1
|
Halvorsen MW, de Schipper E, Bäckman J, Strom NI, Hagen K, Lindblad-Toh K, Karlsson EK, Pedersen NL, Wallert J, Bulik CM, Fundín B, Landén M, Kvale G, Hansen B, Haavik J, Mattheisen M, Rück C, Mataix-Cols D, Crowley JJ. A burden of rare copy number variants in obsessive-compulsive disorder. Mol Psychiatry 2025; 30:1510-1517. [PMID: 39463448 PMCID: PMC11919692 DOI: 10.1038/s41380-024-02763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Current genetic research on obsessive-compulsive disorder (OCD) supports contributions to risk specifically from common single nucleotide variants (SNVs), along with rare coding SNVs and small insertion-deletions (indels). The contribution to OCD risk from rare copy number variants (CNVs), however, has not been formally assessed at a similar scale. Here we describe an analysis of rare CNVs called from genotype array data in 2248 deeply phenotyped OCD cases and 3608 unaffected controls from Sweden and Norway. Cases carry an elevated burden of CNVs ≥30 kb in size (OR = 1.12, P = 1.77 × 10-3). The excess rate of these CNVs in cases versus controls was around 0.07 (95% CI 0.02-0.11, P = 2.58 × 10-3). This signal was largely driven by CNVs overlapping protein-coding regions (OR = 1.19, P = 3.08 × 10-4), particularly deletions impacting loss-of-function intolerant genes (pLI >0.995, OR = 4.12, P = 2.54 × 10-5). We did not identify any specific locus where CNV burden was associated with OCD case status at genome-wide significance, but we noted non-random recurrence of CNV deletions in cases (permutation P = 2.60 × 10-3). In cases where sufficient clinical data were available (n = 1612) we found that carriers of neurodevelopmental duplications were more likely to have comorbid autism (P < 0.001), and that carriers of deletions overlapping neurodevelopmental genes had lower treatment response (P = 0.02). The results demonstrate a contribution of rare CNVs to OCD risk, and suggest that studies of rare coding variation in OCD would have increased power to identify risk genes if this class of variation were incorporated into formal tests.
Collapse
Affiliation(s)
- Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden.
| | - Elles de Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Nora I Strom
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristen Hagen
- Department of Psychiatry, Molde Hospital, Molde, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - John Wallert
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bengt Fundín
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Bjarne Hansen
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Manuel Mattheisen
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Dalhousie University, Department of Community Health and Epidemiology & Faculty of Computer Science, Halifax, Nova Scotia, Canada
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| |
Collapse
|
2
|
Lord KA, Chen FL, Karlsson EK. An Evolutionary Perspective on Dog Behavioral Genetics. Annu Rev Anim Biosci 2025; 13:167-188. [PMID: 39413150 DOI: 10.1146/annurev-animal-111523-101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Dogs have played an outsized role in the field of behavioral genetics since its earliest days. Their unique evolutionary history and ubiquity in the modern world make them a potentially powerful model system for discovering how genetic changes lead to changes in behavior. Genomic technology has supercharged this potential by enabling scientists to sequence the DNA of thousands of dogs and test for correlations with behavioral traits. However, fractures in the early history of animal behavior between biological and psychological subfields may be impeding progress. In addition, canine behavioral genetics has included almost exclusively dogs from modern breeds, who represent just a small fraction of all dog diversity. By expanding the scope of dog behavior studies, and incorporating an evolutionary perspective on canine behavioral genetics, we can move beyond associations to understanding the complex interactions between genes and environment that lead to dog behavior.
Collapse
Affiliation(s)
- Kathryn A Lord
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; , ,
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Frances L Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; , ,
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; , ,
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Halvorsen M, de Schipper E, Boberg J, Strom N, Hagen K, Lindblad-Toh K, Karlsson E, Pedersen N, Bulik C, Fundín B, Landén M, Kvale G, Hansen B, Haavik J, Mattheisen M, Rück C, Mataix-Cols D, Crowley J. A Burden of Rare Copy Number Variants in Obsessive-Compulsive Disorder. RESEARCH SQUARE 2024:rs.3.rs-3749504. [PMID: 38260575 PMCID: PMC10802697 DOI: 10.21203/rs.3.rs-3749504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Current genetic research on obsessive-compulsive disorder (OCD) supports contributions to risk specifically from common single nucleotide variants (SNVs), along with rare coding SNVs and small insertion-deletions (indels). The contribution to OCD risk from large, rare copy number variants (CNVs), however, has not been formally assessed at a similar scale. Here we describe an analysis of rare CNVs called from genotype array data in 2,248 deeply phenotyped OCD cases and 3,608 unaffected controls from Sweden and Norway. We found that in general cases carry an elevated burden of large (>30kb, at least 15 probes) CNVs (OR=1.12, P=1.77×10-3). The excess rate of these CNVs in cases versus controls was around 0.07 (95% CI 0.02-0.11, P=2.58×10-3). This signal was largely driven by CNVs overlapping protein-coding regions (OR=1.19, P=3.08×10-4), particularly deletions impacting loss-of-function intolerant genes (pLI>0.995, OR=4.12, P=2.54×10-5). We did not identify any specific locus where CNV burden was associated with OCD case status at genome-wide significance, but we noted non-random recurrence of CNV deletions in cases (permutation P = 2.60×10-3). In cases where sufficient clinical data were available (n=1612) we found that carriers of neurodevelopmental duplications were more likely to have comorbid autism (P<0.001), and that carriers of deletions overlapping neurodevelopmental genes had lower treatment response (P=0.02). The results demonstrate a contribution of large, rare CNVs to OCD risk, and suggest that studies of rare coding variation in OCD would have increased power to identify risk genes if this class of variation were incorporated into formal tests.
Collapse
|
4
|
Morrill K, Chen F, Karlsson E. Comparative neurogenetics of dog behavior complements efforts towards human neuropsychiatric genetics. Hum Genet 2023; 142:1231-1246. [PMID: 37578529 DOI: 10.1007/s00439-023-02580-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023]
Abstract
Domestic dogs display a wide array of heritable behaviors that have intermediate genetic complexity thanks to a long history of human-influenced selection. Comparative genetics in dogs could address the scarcity of non-human neurogenetic systems relevant to human neuropsychiatric disorders, which are characterized by mental, emotional, and behavioral symptoms and involve vastly complex genetic and non-genetic risk factors. Our review describes the diverse behavioral "phenome" of domestic dogs, past and ongoing sources of behavioral selection, and the state of canine behavioral genetics. We highlight two naturally disordered behavioral domains that illustrate how dogs may prove useful as a comparative, forward neurogenetic system: canine age-related cognitive dysfunction, which can be examined more rapidly given the attenuated lifespan of dogs, and compulsive disorders, which may have genetic roots in purpose-bred behaviors. Growing community science initiatives aimed at the companion dog population will be well suited to investigating such complex behavioral phenotypes and offer a comparative resource that parallels human genomic initiatives in scale and dimensionality.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Morningside Graduate School of Biomedical Sciences UMass Chan Medical School, Worcester, MA, USA.
| | - Frances Chen
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elinor Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Mataix-Cols D, Fernández de la Cruz L, De Schipper E, Kuja-Halkola R, Bulik CM, Crowley JJ, Neufeld J, Rück C, Tammimies K, Lichtenstein P, Bölte S, Beucke JC. In search of environmental risk factors for obsessive-compulsive disorder: study protocol for the OCDTWIN project. BMC Psychiatry 2023; 23:442. [PMID: 37328750 PMCID: PMC10273515 DOI: 10.1186/s12888-023-04897-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The causes of obsessive-compulsive disorder (OCD) remain unknown. Gene-searching efforts are well underway, but the identification of environmental risk factors is at least as important and should be a priority because some of them may be amenable to prevention or early intervention strategies. Genetically informative studies, particularly those employing the discordant monozygotic (MZ) twin design, are ideally suited to study environmental risk factors. This protocol paper describes the study rationale, aims, and methods of OCDTWIN, an open cohort of MZ twin pairs who are discordant for the diagnosis of OCD. METHODS OCDTWIN has two broad aims. In Aim 1, we are recruiting MZ twin pairs from across Sweden, conducting thorough clinical assessments, and building a biobank of biological specimens, including blood, saliva, urine, stool, hair, nails, and multimodal brain imaging. A wealth of early life exposures (e.g., perinatal variables, health-related information, psychosocial stressors) are available through linkage with the nationwide registers and the Swedish Twin Registry. Blood spots stored in the Swedish phenylketonuria (PKU) biobank will be available to extract DNA, proteins, and metabolites, providing an invaluable source of biomaterial taken at birth. In Aim 2, we will perform within-pair comparisons of discordant MZ twins, which will allow us to isolate unique environmental risk factors that are in the causal pathway to OCD, while strictly controlling for genetic and early shared environmental influences. To date (May 2023), 43 pairs of twins (21 discordant for OCD) have been recruited. DISCUSSION OCDTWIN hopes to generate unique insights into environmental risk factors that are in the causal pathway to OCD, some of which have the potential of being actionable targets.
Collapse
Affiliation(s)
- David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Lorena Fernández de la Cruz
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Elles De Schipper
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James J Crowley
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Christian Rück
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kristiina Tammimies
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Solna, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Bölte
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Jan C Beucke
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Mataix-Cols D, de la Cruz LF, de Schipper E, Kuja-Halkola R, Bulik CM, Crowley JJ, Neufeld J, Rück C, Tammimies K, Lichtenstein P, Bölte S, Beucke JC. In search of environmental risk factors for obsessive-compulsive disorder: Study protocol for the OCDTWIN project. RESEARCH SQUARE 2023:rs.3.rs-2897566. [PMID: 37215041 PMCID: PMC10197758 DOI: 10.21203/rs.3.rs-2897566/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background The causes of obsessive-compulsive disorder (OCD) remain unknown. Gene-searching efforts are well underway, but the identification of environmental risk factors is at least as important and should be a priority because some of them may be amenable to prevention or early intervention strategies. Genetically informative studies, particularly those employing the discordant monozygotic (MZ) twin design, are ideally suited to study environmental risk factors. This protocol paper describes the study rationale, aims, and methods of OCDTWIN, an open cohort of MZ twin pairs who are discordant for the diagnosis of OCD. Methods OCDTWIN has two broad aims. In Aim 1, we are recruiting MZ twin pairs from across Sweden, conducting thorough clinical assessments, and building a biobank of biological specimens, including blood, saliva, urine, stool, hair, nails, and multimodal brain imaging. A wealth of early life exposures (e.g., perinatal variables, health-related information, psychosocial stressors) are available through linkage with the nationwide registers and the Swedish Twin Registry. Blood spots stored in the Swedish phenylketonuria (PKU) biobank will be available to extract DNA, proteins, and metabolites, providing an invaluable source of biomaterial taken at birth. In Aim 2, we will perform within-pair comparisons of discordant MZ twins, which will allow us to isolate unique environmental risk factors that are in the causal pathway to OCD, while strictly controlling for genetic and early shared environmental influences. To date (May 2023), 43 pairs of twins (21 discordant for OCD) have been recruited. Discussion OCDTWIN hopes to generate unique insights into environmental risk factors that are in the causal pathway to OCD, some of which have the potential of being actionable targets.
Collapse
|
7
|
Shavitt RG, Sheshachala K, Hezel DM, Wall MM, Balachander S, Lochner C, Narayanaswamy JC, Costa DLC, de Mathis MA, van Balkom AJLM, de Joode NT, Narayan M, van den Heuvel OA, Stein DJ, Miguel EC, Simpson HB, Reddy YCJ. Measurement fidelity of clinical assessment methods in a global study on identifying reproducible brain signatures of obsessive-compulsive disorder. Neuropsychology 2023; 37:330-343. [PMID: 36442004 PMCID: PMC10073274 DOI: 10.1037/neu0000849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To describe the steps of ensuring measurement fidelity of core clinical measures in a five-country study on brain signatures of obsessive-compulsive disorder (OCD). METHOD We collected data using standardized instruments, which included the Yale-Brown Obsessive-Compulsive Scale (YBOCS), the Dimensional YBOCS (DYBOCS), the Brown Assessment of Beliefs Scale (BABS), the 17-item Hamilton Depression Scale (HAM-D), the Hamilton Anxiety Scale (HAM-A), and the Structured Clinical Interview for DSM-5 (SCID). Steps to ensure measurement fidelity included translating instruments, developing a clinical decision manual, and continuing reliability training with 11-13 transcripts of each instrument by 13 independent evaluators across sites over 4 years. We use multigroup confirmatory factor analysis (MGCFA) to report interrater reliability (IRR) among the evaluators and factor structure for each scale in 206 participants with OCD. RESULTS The overall IRR for most scales was high (ICC > 0.94) and remained good to excellent throughout the study. Consistent factor structures (configural invariance) were found for all instruments across the sites, while similarity in the factor loadings for the items (metric invariance) could be established only for the DYBOCS and the BABS. CONCLUSIONS It is feasible to achieve measurement fidelity of clinical measures in multisite, multilinguistic global studies, despite the challenges inherent to such endeavors. Future studies should not only report IRR but also consider reporting methods of standardization of data collection and measurement invariance to identify factor structures of core clinical measures. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Roseli G Shavitt
- Obsessive-Compulsive Spectrum Disorders Program (PROTOC-IPq-HCFMUSP)
| | | | | | | | | | - Christine Lochner
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders
| | | | - Daniel L C Costa
- Obsessive-Compulsive Spectrum Disorders Program (PROTOC-IPq-HCFMUSP)
| | | | | | | | | | | | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders
| | | | | | | |
Collapse
|
8
|
Crowley JJ. Genomics of Obsessive-Compulsive Disorder and Related Disorders: What the Clinician Needs to Know. Psychiatr Clin North Am 2023; 46:39-51. [PMID: 36740354 DOI: 10.1016/j.psc.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A wealth of evidence has shown that genetics plays a major role in susceptibility to obsessive-compulsive disorder (OCD) and all of its related disorders. Several large-scale, collaborative efforts using modern genomic methods are beginning to reveal the genetic architecture of these traits and identify long-sought risk genes. In this article, we summarize current OCD and related disorder genomic knowledge and explain how to communicate this information to patients and their families. The article concludes with a discussion of how genomic discovery in OCD and related disorders can inform our understanding of disease etiology and provide novel targets for therapeutic development.
Collapse
Affiliation(s)
- James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Mataix-Cols D, Andersson E, Aspvall K, Boberg J, Crowley JJ, de Schipper E, Fernández de la Cruz L, Flygare O, Ivanova E, Lenhard F, Lundström L, Rück C, Serlachius E, Cervin M. Operational Definitions of Treatment Response and Remission in Obsessive-Compulsive Disorder Capture Meaningful Improvements in Everyday Life. PSYCHOTHERAPY AND PSYCHOSOMATICS 2022; 91:424-430. [PMID: 36382651 PMCID: PMC9838085 DOI: 10.1159/000527115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The operational definitions of treatment response, partial response, and remission in obsessive-compulsive disorder (OCD) are widely used in clinical trials and regular practice. However, the clinimetric sensitivity of these definitions, that is, whether they identify patients that experience meaningful changes in their everyday life, remains unexplored. OBJECTIVE The objective was to examine the clinimetric sensitivity of the operational definitions of treatment response, partial response, and remission in children and adults with OCD. METHODS Pre- and post-treatment data from five clinical trials and three cohort studies of children and adults with OCD (n = 1,528; 55.3% children, 61.1% female) were pooled. We compared (1) responders, partial responders, and non-responders and (2) remitters and non-remitters on self-reported OCD symptoms, clinician-rated general functioning, and self-reported quality of life. Remission was also evaluated against post-treatment diagnostic interviews. RESULTS Responders and remitters experienced large improvements across validators. Responders had greater improvements than partial responders and non-responders on self-reported OCD symptoms (Cohen's d 0.65-1.13), clinician-rated functioning (Cohen's d 0.53-1.03), and self-reported quality of life (Cohen's d 0.63-0.73). Few meaningful differences emerged between partial responders and non-responders. Remitters had better outcomes across most validators than non-remitters. Remission criteria corresponded well with absence of post-treatment diagnosis (sensitivity/specificity: 93%/83%). Using both the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and the Clinical Global Impression Scale yielded more conservative results and more robust changes across validators, compared to only using the Y-BOCS. CONCLUSIONS The current definitions of treatment response and remission capture meaningful improvements in the everyday life of individuals with OCD, whereas the concept of partial response has dubious clinimetric sensitivity.
Collapse
Affiliation(s)
- David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden,*David Mataix-Cols,
| | - Erik Andersson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kristina Aspvall
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Julia Boberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - James J. Crowley
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Genetics at the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Psychiatry at the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elles de Schipper
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Lorena Fernández de la Cruz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Oskar Flygare
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Ekaterina Ivanova
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Fabian Lenhard
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lina Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Christian Rück
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Eva Serlachius
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Matti Cervin
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Mahjani B, Klei L, Mattheisen M, Halvorsen MW, Reichenberg A, Roeder K, Pedersen NL, Boberg J, de Schipper E, Bulik CM, Landén M, Fundín B, Mataix-Cols D, Sandin S, Hultman CM, Crowley JJ, Buxbaum JD, Rück C, Devlin B, Grice DE. The Genetic Architecture of Obsessive-Compulsive Disorder: Contribution of Liability to OCD From Alleles Across the Frequency Spectrum. Am J Psychiatry 2022; 179:216-225. [PMID: 34789012 PMCID: PMC8897260 DOI: 10.1176/appi.ajp.2021.21010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is known to be substantially heritable; however, the contribution of genetic variation across the allele frequency spectrum to this heritability remains uncertain. The authors used two new homogeneous cohorts to estimate the heritability of OCD from inherited genetic variation and contrasted the results with those of previous studies. METHODS The sample consisted of 2,090 Swedish-born individuals diagnosed with OCD and 4,567 control subjects, all genotyped for common genetic variants, specifically >400,000 single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥0.01. Using genotypes of these SNPs to estimate distant familial relationships among individuals, the authors estimated the heritability of OCD, both overall and partitioned according to MAF bins. RESULTS Narrow-sense heritability of OCD was estimated at 29% (SE=4%). The estimate was robust, varying only modestly under different models. Contrary to an earlier study, however, SNPs with MAF between 0.01 and 0.05 accounted for 10% of heritability, and estimated heritability per MAF bin roughly followed expectations based on a simple model for SNP-based heritability. CONCLUSIONS These results indicate that common inherited risk variation (MAF ≥0.01) accounts for most of the heritable variation in OCD. SNPs with low MAF contribute meaningfully to the heritability of OCD, and the results are consistent with expectation under the "infinitesimal model" (also referred to as the "polygenic model"), where risk is influenced by a large number of loci across the genome and across MAF bins.
Collapse
Affiliation(s)
- Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Tics, Obsessive-Compulsive Disorder (OCD) and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Manuel Mattheisen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Matthew W. Halvorsen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Abraham Reichenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Julia Boberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elles de Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Fundín
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sandin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christina M. Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - James J. Crowley
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dorothy E. Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Tics, Obsessive-Compulsive Disorder (OCD) and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Mattheisen M, Pato MT, Pato CN, Knowles JA. What Have We Learned About the Genetics of Obsessive-Compulsive and Related Disorders in Recent Years? FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2021; 19:384-391. [PMID: 35747302 PMCID: PMC9063570 DOI: 10.1176/appi.focus.20210017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/15/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a complex, multifactorial disorder with onset in either childhood or early adulthood. Lifetime prevalence has been estimated to be around 2%-3%. DSM-5 groups OCD together with closely related disorders-body dysmorphic disorder, trichotillomania (hair-pulling disorder), hoarding disorder, and excoriation disorder (skin-picking disorder)-as obsessive-compulsive and related disorders (OCRDs). In addition, DSM-5 includes a "tic-related" specifier, recognizing that OCD and Tourette syndrome/chronic tics are frequently comorbid. In recent years, the first large-scale genome-wide studies of OCRDs have emerged. These studies confirmed results from earlier twin and family studies that have demonstrated a strong genetic component to OCRDs. Furthermore, from analyses of common genetic variation, these studies offered a first insight into how the genetic risk of developing an OCRD might be connected to the genetic risk of developing another OCRD. This article is an update of the authors' previous report; it summarizes recent findings on the genetics of OCRDs and highlights some of the recent directions in OCRD genetics that will pave the way for new insights into OCRD pathophysiology.
Collapse
Affiliation(s)
- Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (Mattheisen); Department of Psychiatry, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, Newark (M. Pato, C. Pato); Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York (Knowles)
| | - Michele T Pato
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (Mattheisen); Department of Psychiatry, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, Newark (M. Pato, C. Pato); Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York (Knowles)
| | - Carlos N Pato
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (Mattheisen); Department of Psychiatry, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, Newark (M. Pato, C. Pato); Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York (Knowles)
| | - James A Knowles
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (Mattheisen); Department of Psychiatry, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, Newark (M. Pato, C. Pato); Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York (Knowles)
| |
Collapse
|
12
|
A population-based family clustering study of tic-related obsessive-compulsive disorder. Mol Psychiatry 2021; 26:1224-1233. [PMID: 31616041 PMCID: PMC7985024 DOI: 10.1038/s41380-019-0532-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 11/08/2022]
Abstract
In the latest edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), obsessive-compulsive disorder (OCD) included a new "tic-related" specifier. However, strong evidence supporting tic-related OCD as a distinct subtype of OCD is lacking. This study investigated whether, at the population level, tic-related OCD has a stronger familial load than non-tic-related OCD. From a cohort of individuals born in Sweden between 1967 and 2007 (n = 4,085,367; 1257 with tic-related OCD and 20,975 with non-tic-related OCD), we identified all twins, full siblings, maternal and paternal half siblings, and cousins. Sex- and birth year-adjusted hazard ratios (aHR) were calculated to estimate the risk of OCD in relatives of individuals with OCD with and without comorbid tics, compared with relatives of unaffected individuals. We found that OCD is a familial disorder, regardless of comorbid tic disorder status. However, the risk of OCD in relatives of individuals with tic-related OCD was considerably greater than the risk of OCD in relatives of individuals with non-tic-related OCD (e.g., risk for full siblings: aHR = 10.63 [95% CI, 7.92-14.27] and aHR = 4.52 [95% CI, 4.06-5.02], respectively; p value for the difference < 0.0001). These differences remained when the groups were matched by age at first OCD diagnosis and after various sensitivity analyses. The observed familial patterns of OCD in relation to tics were not seen in relation to other neuropsychiatric comorbidities. Tic-related OCD is a particularly familial subtype of OCD. The results have important implications for ongoing gene-searching efforts.
Collapse
|
13
|
Mahjani B, Dellenvall K, Grahnat ACS, Karlsson G, Tuuliainen A, Reichert J, Mahjani CG, Klei L, De Rubeis S, Reichenberg A, Devlin B, Hultman CM, Buxbaum JD, Sandin S, Grice DE. Cohort profile: Epidemiology and Genetics of Obsessive-compulsive disorder and chronic tic disorders in Sweden (EGOS). Soc Psychiatry Psychiatr Epidemiol 2020; 55:1383-1393. [PMID: 31907560 DOI: 10.1007/s00127-019-01822-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The EGOS study (Epidemiology and Genetics of Obsessive-compulsive disorder and chronic tic disorders in Sweden) is a large-scale, epidemiological, prospective cohort that is used to identify genetic and environmental risk factors in the etiology of obsessive-compulsive disorder (OCD) and chronic tic disorders (CTD). METHODS Individuals born between January 1954 and December 1998 with at least two diagnoses of OCD or CTD at different timepoints in the National Patient Register (NPR), and followed between January 1997 and December 2012, represent the EGOS source population (n = 20,374). The Swedish Multi-Generation Registry (MGR) are then used to define family relatedness for all cases and additional phenotypic and demographic data added to the resultant database. To create an epidemiologically valid subset of the source cohort that also includes biospecimens and additional phenotyping, we contact cases from within the source population. To date, 6832 invitations have been sent out and 1853 (27%) have elected to participate in the EGOS biospecimen collection. RESULTS To date, 1608 biological samples have been collected, of which 1249 are genotyped and 832 supplementary Obsessive-Compulsive Inventory-Revised (OCI-R) and/or Florida Obsessive-Compulsive Inventory (FOCI) have been completed by individuals with OCD and/or CTD, age 16-64 years. DNA samples are genotyped using Infinium Global Screening Array and will undergo whole-exome sequencing in the future. Detailed information is available for each individual through linkage to the Swedish national registers, e.g., identification of additional psychiatric diagnoses, medical diagnoses, birth-related variables, and relevant demographic and social data. CONCLUSION EGOS benefits from a genetically homogeneous sample with epidemiological ascertainment, minimizing the risk of confounding due to population stratification on ascertainment bias. In addition, this study is built upon clinical diagnoses of OCD and CTD in specialized psychiatric care, which reduces further biases and case misclassification.
Collapse
Affiliation(s)
- Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Tics, OCD and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Dellenvall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Carin Säll Grahnat
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gun Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Aki Tuuliainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Reichert
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina G Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lambertus Klei
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, NY, USA
| | - Abraham Reichenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernie Devlin
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, NY, USA
| | - Sven Sandin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dorothy E Grice
- Division of Tics, OCD and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, NY, USA.
| |
Collapse
|