1
|
Metcalf K. Categorical misalignment: Making autism(s) in big data biobanking. SOCIAL STUDIES OF SCIENCE 2025; 55:209-237. [PMID: 39370865 PMCID: PMC11986076 DOI: 10.1177/03063127241288223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The opaque relationship between biology and behavior is an intractable problem for psychiatry, and it increasingly challenges longstanding diagnostic categorizations. While various big data sciences have been repeatedly deployed as potential solutions, they have so far complicated more than they have managed to disentangle. Attending to categorical misalignment, this article proposes one reason why this is the case: Datasets have to instantiate clinical categories in order to make biological sense of them, and they do so in different ways. Here, I use mixed methods to examine the role of the reuse of big data in recent genomic research on autism spectrum disorder (ASD). I show how divergent regimes of psychiatric categorization are innately encoded within commonly used datasets from MSSNG and 23andMe, contributing to a rippling disjuncture in the accounts of autism that this body of research has produced. Beyond the specific complications this dynamic introduces for the category of autism, this paper argues for the necessity of critical attention to the role of dataset reuse and recombination across human genomics and beyond.
Collapse
|
2
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024; 29:3694-3705. [PMID: 38811691 PMCID: PMC11541208 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Lee SA, Hur YM. Common Genetic Influence on the Relationship Between Gaming Addiction and Attention Deficit Hyperactivity Disorder in Young Adults: A Twin Study. Twin Res Hum Genet 2024; 27:198-203. [PMID: 39463167 DOI: 10.1017/thg.2024.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the relationship between gaming addiction (GA) and attention deficit hyperactivity disorder (ADHD) is well established, the causal mechanism of this relationship remains ambiguous. We aimed to investigate whether common genetic and/or environmental factors explain the GA-ADHD relationship. We recruited 1413 South Korean adult twins (837 monozygotic [MZ], 326 same-sex dizygotic [DZ], and 250 opposite-sex DZ twins; mean age = 23.1 ± 2.8 years) who completed an online survey on GA and related traits. Correlational analysis and bivariate model-fitting analysis were conducted. Phenotypic correlation between GA and ADHD in the present sample was 0.55 (95% CI [0.51, 0.59]). Bivariate model-fitting analysis revealed that genetic variances were 69% (95% CI [64%, 73%]) and 68% (95% CI [63%, 72%]) for ADHD and GA respectively. The remaining variances (ADHD: 31%; GA: 32%) were associated with nonshared environmental variances, including measurement error. Genetic and nonshared environmental correlations between ADHD and GA were 0.68 (95% CI [0.62, 0.74]) and 0.22 (95% CI [0.13, 0.30]) respectively, which indicates that shared genes can explain 82% of the phenotypic correlation between ADHD and GA. Our study demonstrated that the ADHD-GA association was largely due to shared genetic vulnerability.
Collapse
Affiliation(s)
- Seol-Ah Lee
- Kookmin Twin Research Institute, Kookmin University, Seoul, South Korea
| | - Yoon-Mi Hur
- Kookmin Twin Research Institute, Kookmin University, Seoul, South Korea
- General College of Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
4
|
Xie T, Mao Y. The causal impact of maternal smoking around birth on offspring ADHD: A two-sample Mendelian randomization study. J Affect Disord 2024; 351:24-30. [PMID: 38266926 DOI: 10.1016/j.jad.2024.01.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The previous literature highlights a relationship between maternal smoking around birth (MSAB) and offspring attention-deficit/hyperactivity disorder (ADHD). These studies have focused on the causal effects of MSAB on offspring ADHD. METHOD A Mendelian randomization analysis was conducted using summary statistics. Data on MSAB were obtained from a recent study including 391,992 participants. ADHD data were obtained from six sources for 246,888 participants. The present study used five methods to examine the causal impact from outcomes on exposures. The inverse variance weighted (IVW) was the main method of analysis, while the other four methods were supplementary methods. RESULT The IVW revealed that MSAB was a risk factor for offspring ADHD (OR: 2.54; 95 % confidence interval [CI]: 1.61-4.00, p = 6.04 × 10-5). Concerning ADHD in both sexes, MSAB was associated with females (OR = 3.96, 95 % CI: 1.99-7.90, p = 8.98 × 10-5) and males (OR = 3.74, 95 % CI: 1.74-5.72, p = 1.48 × 10-4). In different diagnosis periods for ADHD, MSAB increased the risk of childhood (OR = 3.63, 95 % CI: 2.25-5.87, p = 1.31 × 10-7), late-diagnosed (OR = 2.99, 95 % CI: 1.74-5.14, p = 7.33 × 10-5), and persistent (OR = 4.77, 95 % CI: 1.88-12.14, p = 1.03 × 10-3) ADHD. The final analysis did not reveal heterogeneity. CONCLUSIONS A causal impact of MSAB on offspring ADHD was observed. These findings highlight the need for careful consideration of prenatal exposure (MSAB) during the assessment of offspring ADHD. Additionally, it can provide targeted guidance for prenatal interventions. Future studies should analyze the effects of different doses of maternal smoking on ADHD.
Collapse
Affiliation(s)
- Tao Xie
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Mao
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Koller D, Mitjans M, Kouakou M, Friligkou E, Cabrera-Mendoza B, Deak JD, Llonga N, Pathak GA, Stiltner B, Løkhammer S, Levey DF, Zhou H, Hatoum AS, Kember RL, Kranzler HR, Stein MB, Corominas R, Demontis D, Artigas MS, Ramos-Quiroga JA, Gelernter J, Ribasés M, Cormand B, Polimanti R. Genetic contribution to the comorbidity between attention-deficit/hyperactivity disorder and substance use disorders. Psychiatry Res 2024; 333:115758. [PMID: 38335780 PMCID: PMC11157987 DOI: 10.1016/j.psychres.2024.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
We characterized the genetic architecture of the attention-deficit hyperactivity disorder-substance use disorder (ADHD-SUD) relationship by investigating genetic correlation, causality, pleiotropy, and common polygenic risk. Summary statistics from genome-wide association studies (GWAS) were used to investigate ADHD (Neff = 51,568), cannabis use disorder (CanUD, Neff = 161,053), opioid use disorder (OUD, Neff = 57,120), problematic alcohol use (PAU, Neff = 502,272), and problematic tobacco use (PTU, Neff = 97,836). ADHD, CanUD, and OUD GWAS meta-analyses included cohorts with case definitions based on different diagnostic criteria. PAU GWAS combined information related to alcohol use disorder, alcohol dependence, and the items related to alcohol problematic consequences assessed by the alcohol use disorders identification test. PTU GWAS was generated a multi-trait analysis including information regarding Fagerström Test for Nicotine Dependence and cigarettes per day. Linkage disequilibrium score regression analyses indicated positive genetic correlation with CanUD, OUD, PAU, and PTU. Genomic structural equation modeling showed that these genetic correlations were related to two latent factors: one including ADHD, CanUD, and PTU and the other with OUD and PAU. The evidence of a causal effect of PAU and PTU on ADHD was stronger than the reverse in the two-sample Mendelian randomization analysis. Conversely, similar strength of evidence was found between ADHD and CanUD. CADM2 rs62250713 was a pleiotropic SNP between ADHD and all SUDs. We found seven, one, and twenty-eight pleiotropic variants between ADHD and CanUD, PAU, and PTU, respectively. Finally, OUD, CanUD, and PAU PRS were associated with increased odds of ADHD. Our findings demonstrated the contribution of multiple pleiotropic mechanisms to the comorbidity between ADHD and SUDs.
Collapse
Affiliation(s)
- Dora Koller
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Manuela Kouakou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA
| | - Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Brendan Stiltner
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Solveig Løkhammer
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, USA; Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, USA; VA San Diego Healthcare System, San Diego, CA, La Jolla, USA
| | - Roser Corominas
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain; Biomedical Network Research Centre on Rare Disorders (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - María Soler Artigas
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Marta Ribasés
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain; Biomedical Network Research Centre on Rare Disorders (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Hongyao HE, Chun JI, Xiaoyan G, Fangfang L, Jing Z, Lin Z, Pengxiang Z, Zengchun L. Associative gene networks reveal novel candidates important for ADHD and dyslexia comorbidity. BMC Med Genomics 2023; 16:208. [PMID: 37667328 PMCID: PMC10478365 DOI: 10.1186/s12920-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is commonly associated with developmental dyslexia (DD), which are both prevalent and complicated pediatric neurodevelopmental disorders that have a significant influence on children's learning and development. Clinically, the comorbidity incidence of DD and ADHD is between 25 and 48%. Children with DD and ADHD may have more severe cognitive deficiencies, a poorer level of schooling, and a higher risk of social and emotional management disorders. Furthermore, patients with this comorbidity are frequently treated for a single condition in clinical settings, and the therapeutic outcome is poor. The development of effective treatment approaches against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and treatment. In this study, we developed bioinformatical methodology for the analysis of the comorbidity of these two diseases. As such, the search for candidate genes related to the comorbid conditions of ADHD and DD can help in elucidating the molecular mechanisms underlying the comorbid condition, and can also be useful for genotyping and identifying new drug targets. RESULTS Using the ANDSystem tool, the reconstruction and analysis of gene networks associated with ADHD and dyslexia was carried out. The gene network of ADHD included 599 genes/proteins and 148,978 interactions, while that of dyslexia included 167 genes/proteins and 27,083 interactions. When the ANDSystem and GeneCards data were combined, a total of 213 genes/proteins for ADHD and dyslexia were found. An approach for ranking genes implicated in the comorbid condition of the two diseases was proposed. The approach is based on ten criteria for ranking genes by their importance, including relevance scores of association between disease and genes, standard methods of gene prioritization, as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analyzed genes. Among the top 20 genes with the highest priority DRD2, DRD4, CNTNAP2 and GRIN2B are mentioned in the literature as directly linked with the comorbidity of ADHD and dyslexia. According to the proposed approach, the genes OPRM1, CHRNA4 and SNCA had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the most relevant genes are involved in biological processes related to signal transduction, positive regulation of transcription from RNA polymerase II promoters, chemical synaptic transmission, response to drugs, ion transmembrane transport, nervous system development, cell adhesion, and neuron migration. CONCLUSIONS The application of methods of reconstruction and analysis of gene networks is a powerful tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance for the comorbid condition of ADHD and dyslexia was employed to predict genes that play key roles in the development of the comorbid condition. The results can be utilized to plan experiments for the identification of novel candidate genes and search for novel pharmacological targets.
Collapse
Affiliation(s)
- H E Hongyao
- Medical College of Shihezi University, Shihezi, China
| | - J I Chun
- Medical College of Shihezi University, Shihezi, China
| | - Gao Xiaoyan
- Medical College of Shihezi University, Shihezi, China
| | - Liu Fangfang
- Medical College of Shihezi University, Shihezi, China
| | - Zhang Jing
- Medical College of Shihezi University, Shihezi, China
| | - Zhong Lin
- Medical College of Shihezi University, Shihezi, China
| | - Zuo Pengxiang
- Medical College of Shihezi University, Shihezi, China.
| | - Li Zengchun
- Medical College of Shihezi University, Shihezi, China.
| |
Collapse
|
7
|
Riglin L, Stergiakouli E. Mendelian randomisation studies of Attention Deficit Hyperactivity Disorder. JCPP ADVANCES 2022; 2:e12117. [PMID: 37431426 PMCID: PMC10242846 DOI: 10.1002/jcv2.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Observational studies have found Attention Deficit Hyperactivity Disorder (ADHD) to be associated with an increased risk of adverse outcomes as well as with early risk factors; however it is not clear whether these associations reflect causal effects. Alternatives to traditional observational studies are needed to investigate causality: one such design is Mendelian randomization (MR), which uses genetic variants as instrumental variables for the exposure. Methods In this review we summarise findings from approximately 50 studies using MR to examine potentially causal associations with ADHD as either an exposure or outcome. Results To-date, few MR ADHD studies have investigated causal evidence with other neurodevelopmental, mental health and neurodegenerative conditions but those that have suggest a complex relationship with autism, some evidence of a causal effect on depression and limited evidence of a causal effect on neurodegenerative conditions. For substance use, MR studies provide evidence consistent with a causal effect of ADHD on smoking initiation, but findings for other smoking behaviours and cannabis use are less consistent. Studies of physical health suggest bidirectional causal effects with higher body mass index, with stronger effects for childhood obesity, as well as some evidence of causal effects on coronary artery disease and stroke in adults and limited evidence of causal effects on other physical health problems or sleep. Studies suggest bidirectional relationships between ADHD and socio-economic markers and provide some evidence that low birthweight may be a causal risk factor for ADHD, while bidirectional evidence has been found for some environmental factors. Finally, there is emerging evidence of bidirectional causal links between ADHD genetic liability and biological markers of human metabolism and inflammation. Conclusions While MR has advantages over traditional observational designs in addressing causality, we discuss limitations of current ADHD studies and future directions, including the need for larger genome-wide association studies (and using samples of different ancestries), and for triangulation with different methods.
Collapse
Affiliation(s)
- Lucy Riglin
- Division of Psychological Medicine and Clinical Neurosciences and MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Wolfson Centre for Young People's Mental HealthCardiffUK
| | - Evie Stergiakouli
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
8
|
Niarchou M, Sealock JM, Straub P, Sanchez‐Roige S, Sutcliffe JS, Davis LK. A phenome-wide association study of polygenic scores for attention deficit hyperactivity disorder across two genetic ancestries in electronic health record data. Am J Med Genet B Neuropsychiatr Genet 2022; 189:185-195. [PMID: 35841203 PMCID: PMC9378640 DOI: 10.1002/ajmg.b.32911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Testing the association between genetic scores for Attention Deficit Hyperactivity Disorder (ADHD) and health conditions, can help us better understand its complex etiology. Electronic health records linked to genetic data provide an opportunity to test whether genetic scores for ADHD correlate with ADHD and additional health outcomes in a health care context across different age groups. We generated polygenic scores (ADHD-PGS) trained on summary statistics from the latest genome-wide association study of ADHD (N = 55,374) and applied them to genome-wide data from 12,383 unrelated individuals of African-American ancestry and 66,378 unrelated individuals of European ancestry from the Vanderbilt Biobank. Overall, only Tobacco use disorder (TUD) was associated with ADHD-PGS in the African-American ancestry group (Odds ratio [95% confidence intervals] = 1.23[1.16-1.31], p = 9.3 × 10-09 ). Eighty-six phenotypes were associated with ADHD-PGS in the European ancestry individuals, including ADHD (OR[95%CIs] = 1.22[1.16-1.29], p = 3.6 × 10-10 ), and TUD (OR[95%CIs] = 1.22[1.19-1.25], p = 2.8 × 10-46 ). We then stratified outcomes by age (ages 0-11, 12-18, 19-25, 26-40, 41-60, and 61-100). Our results suggest that ADHD polygenic scores are associated with ADHD diagnoses early in life and with an increasing number of health conditions throughout the lifespan (even in the absence of ADHD diagnosis). This study reinforces the utility of applying trait-specific PGSs to biobank data, and performing exploratory sensitivity analyses, to probe relationships among clinical conditions.
Collapse
Affiliation(s)
- Maria Niarchou
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julia M. Sealock
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Peter Straub
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sandra Sanchez‐Roige
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - James S. Sutcliffe
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Lea K. Davis
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
9
|
Soler Artigas M, Sánchez-Mora C, Rovira P, Vilar-Ribó L, Ramos-Quiroga JA, Ribasés M. Mendelian randomization analysis for attention deficit/hyperactivity disorder: studying a broad range of exposures and outcomes. Int J Epidemiol 2022; 52:386-402. [PMID: 35690959 PMCID: PMC10114062 DOI: 10.1093/ije/dyac128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder caused by a combination of genetic and environmental factors and is often thought as an entry point into a negative life trajectory, including risk for comorbid disorders, poor educational achievement or low income. In the present study, we aimed to clarify the causal relationship between ADHD and a comprehensive range of related traits. METHODS We used genome-wide association study (GWAS) summary statistics for ADHD (n = 53 293) and 124 traits related to anthropometry, cognitive function and intelligence, early life exposures, education and employment, lifestyle and environment, longevity, neurological, and psychiatric and mental health or personality and psychosocial factors available in the MR-Base database (16 067 ≤n ≤766 345). To investigate their causal relationship with ADHD, we used two-sample Mendelian randomization (MR) with a range of sensitivity analyses, and validated MR findings using causal analysis using summary effect estimates (CAUSE), aiming to avoid potential false-positive results. RESULTS Our findings strengthen previous evidence of a causal effect of ADHD liability on smoking and major depression, and are consistent with a causal effect on odds of decreased average total household income [odds ratio (OR) = 0.966, 95% credible interval (CrI) = (0.954, 0.979)] and increased lifetime number of sexual partners [OR = 1.023, 95% CrI = (1.013, 1.033)]. We also found evidence for a causal effect on ADHD for liability of arm predicted mass and weight [OR = 1.452, 95% CrI = (1.307, 1.614) and OR = 1.430, 95% CrI = (1.326, 1.539), respectively] and time spent watching television [OR = 1.862, 95% CrI = (1.545, 2.246)], and evidence for a bidirectional effect for age of first sexual intercourse [beta = -0.058, 95% CrI = (-0.072, -0.044) and OR = 0.413, 95% CrI = (0.372, 0.457), respectively], odds of decreased age completed full-time education [OR = 0.972, 95% CrI = (0.962, 0.981) and OR = 0.435, 95% CrI = (0.356, 0.533), respectively] and years of schooling [beta = -0.036, 95% CrI = (-0.048, -0.024) and OR = 0.458, 95% CrI = (0.411, 0.511), respectively]. CONCLUSIONS Our results may contribute to explain part of the widespread co-occurring traits and comorbid disorders across the lifespan of individuals with ADHD and may open new opportunities for developing preventive strategies for ADHD and for negative ADHD trajectories.
Collapse
Affiliation(s)
- María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Vicerectorat de Recerca, postdoctoral researcher Margarita Salas, Universitat de Barcelona, Barcelona, Spain.,Departament of Psychiatry, Faculty of Medicine, Universidad de Granada, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Balogh L, Pulay AJ, Réthelyi JM. Genetics in the ADHD Clinic: How Can Genetic Testing Support the Current Clinical Practice? Front Psychol 2022; 13:751041. [PMID: 35350735 PMCID: PMC8957927 DOI: 10.3389/fpsyg.2022.751041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a childhood prevalence of 5%. In about two-thirds of the cases, ADHD symptoms persist into adulthood and often cause significant functional impairment. Based on the results of family and twin studies, the estimated heritability of ADHD approximates 80%, suggests a significant genetic component in the etiological background of the disorder; however, the potential genetic effects on disease risk, symptom severity, and persistence are unclear. This article provides a brief review of the genome-wide and candidate gene association studies with a focus on the clinical aspects, summarizing findings of ADHD disease risk, ADHD core symptoms as dimensional traits, and other traits frequently associated with ADHD, which may contribute to the susceptibility to other comorbid psychiatric disorders. Furthermore, neuropsychological impairment and measures from neuroimaging and electrophysiological paradigms, emerging as potential biomarkers, also provide a prominent target for molecular genetic studies, since they lie in the pathway from genes to behavior; therefore, they can contribute to the understanding of the underlying neurobiological mechanisms and the interindividual heterogeneity of clinical symptoms. Beyond the aforementioned aspects, throughout the review, we also give a brief summary of the genetic results, including polygenic risk scores that can potentially predict individual response to different treatment options and may offer a possibility for personalized treatment for the therapy of ADHD in the future.
Collapse
Affiliation(s)
- Lívia Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Attila J Pulay
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Paraskevopoulou M, Rooij D, Schene AH, Batalla A, Chauvin RJ, Buitelaar JK, Schellekens AFA. Effects of family history of substance use disorder on reward processing in adolescents with and without attention-deficit/hyperactivity disorder. Addict Biol 2022; 27:e13137. [PMID: 35229951 PMCID: PMC9285350 DOI: 10.1111/adb.13137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Patients with attention‐deficit/hyperactivity disorder (ADHD) often develop early onset substance use disorder (SUD) and show poor treatment outcomes. Both disorders show similar reward‐processing alterations, but it is unclear whether these are associated with familial vulnerability to SUD. Our aim was to investigate effects of family history of SUD (FH) on reward processing in individuals with and without ADHD, without substance misuse. Behavioural and functional magnetic resonance imaging (fMRI) data from a modified monetary incentive delay task were compared between participants with and without FH (FH positive [FH+]: n = 76 and FH negative [FH−]: n = 69; 76 with ADHD, aged 16.74 ± 3.14, 82 males), while accounting for continuous ADHD scores. The main analysis showed distinct positive association between ADHD scores and reaction times during neutral versus reward condition. ADHD scores were also positively associated with anticipatory responses of dorsolateral prefrontal cortex, independent of FH. There were no main FH effects on brain activation. Yet, FH+ participants showed distinct neural alterations in ventrolateral prefrontal cortex (VLPFC), dependent on ADHD. This was driven by positive association between ADHD scores and VLPFC activation during reward outcome, only in FH+. Sensitivity analysis with stricter SUD index showed hyperactivation of anterior cingulate cortex for FH+, independent of ADHD, during reward anticipation. There were no FH or ADHD effects on activation of ventral striatum in any analysis. Findings suggest both FH and ADHD effects in circuits of reward and attention/memory during reward processing. Future studies should examine whether these relate to early substance use initiation in ADHD and explore the need for adjusted SUD prevention strategies.
Collapse
Affiliation(s)
- Maria Paraskevopoulou
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour Radboud University Medical Center Nijmegen The Netherlands
| | - Daan Rooij
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen The Netherlands
| | - Aart H. Schene
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour Radboud University Medical Center Nijmegen The Netherlands
| | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | - Roselyne J. Chauvin
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour Radboud University Medical Centre Nijmegen The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre Nijmegen The Netherlands
| | - Arnt F. A. Schellekens
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour Radboud University Medical Center Nijmegen The Netherlands
- Nijmegen Institute for Scientist Practitioners in Addiction Nijmegen The Netherlands
| |
Collapse
|
12
|
Al‐Soufi L, Martorell L, Moltó M, González‐Peñas J, García‐Portilla MP, Arrojo M, Rivero O, Gutiérrez‐Zotes A, Nácher J, Muntané G, Paz E, Páramo M, Bobes J, Arango C, Sanjuan J, Vilella E, Costas J. A polygenic approach to the association between smoking and schizophrenia. Addict Biol 2022; 27:e13104. [PMID: 34779080 DOI: 10.1111/adb.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Smoking prevalence in schizophrenia is considerably larger than in general population, playing an important role in early mortality. We compared the polygenic contribution to smoking in schizophrenic patients and controls to assess if genetic factors may explain the different prevalence. Polygenic risk scores (PRSs) for smoking initiation and four genetically correlated traits were calculated in 1108 schizophrenic patients (64.4% smokers) and 1584 controls (31.1% smokers). PRSs for smoking initiation, educational attainment, body mass index and age at first birth were associated with smoking in patients and controls, explaining a similar percentage of variance in both groups. Attention-deficit hyperactivity disorder (ADHD) PRS was associated with smoking only in schizophrenia. This association remained significant after adjustment by psychiatric cross-disorder PRS. A PRS combining all the traits was more explanative than smoking initiation PRS alone, indicating that genetic susceptibility to the other traits plays an additional role in smoking behaviour. Smoking initiation PRS was also associated with schizophrenia in the whole sample, but the significance was lost after adjustment for smoking status. This same pattern was observed in the analysis of specific SNPs at the CHRNA5-CHRNA3-CHRNB4 cluster associated with both traits. Overall, the results indicate that the same genetic factors are involved in smoking susceptibility in schizophrenia and in general population and are compatible with smoking acting, directly or indirectly, as a risk factor for schizophrenia that contributes to the high prevalence of smoking in these patients. The contrasting results for ADHD PRS may be related to higher ADHD symptomatology in schizophrenic patients.
Collapse
Affiliation(s)
- Laila Al‐Soufi
- Psychiatric Genetics Group Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Department of Zoology, Genetics and Physical Anthropology Universidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Universitat Rovira i Virgili (URV) Reus Spain
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
| | - M.Dolores Moltó
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- INCLIVA Biomedical Research Institute Fundación Investigación Hospital Clínico de Valencia Valencia Spain
- Department of Genetics Universitat de València Valencia Spain
| | - Javier González‐Peñas
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - Ma Paz García‐Portilla
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- Department of Psychiatry, Universidad de Oviedo; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA); Instituto Universitario de Neurociencias del Principado de Asturias (INEUROPA); Servicio de Salud del Principado de Asturias (SESPA) Oviedo Spain
| | - Manuel Arrojo
- Psychiatric Genetics Group Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela Servizo Galego de Saúde (SERGAS) Santiago de Compostela Spain
| | - Olga Rivero
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- INCLIVA Biomedical Research Institute Fundación Investigación Hospital Clínico de Valencia Valencia Spain
- Department of Genetics Universitat de València Valencia Spain
| | - Alfonso Gutiérrez‐Zotes
- Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Universitat Rovira i Virgili (URV) Reus Spain
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
| | - Juan Nácher
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- INCLIVA Biomedical Research Institute Fundación Investigación Hospital Clínico de Valencia Valencia Spain
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED) Universitat de València Valencia Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Universitat Rovira i Virgili (URV) Reus Spain
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
| | - Eduardo Paz
- Psychiatric Genetics Group Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela Servizo Galego de Saúde (SERGAS) Santiago de Compostela Spain
| | - Mario Páramo
- Psychiatric Genetics Group Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela Servizo Galego de Saúde (SERGAS) Santiago de Compostela Spain
| | - Julio Bobes
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- Department of Psychiatry, Universidad de Oviedo; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA); Instituto Universitario de Neurociencias del Principado de Asturias (INEUROPA); Servicio de Salud del Principado de Asturias (SESPA) Oviedo Spain
| | - Celso Arango
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - Julio Sanjuan
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
- INCLIVA Biomedical Research Institute Fundación Investigación Hospital Clínico de Valencia Valencia Spain
- Department of Psychiatric, School of Medicine Universitat de València Valencia Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Universitat Rovira i Virgili (URV) Reus Spain
- Spanish Mental Health Research Network (CIBERSAM) Madrid Spain
| | - Javier Costas
- Psychiatric Genetics Group Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Servizo Galego de Saúde (SERGAS) Complexo Hospitalario Universitario de Santiago de Compostela (CHUS) Santiago de Compostela Spain
| |
Collapse
|
13
|
Fernàndez-Castillo N, Cabana-Domínguez J, Kappel DB, Torrico B, Weber H, Lesch KP, Lao O, Reif A, Cormand B. Exploring the Contribution to ADHD of Genes Involved in Mendelian Disorders Presenting with Hyperactivity and/or Inattention. Genes (Basel) 2021; 13:93. [PMID: 35052433 PMCID: PMC8775234 DOI: 10.3390/genes13010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Djenifer B. Kappel
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF10 3AT, UK;
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Heike Weber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt, Germany; (H.W.); (A.R.)
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, 97080 Wurzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wurzburg, Germany;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6221 LK Maastricht, The Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), 08028 Barcelona, Spain;
- Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt, Germany; (H.W.); (A.R.)
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|