC11918988 DOI: 10.1155/2024/9692863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 04/15/2025]
Abstract
Genetic investigations of people with speech and language disorders can provide windows into key aspects of human biology. Most genomic research into impaired speech development has so far focused on childhood apraxia of speech (CAS), a rare neurodevelopmental disorder characterized by difficulties with coordinating rapid fine motor sequences that underlie proficient speech. In 2001, pathogenic variants of FOXP2 provided the first molecular genetic accounts of CAS aetiology. Since then, disruptions in several other genes have been implicated in CAS, with a substantial proportion of cases being explained by high-penetrance variants. However, the genetic architecture underlying other speech-related disorders remains less well understood. Thus, in the present study, we used systematic DNA sequencing methods to investigate idiopathic speech delay, as characterized by delayed speech development in the absence of a motor speech diagnosis (such as CAS), a language/reading disorder, or intellectual disability. We performed genome sequencing in a cohort of 23 children with a rigorous diagnosis of idiopathic speech delay. For roughly half of the sample (ten probands), sufficient DNA was also available for genome sequencing in both parents, allowing discovery of de novo variants. In the thirteen singleton probands, we focused on identifying loss-of-function and likely damaging missense variants in genes intolerant to such mutations. We found that one speech delay proband carried a pathogenic frameshift deletion in SETD1A, a gene previously implicated in a broader variable monogenic syndrome characterized by global developmental problems including delayed speech and/or language development, mild intellectual disability, facial dysmorphisms, and behavioural and psychiatric symptoms. Of note, pathogenic SETD1A variants have been independently reported in children with CAS in two separate studies. In other probands in our speech delay cohort, likely pathogenic missense variants were identified affecting highly conserved amino acids in key functional domains of SPTBN1 and ARF3. Overall, this study expands the phenotype spectrum associated with pathogenic SETD1A variants, to also include idiopathic speech delay without CAS or intellectual disability, and suggests additional novel potential candidate genes that may harbour high-penetrance variants that can disrupt speech development.
Collapse
Affiliation(s)
- Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Heather L. Mabie
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thomas F. Campbell
- School of Behavioral and Brain Sciences, Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, USA
| | | | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, Netherlands
| |
Collapse
|
6
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
7
|
Wang J, Jia C, Gao Q, Zhang J, Gu X. iASPP regulates neurite development by interacting with Spectrin proteins. Front Mol Neurosci 2023; 16:1154770. [PMID: 37284462 PMCID: PMC10240065 DOI: 10.3389/fnmol.2023.1154770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Since its discovery in 1999, a substantial body of research has shown that iASPP is highly expressed in various kinds of tumors, interacts with p53, and promotes cancer cell survival by antagonizing the apoptotic activity of p53. However, its role in neurodevelopment is still unknown. Methods We studied the role of iASPP in neuronal differentiation through different neuronal differentiation cellular models, combined with immunohistochemistry, RNA interference and gene overexpression, and studied the molecular mechanism involved in the regulation of neuronal development by iASPP through coimmunoprecipitation coupled with mass spectrometry (CoIP-MS) and coimmunoprecipitation (CoIP). Results In this study, we found that the expression of iASPP gradually decreased during neuronal development. iASPP silencing promotes neuronal differentiation, while its overexpression inhibited neurite differentiation in a variety of neuronal differentiation cellular models. iASPP associated with the cytoskeleton-related protein Sptan1 and dephosphorylated the serine residues in the last spectrin repeat domain of Sptan1 by recruiting PP1. The non-phosphorylated and phosphomimetic mutant form of Sptbn1 inhibited and promoted neuronal cell development respectively. Conclusion Overall, we demonstrate that iASPP suppressed neurite development by inhibiting phosphorylation of Sptbn1.
Collapse
Affiliation(s)
- Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunhong Jia
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Gao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiwen Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Sennsfelder L, Guilly S, Leruste S, Hoareau L, Léocadie W, Beuvain P, Nekaa M, Bagard M, Robin S, Lanneaux J, Etchebarren L, Tallot M, Spodenkiewicz M, Alessandri JL, Morel G, Blanluet M, Gueguen P, Roy-Doray B. Description of Copy Number Variations in a Series of Children and Adolescents with FASD in Reunion Island. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040694. [PMID: 37189943 DOI: 10.3390/children10040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are the most common cause of neurocognitive impairment and social inadaptation, affecting 1 birth in 100. Despite the existence of precise diagnostic criteria, the diagnosis remains difficult, often confounded with other genetic syndromes or neurodevelopmental disorders. Since 2016, Reunion Island has been a pilot region for the identification, diagnosis, and care of FASD in France. OBJECTIVE To evaluate the prevalence and the types of Copy Number Variations (CNV) in FASD patients. METHODS A retrospective chart review of 101 patients diagnosed with FASD in the Reference Center for developmental anomalies and in the FASD Diagnostic Center of the University Hospital was performed. Records of all patients were reviewed to obtain their medical history, family history, clinical phenotype, and investigations, including genetic testing (CGH- or SNP-array). RESULTS A rate of 20.8% (n = 21) of CNVs was found including 57% (12/21) of pathogenic variants and 29% (6/21) of variants of uncertain signification (VUS). CONCLUSION A particularly high number of CNVs was found in children and adolescents with FASD. It reinforces the plea for a multidisciplinary approach for developmental disorders to explore both environmental factors, such as avoidable teratogens and intrinsic vulnerabilities, especially genetic determinants.
Collapse
Affiliation(s)
- Laëtitia Sennsfelder
- Laboratoire EPI (Etudes pharmaco-immunologiques), UFR Santé, Université de La Réunion, CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Susie Guilly
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Sébastien Leruste
- CIC 1410 (Centre d'Investigation Clinique), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
- UFR Santé, Université de La Réunion, 97410 Saint-Pierre, France
| | - Ludovic Hoareau
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Willy Léocadie
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Pauline Beuvain
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Meïssa Nekaa
- Centre Ressources TSAF (Troubles du Spectre de l'Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Maïté Bagard
- Centre Ressources TSAF (Troubles du Spectre de l'Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Stéphanie Robin
- Centre Diagnostic TSAF (Troubles du Spectre de l'Alcoolisation Fœtale), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
| | - Justine Lanneaux
- Centre Diagnostic TSAF (Troubles du Spectre de l'Alcoolisation Fœtale), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
| | - Léa Etchebarren
- Centre Diagnostic TSAF (Troubles du Spectre de l'Alcoolisation Fœtale), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
| | - Marilyn Tallot
- Centre Diagnostic TSAF (Troubles du Spectre de l'Alcoolisation Fœtale), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
| | - Michel Spodenkiewicz
- CIC 1410 (Centre d'Investigation Clinique), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
- Pôle de Santé Mentale, CHU (Centre Hospitalier Universitaire) de La Réunion, 97448 Saint-Pierre, France
| | - Jean-Luc Alessandri
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest Occitanie Réunion, Site Constitutif de La Réunion, 97400 Saint-Denis, France
| | - Godelieve Morel
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest Occitanie Réunion, Site Constitutif de La Réunion, 97400 Saint-Denis, France
| | - Maud Blanluet
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Paul Gueguen
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Bérénice Roy-Doray
- Laboratoire EPI (Etudes pharmaco-immunologiques), UFR Santé, Université de La Réunion, CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
- CIC 1410 (Centre d'Investigation Clinique), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
- Centre Ressources TSAF (Troubles du Spectre de l'Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest Occitanie Réunion, Site Constitutif de La Réunion, 97400 Saint-Denis, France
| |
Collapse
|
9
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Beijer D, Züchner SL. Commentary: SPTBN5, encoding the βV-spectrin protein, leads to a syndrome of intellectual disability, developmental delay, and seizures. Front Mol Neurosci 2022; 15:1011856. [PMID: 36117916 PMCID: PMC9478934 DOI: 10.3389/fnmol.2022.1011856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
|
11
|
Khan A, Bruno LP, Alomar F, Umair M, Pinto AM, Khan AA, Khan A, Saima, Fabbiani A, Zguro K, Furini S, Mencarelli MA, Renieri A, Resciniti S, Peña-Guerra KA, Guzmán-Vega FJ, Arold ST, Ariani F, Khan SN. SPTBN5, Encoding the βV-Spectrin Protein, Leads to a Syndrome of Intellectual Disability, Developmental Delay, and Seizures. Front Mol Neurosci 2022; 15:877258. [PMID: 35782384 PMCID: PMC9248767 DOI: 10.3389/fnmol.2022.877258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022] Open
Abstract
Whole exome sequencing has provided significant opportunities to discover novel candidate genes for intellectual disability and autism spectrum disorders. Variants in the spectrin genes SPTAN1, SPTBN1, SPTBN2, and SPTBN4 have been associated with neurological disorders; however, SPTBN5 gene-variants have not been associated with any human disorder. This is the first report that associates SPTBN5 gene variants (ENSG00000137877: c.266A>C; p.His89Pro, c.9784G>A; p.Glu3262Lys, c.933C>G; p.Tyr311Ter, and c.8809A>T; p.Asn2937Tyr) causing neurodevelopmental phenotypes in four different families. The SPTBN5-associated clinical traits in our patients include intellectual disability (mild to severe), aggressive tendencies, accompanied by variable features such as craniofacial and physical dysmorphisms, autistic behavior, and gastroesophageal reflux. We also provide a review of the existing literature related to other spectrin genes, which highlights clinical features partially overlapping with SPTBN5.
Collapse
|
12
|
Li S, Liu T, Li K, Bai X, Xi K, Chai X, Mi L, Li J. Spectrins and human diseases. Transl Res 2022; 243:78-88. [PMID: 34979321 DOI: 10.1016/j.trsl.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Spectrin, as one of the major components of a plasma membrane-associated cytoskeleton, is a cytoskeletal protein composed of the modular structure of α and β subunits. The spectrin-based skeleton is essential for preserving the integrity and mechanical characteristics of the cell membrane. Moreover, spectrin regulates a variety of cell processes including cell apoptosis, cell adhesion, cell spreading, and cell cycle. Dysfunction of spectrins is implicated in various human diseases including hemolytic anemia, neurodegenerative diseases, ataxia, heart diseases, and cancers. Here, we briefly discuss spectrins function as well as the clinical manifestations and currently known molecular mechanisms of human diseases related to spectrins, highlighting that strategies for targeting regulation of spectrins function may provide new avenues for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Shan Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Ting Liu
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kejing Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xinyi Bai
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kewang Xi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xiaojing Chai
- Central Laboratory, The First Hospital of Lanzhou University, Gansu, China
| | - Leyuan Mi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China; Clinical Laboratory Center, Gansu Provincial Maternity and Child Care Hospital, Gansu, China
| | - Juan Li
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Gansu, China; Central Laboratory, The First Hospital of Lanzhou University, Gansu, China.
| |
Collapse
|
13
|
Analysis of recent shared ancestry in a familial cohort identifies coding and noncoding autism spectrum disorder variants. NPJ Genom Med 2022; 7:13. [PMID: 35190550 PMCID: PMC8861044 DOI: 10.1038/s41525-022-00284-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders characterized by deficits in social communication and restricted, repetitive patterns of behavior or interests. ASD is highly heritable, but genetically and phenotypically heterogeneous, reducing the power to identify causative genes. We performed whole genome sequencing (WGS) in an ASD cohort of 68 individuals from 22 families enriched for recent shared ancestry. We identified an average of 3.07 million variants per genome, of which an average of 112,512 were rare. We mapped runs of homozygosity (ROHs) in affected individuals and found an average genomic homozygosity of 9.65%, consistent with expectations for multiple generations of consanguineous unions. We identified potentially pathogenic rare exonic or splice site variants in 12 known (including KMT2C, SCN1A, SPTBN1, SYNE1, ZNF292) and 12 candidate (including CHD5, GRB10, PPP1R13B) ASD genes. Furthermore, we annotated noncoding variants in ROHs with brain-specific regulatory elements and identified putative disease-causing variants within brain-specific promoters and enhancers for 5 known ASD and neurodevelopmental disease genes (ACTG1, AUTS2, CTNND2, CNTNAP4, SPTBN4). We also identified copy number variants in two known ASD and neurodevelopmental disease loci in two affected individuals. In total we identified potentially etiological variants in known ASD or neurodevelopmental disease genes for ~61% (14/23) of affected individuals. We combined WGS with homozygosity mapping and regulatory element annotations to identify candidate ASD variants. Our analyses add to the growing number of ASD genes and variants and emphasize the importance of leveraging recent shared ancestry to map disease variants in complex neurodevelopmental disorders.
Collapse
|