1
|
Martin-Geary AC, Blakes AJM, Dawes R, Findlay SD, Lord J, Dong S, Walker S, Talbot-Martin J, Wieder N, D'Souza EN, Fernandes M, Hilton S, Lahiri N, Campbell C, Jenkinson S, DeGoede CGEL, Anderson ER, Candler T, Firth H, Burge CB, Sanders SJ, Ellingford J, Baralle D, Banka S, Whiffin N. Systematic identification of disease-causing promoter and untranslated region variants in 8040 undiagnosed individuals with rare disease. Genome Med 2025; 17:40. [PMID: 40229884 PMCID: PMC11998461 DOI: 10.1186/s13073-025-01464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown. METHODS We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes. We use this framework to annotate de novo variants (DNVs) in 8040 undiagnosed individuals in the Genomics England 100,000 genomes project, which were subject to strict region-based filtering, clinical review, and validation studies where possible. In addition, we performed region and variant annotation-based burden testing in 7862 unrelated probands against matched unaffected controls. RESULTS We prioritised eleven DNVs and identified an additional variant overlapping one of the eleven. Ten of these twelve variants (82%) are in genes that are a strong match to the individual's phenotype and six had not previously been identified. Through burden testing, we did not observe a significant enrichment of potentially deleterious promoter and/or UTR variants in individuals with rare disease collectively across any of our region or variant annotations. CONCLUSIONS Whilst screening promoters and UTRs can uncover additional diagnoses for individuals with rare disease, including these regions in diagnostic pipelines is not likely to dramatically increase diagnostic yield. Nevertheless, we provide a framework to aid identification of these variants.
Collapse
Affiliation(s)
- Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Alexander J M Blakes
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9WL, UK
| | - Ruebena Dawes
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Scott D Findlay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shan Dong
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Susan Walker
- Genomics England, Level 21, One Canada Square, Canada Square, Canary Wharf, London, E14 5AB, UK
| | | | - Nechama Wieder
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Elston N D'Souza
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Maria Fernandes
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Nayana Lahiri
- Institute of Molecular and Clinical Sciences, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sarah Jenkinson
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Christian G E L DeGoede
- Department of Paediatric Neurology, Clinical research Facility, Lancashire Teaching Hospitals NHS Trust, Lancashire, PR2 9HT, UK
- Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Emily R Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Liverpool, L8 7SS, UK
| | - Toby Candler
- Department of Paediatric Endocrinology and Diabetes, Education Centre, Bristol Royal Hospital for Children, Level 6 Upper Maudlin Street, Bristol, BS2 8BJ, UK
- Clinical Diet and Physical Activity Theme, NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, BS8 2BN, UK
| | - Helen Firth
- Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- University of Cambridge, Cambridge, CB2 1TN, UK
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephan J Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- New York Genome Center, New York, NY, NY 10013, USA
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9WL, UK
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Diana Baralle
- Genomics England, Level 21, One Canada Square, Canada Square, Canary Wharf, London, E14 5AB, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9WL, UK
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, MA 02142, USA.
| |
Collapse
|
2
|
Yang D, Jiang Z, Huang H, Wang L, Ying C, Chen Y, Lu Y, Zhang T, Zhu Y, Wang S, Wang Y, Guo Y, Wang H, Cen Z, Luo W. Genetic Mutations in Cell Junction Proteins Associated with Brain Calcification. Mov Disord 2025; 40:400-419. [PMID: 39620489 DOI: 10.1002/mds.30068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 03/22/2025] Open
Abstract
Intracerebral calcium deposition, classified into primary familial brain calcification (PFBC) and secondary brain calcification, occurs within the brain parenchyma and vasculature. PFBC manifests with progressive motor decline, dysarthria, and cognitive impairment, with limited treatment options available. Recent research has suggested a link between dysfunction of the blood-brain barrier (BBB) and PFBC, with certain genetic variants potentially affecting neurovascular unit (NVU) function, thereby contributing to BBB integrity disruption and brain calcification. Cell junctions play an indispensable role in maintaining the function of NVUs. The pathogenic mechanisms of PFBC-causative genes, such as PDGFRB, PDGFB, MYORG, and JAM2, involve NVU disruption. Cell junctions, such as tight junctions, gap junctions, adherens junctions, desmosomes, hemidesmosomes, and focal adhesions, are vital for cell-cell and cell-extracellular matrix connections, maintaining barrier function, cell adhesion, and facilitating ion and metabolite exchange. Several recent studies have highlighted the role of mutations in genes encoding cell junction proteins in the onset and progression of brain calcification and its related phenotypes. This emerging body of research offers a unique perspective for investigating the underlying mechanisms driving brain calcification. In this review, we conducted an examination of the literature reporting on genetic variants in cell junction proteins associated with brain calcification to delineate potential molecular pathways and investigate genotype-phenotype correlations. This approach not only reinforces the rationale for molecular subtyping of brain calcification but also lays the groundwork for the discovery of novel causative genes involved in pathogenesis. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Tingxuan Zhang
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Yusheng Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaoting Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Yuru Guo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Haoyu Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Abdel-Salam GMH, Esmail A, Nagy D, Abdel-Ghafar SF, Abdel-Hamid MS. Novel homozygous ESAM variants in two families with perinatal strokes showing variable neuroradiologic and clinical findings. J Hum Genet 2025; 70:67-74. [PMID: 39414991 PMCID: PMC11762408 DOI: 10.1038/s10038-024-01297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Biallelic loss of function variants in ESAM (endothelial cell adhesion molecule) have recently been reported in 14 individuals (9 families) presenting with prenatal intracranial hemorrhage. Here, we describe four patients from two unrelated families in whom three of them presented with variable onset encephalopathy and seizures while one only displayed profound delay without seizures. Brain MRI showed variable onset intracranial hemorrhage that evolved to hydrocephalus in 3 patients, whereas hemosiderin deposits, white matter volume loss, and porencephalic cysts were noted in one patient. Unlike the majority of described cases, the youngest brother of the first family did not show microcephaly and failure to thrive. Exome sequencing identified two novel homozygous ESAM variants. A splice variant (c.731-2A>G) was identified in one family which was confirmed by investigating the patient's mRNA to result in exon skipping and early protein truncation. In addition, a missense variant (c.561G>C; p.Trp187Cys) was identified in the other family, which is the first disease causing missense variant to be described in patients with ESAM deficient phenotype. In addition, a maternally inherited pathogenic MC4R variant (c.811T>C; p.Cys271 Arg) was also identified in the youngest brother of the first family. Variants in the MC4R gene are associated with a non-syndromic form of obesity that could explain the unusual macrocephaly and obesity. Our work establishes ESAM as a tight junction gene that can present with variable neuroradiological and clinical phenotypes when mutated. Moreover, it refines the phenotype of this ultrarare syndrome and extends the number and type of variants described to date.
Collapse
Affiliation(s)
- Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Asmaa Esmail
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Dina Nagy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Chevrier S, Richard C, Mille M, Bertrand D, Boidot R. Nanopore adaptive sampling accurately detects nucleotide variants and improves the characterization of large-scale rearrangement for the diagnosis of cancer predisposition. Clin Transl Med 2025; 15:e70138. [PMID: 39783935 PMCID: PMC11714230 DOI: 10.1002/ctm2.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/14/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Molecular diagnosis has become highly significant for patient management in oncology. METHODS Here, 30 well-characterized clinical germline samples were studied with adaptive sampling to enrich the full sequence of 152 cancer predisposition genes. Sequencing was performed on Oxford Nanopore (ONT) R10.4.1 MinION flowcells with the Q20+ chemistry. RESULTS In our cohort, 11 samples had large-scale rearrangements (LSR), which were all detected with ONT sequencing. In addition to perfectly detecting the locus of the LSR, we found a known MLPA amplification of exon 13 in the BRCA1 (NM_7294) gene corresponded to a duplication in tandem of both exons 12 and 13 of the reference NM_7300. Similarly, in another sample with a known total deletion of the BRCA1 gene, ONT sequencing highlighted this complete deletion was the consequence of a large deletion of almost 140 000 bp carrying over five different genes. ONT sequencing was also able to detect all pathogenic nucleotide variants present in 16 samples at low coverage. As we analyzed complete genes and more genes than with short-read sequencing, we detected novel unknown variants. We randomly selected six new variants with a coverage larger than 10× and an average quality higher than 14, and confirmed all of them by Sanger sequencing, suggesting that variants detected with ONT (coverage >10× and quality score >14) could be considered as real variants. CONCLUSIONS We showed that ONT adaptive sampling sequencing is suitable for the analysis of germline alterations, improves characterization of LSR, and detects single nucleotide variations even at low coverage. KEY POINTS Adaptive sampling is suitable for the analysis of germline alterations. Improves the characterization of Large Scale Rearrangement and detects SNV at a minimum coverage of 10x. Allows flexibility of sequencing.
Collapse
Affiliation(s)
- Sandy Chevrier
- Unit of Molecular BiologyGeorges‐François Leclerc Cancer centerUNICANCERDijonFrance
| | - Corentin Richard
- Unit of Molecular BiologyGeorges‐François Leclerc Cancer centerUNICANCERDijonFrance
| | | | | | - Romain Boidot
- Unit of Molecular BiologyGeorges‐François Leclerc Cancer centerUNICANCERDijonFrance
| |
Collapse
|
5
|
Oh RY, AlMail A, Cheerie D, Guirguis G, Hou H, Yuki KE, Haque B, Thiruvahindrapuram B, Marshall CR, Mendoza-Londono R, Shlien A, Kyriakopoulou LG, Walker S, Dowling JJ, Wilson MD, Costain G. A systematic assessment of the impact of rare canonical splice site variants on splicing using functional and in silico methods. HGG ADVANCES 2024; 5:100299. [PMID: 38659227 PMCID: PMC11144818 DOI: 10.1016/j.xhgg.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Canonical splice site variants (CSSVs) are often presumed to cause loss-of-function (LoF) and are assigned very strong evidence of pathogenicity (according to American College of Medical Genetics/Association for Molecular Pathology criterion PVS1). The exact nature and predictability of splicing effects of unselected rare CSSVs in blood-expressed genes are poorly understood. We identified 168 rare CSSVs in blood-expressed genes in 112 individuals using genome sequencing, and studied their impact on splicing using RNA sequencing (RNA-seq). There was no evidence of a frameshift, nor of reduced expression consistent with nonsense-mediated decay, for 25.6% of CSSVs: 17.9% had wildtype splicing only and normal junction depths, 3.6% resulted in cryptic splice site usage and in-frame insertions or deletions, 3.6% resulted in full exon skipping (in frame), and 0.6% resulted in full intron inclusion (in frame). Blind to these RNA-seq data, we attempted to predict the precise impact of CSSVs by applying in silico tools and the ClinGen Sequence Variant Interpretation Working Group 2018 guidelines for applying PVS1 criterion. The predicted impact on splicing using (1) SpliceAI, (2) MaxEntScan, and (3) AutoPVS1, an automatic classification tool for PVS1 interpretation of null variants that utilizes Ensembl Variant Effect Predictor and MaxEntScan, was concordant with RNA-seq analyses for 65%, 63%, and 61% of CSSVs, respectively. In summary, approximately one in four rare CSSVs did not show evidence for LoF based on analysis of RNA-seq data. Predictions from in silico methods were often discordant with findings from RNA-seq. More caution may be warranted in applying PVS1-level evidence to CSSVs in the absence of functional data.
Collapse
Affiliation(s)
- Rachel Y Oh
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ali AlMail
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - David Cheerie
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - George Guirguis
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kyoko E Yuki
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada
| | - Bushra Haque
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Christian R Marshall
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Lianna G Kyriakopoulou
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Susan Walker
- The Centre for Applied Genomics, SickKids Research Institute, Toronto, ON, Canada
| | - James J Dowling
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Nyaga DM, Hildebrand MS, de Valles‐Ibáñez G, Keenan NF, Ye Z, LaFlamme CW, Mefford HC, Bennett MF, Bahlo M, Sadleir LG. Leveraging multiple approaches for the detection of pathogenic deep intronic variants in developmental and epileptic encephalopathies: A case report. Epilepsia Open 2024; 9:758-764. [PMID: 38129960 PMCID: PMC10984288 DOI: 10.1002/epi4.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
About 50% of individuals with developmental and epileptic encephalopathies (DEEs) are unsolved following genetic testing. Deep intronic variants, defined as >100 bp from exon-intron junctions, contribute to disease by affecting the splicing of mRNAs in clinically relevant genes. Identifying deep intronic pathogenic variants is challenging and resource intensive, and interpretation is difficult due to limited functional annotations. We aimed to identify deep intronic variants in individuals suspected to have unsolved single gene DEEs. In a research cohort of unsolved cases of DEEs, we searched for children with a DEE syndrome predominantly caused by variants in specific genes in >80% of described cases. We identified two children with Dravet syndrome and one individual with classic lissencephaly. Multiple sequencing and bioinformatics strategies were employed to interrogate intronic regions in SCN1A and PAFAH1B1. A novel de novo deep intronic 12 kb deletion in PAFAH1B1 was identified in the individual with lissencephaly. We showed experimentally that the deletion disrupts mRNA splicing, which results in partial intron retention after exon 2 and disruption of the highly conserved LisH motif. We demonstrate that targeted interrogation of deep intronic regions using multiple genomics technologies, coupled with functional analysis, can reveal hidden causes of unsolved monogenic DEE syndromes. PLAIN LANGUAGE SUMMARY: Deep intronic variants can cause disease by affecting the splicing of mRNAs in clinically relevant genes. A deep intronic deletion that caused abnormal splicing of the PAFAH1B1 gene was identified in a patient with classic lissencephaly. Our findings reinforce that targeted interrogation of deep intronic regions and functional analysis can reveal hidden causes of unsolved epilepsy syndromes.
Collapse
Affiliation(s)
- Denis M. Nyaga
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Michael S. Hildebrand
- Department of Medicine (Austin Health)University of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | | | - Ngaire F. Keenan
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Zimeng Ye
- Department of Medicine (Austin Health)University of MelbourneMelbourneVictoriaAustralia
| | - Christy W. LaFlamme
- Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Mark F. Bennett
- Department of Medicine (Austin Health)University of MelbourneMelbourneVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Melanie Bahlo
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Lynette G. Sadleir
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
7
|
Yang Y, del Gaudio D, Santani A, Scott SA. Applications of genome sequencing as a single platform for clinical constitutional genetic testing. GENETICS IN MEDICINE OPEN 2024; 2:101840. [PMID: 39822265 PMCID: PMC11736070 DOI: 10.1016/j.gimo.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 01/19/2025]
Abstract
The number of human disease genes has dramatically increased over the past decade, largely fueled by ongoing advances in sequencing technologies. In parallel, the number of available clinical genetic tests has also increased, including the utilization of exome sequencing for undiagnosed diseases. Although most clinical sequencing tests have been centered on enrichment-based multigene panels and exome sequencing, the continued improvements in performance and throughput of genome sequencing suggest that this technology is emerging as a potential platform for routine clinical genetic testing. A notable advantage is a single workflow with the opportunity to reflexively interrogate content as clinically indicated; however, challenges with implementing routine clinical genome sequencing still remain. This review is centered on evaluating the applications of genome sequencing as a single platform for clinical constitutional genetic testing, including its potential utility for diagnostic testing, carrier screening, cytogenomic molecular karyotyping, prenatal testing, mitochondrial genome interrogation, and pharmacogenomic and polygenic risk score testing.
Collapse
Affiliation(s)
- Yao Yang
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| | | | | | - Stuart A. Scott
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| |
Collapse
|
8
|
Man A, Di Scipio M, Grewal S, Suk Y, Trinari E, Ejaz R, Whitney R. The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes (Basel) 2024; 15:332. [PMID: 38540392 PMCID: PMC10970281 DOI: 10.3390/genes15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 06/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway serves as a master regulator of cell growth, proliferation, and survival. Upregulation of the mTOR pathway has been shown to cause malformations of cortical development, medically refractory epilepsies, and neurodevelopmental disorders, collectively described as mTORopathies. Tuberous sclerosis complex (TSC) serves as the prototypical mTORopathy. Characterized by the development of benign tumors in multiple organs, pathogenic variants in TSC1 or TSC2 disrupt the TSC protein complex, a negative regulator of the mTOR pathway. Variants in critical domains of the TSC complex, especially in the catalytic TSC2 subunit, correlate with increased disease severity. Variants in less crucial exons and non-coding regions, as well as those undetectable with conventional testing, may lead to milder phenotypes. Despite the assumption of complete penetrance, expressivity varies within families, and certain variants delay disease onset with milder neurological effects. Understanding these genotype-phenotype correlations is crucial for effective clinical management. Notably, 15% of patients have no mutation identified by conventional genetic testing, with the majority of cases postulated to be caused by somatic TSC1/TSC2 variants which present complex diagnostic challenges. Advancements in genetic testing, prenatal screening, and precision medicine hold promise for changing the diagnostic and treatment paradigm for TSC and related mTORopathies. Herein, we explore the genetic and molecular mechanisms of TSC and other mTORopathies, emphasizing contemporary genetic methods in understanding and diagnosing the condition.
Collapse
Affiliation(s)
- Alice Man
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matteo Di Scipio
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shan Grewal
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yujin Suk
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elisabetta Trinari
- Division of Developmental Pediatrics, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
9
|
Haque B, Cheerie D, Birkadze S, Xu AL, Nalpathamkalam T, Thiruvahindrapuram B, Walker S, Costain G. Estimating the proportion of nonsense variants undergoing the newly described phenomenon of manufactured splice rescue. Eur J Hum Genet 2024; 32:238-242. [PMID: 38012313 PMCID: PMC10853237 DOI: 10.1038/s41431-023-01495-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
A recent report described a nonsense variant simultaneously creating a donor splice site, resulting in a truncated but functional protein. To explore the generalizability of this unique mechanism, we annotated >115,000 nonsense variants using SpliceAI. Between 0.61% (donor gain delta score >0.8, for high precision) and 2.57% (>0.2, for high sensitivity) of nonsense variants were predicted to create new donor splice sites at or upstream of the stop codon. These variants were less likely than other nonsense variants in the same genes to be classified as pathogenic/likely pathogenic in ClinVar (p < 0.001). Up to 1 in 175 nonsense variants were predicted to result in small in-frame deletions and loss-of-function evasion through this "manufactured splice rescue" mechanism. We urge caution when interpreting nonsense variants where manufactured splice rescue is a strong possibility and correlation with phenotype is challenging, as will often be the case with secondary findings and newborn genomic screening programs.
Collapse
Affiliation(s)
- Bushra Haque
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David Cheerie
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Saba Birkadze
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alice Linyan Xu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics (TCAG), SickKids Research Institute, Toronto, ON, Canada
| | | | - Susan Walker
- The Centre for Applied Genomics (TCAG), SickKids Research Institute, Toronto, ON, Canada
| | - Gregory Costain
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children (SickKids), and Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Deshwar AR, Yuki KE, Hou H, Liang Y, Khan T, Celik A, Ramani A, Mendoza-Londono R, Marshall CR, Brudno M, Shlien A, Meyn MS, Hayeems RZ, McKinlay BJ, Klentrou P, Wilson MD, Kyriakopoulou L, Costain G, Dowling JJ. Trio RNA sequencing in a cohort of medically complex children. Am J Hum Genet 2023; 110:895-900. [PMID: 36990084 PMCID: PMC10183368 DOI: 10.1016/j.ajhg.2023.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown. We performed GS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 families where the proband was a child with unexplained medical complexity. RNA-seq was an effective adjunct test when paired with GS. It enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, allowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiagnosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.
Collapse
|
11
|
Kozak I, Ali SM, Hoque N, Lin D, Bosley TM. Retinal Findings in Haemorrhagic Destruction of the Brain, Subependymal Calcification, and Congenital Cataracts (HDBSCC): Case Report and Review. Neuroophthalmology 2023; 47:11-19. [PMID: 36798868 PMCID: PMC9928457 DOI: 10.1080/01658107.2022.2072517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We describe a child from a consanguineous family born with a rare autosomal recessive disorder affecting junctional adhesion molecule 3 (JAM3) causing profound neurological and ophthalmological injury known as haemorrhagic brain destruction, subependymal calcifications, and congenital cataracts (HDBSCC; MIM# 613730). She was the product of an unremarkable pregnancy and was born near to term but was noted shortly after birth to have congenital cataracts, poor vision, increased muscle tone, seizures, and developmental delay. Her older sister had an identical syndrome and had previously been documented to have homozygous mutations in JAM3. Examination in our patient, although difficult because of bilateral central cataracts, revealed very poor vision, attenuated retinal vessels, optic atrophy, and a retinal haemorrhage in the right eye, implying that abnormal development of the retinas and/or optic nerves may at times play a significant role in the poor vision noted in children with HDBSCC.
Collapse
Affiliation(s)
- Igor Kozak
- Moorfields Eye Hospital, Abu-Dhabi, UAE,Mohammed Bin Rashed University, Dubai, UAE,CONTACT Igor Kozak Marina Village, B01/B02, Abu-Dhabi, 62807, UAE
| | - Syed M. Ali
- Moorfields Eye Hospital, Abu-Dhabi, UAE,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Nicholas Hoque
- Neonatology Unit, Kanad Hospital, Al Ain, UAE,Neonatal Service, Imperial College Healthcare NHS Trust, London, UK,Bioengineering, Imperial College London, London, UK
| | - Doris Lin
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Thomas M. Bosley
- Neuro-ophthalmology Division, The Wilmer Eye Institute, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
12
|
The Power of Clinical Diagnosis for Deciphering Complex Genetic Mechanisms in Rare Diseases. Genes (Basel) 2023; 14:genes14010196. [PMID: 36672937 PMCID: PMC9858967 DOI: 10.3390/genes14010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Complex genetic disease mechanisms, such as structural or non-coding variants, currently pose a substantial difficulty in frontline diagnostic tests. They thus may account for most unsolved rare disease patients regardless of the clinical phenotype. However, the clinical diagnosis can narrow the genetic focus to just a couple of genes for patients with well-established syndromes defined by prominent physical and/or unique biochemical phenotypes, allowing deeper analyses to consider complex genetic origin. Then, clinical-diagnosis-driven genome sequencing strategies may expedite the development of testing and analytical methods to account for complex disease mechanisms as well as to advance functional assays for the confirmation of complex variants, clinical management, and the development of new therapies.
Collapse
|
13
|
Yilmaz M, Potts DE, Geier C, Walter JE. Can we identify WHIM in infancy? Opportunities with the public newborn screening process. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:215-221. [PMID: 36210583 DOI: 10.1002/ajmg.c.32002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Newborn screening (NBS) for severe combined immunodeficiency (SCID) utilizing T-cell receptor excision circles (TRECs) has been implemented in all 50 states as of December 2018 and has been transformative for the clinical care of SCID patients. Though having high sensitivity for SCID, NBS-SCID has low specificity, therefore is able to detect other causes of lymphopenia in newborns including many inborn errors of immunity (IEIs). In a recent study, three of six newborns later diagnosed with Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome were found to have a low TRECs and lymphopenia at birth. This presents an opportunity to increase the detection and diagnosis of WHIM syndrome by NBS-SCID with immunological follow-up along with a combination of flow cytometry for immune cell subsets, absolute neutrophil count, and genetic testing, extending beyond the conventional bone marrow studies. Coupled with emerging technologies such as next-generation sequencing, transcriptomics and proteomics, dried blood spots used in NBS-SCID will promote earlier detection, diagnosis, and therefore treatment of IEIs such as WHIM syndrome.
Collapse
Affiliation(s)
- Melis Yilmaz
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - David Evan Potts
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|