1
|
Khatal SB, Padmor MS, Mariet M, Pratihar S. Room temperature transfer hydrogenation of aldehydes using methanol catalyzed by the iridium(III) pyridylidene-indole complex. Chem Commun (Camb) 2025. [PMID: 40326476 DOI: 10.1039/d5cc00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
An air- and moisture-stable, electron-rich (L)Ir(III)Cp* catalyst, incorporating a ligand (L) with the high σ-donor properties of pyridylidene and indole moieties, efficiently transfers hydrogen from methanol to aldehydes, converting them into alcohols with high selectivity and turnover frequencies at low temperatures (10-25 °C). Tolerant to a wide range of functional groups across 49 substrates, the catalyst is reusable and scalable to gram-scale production, and reduces energy consumption, highlighting its potential for advancing catalytic transfer hydrogenation.
Collapse
Affiliation(s)
- Sandip Bapu Khatal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, G B Marg, Bhavnagar-364002, India.
| | - Manohar Shivaji Padmor
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, G B Marg, Bhavnagar-364002, India.
| | - Megha Mariet
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, G B Marg, Bhavnagar-364002, India.
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, G B Marg, Bhavnagar-364002, India.
| |
Collapse
|
2
|
Beaufils A, Melle P, Lentz N, Albrecht M. Air-Stable Coordinatively Unsaturated Ruthenium(II) Complex for Ligand Binding and Catalytic Transfer Hydrogenation of Ketones from Ethanol. Inorg Chem 2024; 63:2072-2081. [PMID: 38230574 DOI: 10.1021/acs.inorgchem.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Coordinatively unsaturated complexes are interesting from a fundamental level for their formally empty coordination site and, in particular, from a catalytic perspective as they provide opportunities for substrate binding and transformation. Here, we describe the synthesis of a novel underligated ruthenium complex [Ru(cym)(N,N')]+, 3, featuring an amide-functionalized pyridylidene amide (PYA) as the N,N'-bidentate coordinating ligand. In contrast to previously investigated underligated complexes, complex 3 offers potential for dynamic modifications, thanks to the flexible donor properties of the PYA ligand. Specifically, they allow both for stabilizing the formally underligated metal center in complex 3 through nitrogen π-donation and for facilitating through π-acidic bonding properties the coordination of a further ligand L to the ruthenium center to yield the formal 18 e- complexes [Ru(cym)(N,N')(L)]+ (4: L = P(OMe)3; 5: L = PPh3; 6: L = N-methylimidazole; 7: L = pyridine) and neutral complex [RuCl(cym)(N,N')] 8. Analysis by 1H NMR and UV-vis spectroscopies reveals an increasing Ru-L bond strength along the sequence pyridine <1-methylimidazole < PPh3 < P(OMe)3 with binding constants varying over 3 orders of magnitude with log(Keq) values between 2.8 and 5.7. The flexibility of the Ru(PYA) unit and the ensuing accessibility of saturated and unsaturated species with one and the same ligand are attractive from a fundamental point of view and also for catalytic applications, as catalytic transformations rely on the availability of transiently vacant coordination sites. Thus, while complex 3 does not form stable adducts with O-donors such as ketones or alcohols, it transiently binds these species, as evidenced by the considerable catalytic activity in the transfer hydrogenation of ketones. Notably, and as one of only a few catalysts, complex 3 is compatible with EtOH as a hydrogen source. Complex 3 shows excellent performance in the transfer hydrogenation of pyridyl-containing substrates, in agreement with the poor coordination strength of this functional group to the ruthenium center in 3.
Collapse
Affiliation(s)
- Alicia Beaufils
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Philipp Melle
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Nicolas Lentz
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
3
|
Mandal A, Ganguli K, Pradhan M, Gorai A, Kundu S. Selective Transfer Hydrogenation of C=O and Conjugated C=C Bonds Using An NHC-Based Pincer (CNC)Mn I Complex in Methanol. CHEMSUSCHEM 2023; 16:e202300683. [PMID: 37287441 DOI: 10.1002/cssc.202300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Base metal catalyzed transfer hydrogenation reactions using methanol is highly challenging. Employing a single N-heterocyclic carbene (NHC)-based pincer (CNC)MnI complex, chemoselective single and double transfer hydrogenation of α, β-unsaturated ketones to saturated ketones or alcohols by utilizing methanol as the hydrogen source is disclosed. The protocol was tolerant towards the selective transfer hydrogenation of C=C or C=O bonds in the presence of several other reducible functional groups and led to the synthesis of several biologically relevant molecules and natural products. Notably, this is the first report of a Mn-catalyzed transfer hydrogenation of carbonyl groups with methanol. Several control experiments, kinetic studies, Hammett studies, and density functional theory (DFT) calculations were carried out to understand the mechanistic details of this catalytic process.
Collapse
Affiliation(s)
- Adarsha Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, India
| | - Kasturi Ganguli
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, India
| | - Manoj Pradhan
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, India
| | - Akhanda Gorai
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, India
| |
Collapse
|
4
|
Goyal V, Bhatt T, Dewangan C, Narani A, Naik G, Balaraman E, Natte K, Jagadeesh RV. Methanol as a Potential Hydrogen Source for Reduction Reactions Enabled by a Commercial Pt/C Catalyst. J Org Chem 2023; 88:2245-2259. [PMID: 36753730 DOI: 10.1021/acs.joc.2c02657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Catalytic reduction reactions using methanol as a transfer hydrogenating agent is gaining significant attention because this simple alcohol is inexpensive and produced on a bulk scale. Herein, we report the catalytic utilization of methanol as a hydrogen source for the reduction of different functional organic compounds such as nitroarenes, olefins, and carbonyl compounds. The key to the success of this transformation is the use of a commercially available Pt/C catalyst, which enabled the transfer hydrogenation of a series of simple and functionalized nitroarenes-to-anilines, alkenes-to-alkanes, and aldehydes-to-alcohols using methanol as both the solvent and hydrogen donor. The practicability of this Pt-based protocol is showcased by demonstrating catalyst recycling and reusability as well as reaction upscaling. In addition, the Pt/C catalytic system was also adaptable for the N-methylation and N-alkylation of anilines via the borrowing hydrogen process. This work provides a simple and flexible approach to prepare a variety of value-added products from readily available methanol, Pt/C, and other starting materials.
Collapse
Affiliation(s)
- Vishakha Goyal
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Tarun Bhatt
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Chitrarekha Dewangan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Anand Narani
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ganesh Naik
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | | |
Collapse
|
5
|
Padilla R, Ni Z, Mihrin D, Wugt Larsen R, Nielsen M. Catalytic Base‐Free Transfer Hydrogenation of Biomass Derived Furanic Aldehydes with Bioalcohols and PNP Pincer Complexes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Rosa Padilla
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - Zhenwei Ni
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - Dmytro Mihrin
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - René Wugt Larsen
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - Martin Nielsen
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| |
Collapse
|
6
|
Xia Y, Wang S, Miao R, Liao J, Ouyang L, Luo R. Synthesis of N-alkoxy amines and hydroxylamines via the iridium-catalyzed transfer hydrogenation of oximes. Org Biomol Chem 2022; 20:6394-6399. [PMID: 35866589 DOI: 10.1039/d2ob01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic iridium (Ir) complexes were found to catalyze the transfer hydrogenation of oximes to access N-alkoxy amines and hydroxylamines, and the reaction was accelerated by trifluoroacetic acid. The practical application of this protocol was demonstrated by a gram-scale transformation and two-step synthesis of the fungicide furmecyclox (BAS 389F) in overall yields of 92 and 85%, respectively. An asymmetric protocol using chiral Ir complexes to afford chiral N-alkoxy amines was demonstrated, but the low yields/ee obtained indicated that further development was required.
Collapse
Affiliation(s)
- Yanping Xia
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Sen Wang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Rui Miao
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Jianhua Liao
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China.,School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Renshi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China. .,College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
7
|
González-Lainez M, Jiménez MV, Azpiroz R, Passarelli V, Modrego FJ, Pérez-Torrente JJ. N-Methylation of Amines with Methanol Catalyzed by Iridium(I) Complexes Bearing an N,O-Functionalized NHC Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel González-Lainez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Ramón Azpiroz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - F. Javier Modrego
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Zhu L, Ye S, Wang J, Zhu J, He G, Liu X. Supported Iridium Catalyst for Clean Transfer Hydrogenation of Aldehydes and Ketones using Methanol as Hydrogen Source. ChemCatChem 2022. [DOI: 10.1002/cctc.202101794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Longfei Zhu
- Nanjing Tech University School of Chemistry and Molecular Engineering CHINA
| | - Sen Ye
- The University of Hong Kong Morningside Laboratory for Chemical Biology and Department of Chemistry CHINA
| | - Jing Wang
- Nanjing Tech University School of Chemistry and Molecular Engineering CHINA
| | - Jiazheng Zhu
- Nanjing Tech University School of Chemistry and Molecular Engineering CHINA
| | - Guangke He
- Nanjing Tech University School of Chemistry and Molecular Engineering CHINA
| | - Xiang Liu
- Nanjing Tech University School of Chemistry and Molecular Engineering NO.30 Puzhu Road 211816 Nanjing CHINA
| |
Collapse
|
9
|
Catalytic δ-hydroxyalkynone rearrangement in the stereoselective total synthesis of centrolobine, engelheptanoxides A and C and analogues. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Chen Z, Kacmaz A, Xiao J. Recent Development in the Synthesis and Catalytic Application of Iridacycles. CHEM REC 2021; 21:1506-1534. [PMID: 33939250 DOI: 10.1002/tcr.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Cyclometallated complexes are well-known and have found many applications. This article provides a short review on the progress made in the synthesis and application to catalysis of cyclometallated half-sandwich Cp*Ir(III) complexes (Cp*: pentamethylcyclopentadienyl) since 2017. Covered in the review are iridacycles featuring conventional C,N chelates and less common metallocene and carbene-derived C,N and C,C ligands. This is followed by an overview of the studies of their applications in catalysis ranging from asymmetric hydrogenation, transfer hydrogenation, hydrosilylation to dehydrogenation.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Aysecik Kacmaz
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.,Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpasa, Avcilar, Istanbul, 34320, Turkey
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
11
|
Sarki N, Goyal V, Tyagi NK, Puttaswamy, Narani A, Ray A, Natte K. Simple RuCl
3
‐catalyzed
N
‐Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem 2021. [DOI: 10.1002/cctc.202001937] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Naina Sarki
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| | - Vishakha Goyal
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| | - Nitin Kumar Tyagi
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
| | - Puttaswamy
- Department of Chemistry Bangalore University Jnana Bharathi Campus Bangalore 560056 India
| | - Anand Narani
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- BioFuels Division CSIR-Indian Institute of Petroleum (CSIR-IIP) Haridwar Road Mohkampur Dehradun 248 005 India
| | - Anjan Ray
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Analytical Sciences Division CSIR-Indian Institute of Petroleum (CSIR-IIP) Haridwar Road Mohkampur Dehradun 248 005 India
| | - Kishore Natte
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
12
|
Quinlivan PJ, Loo A, Shlian DG, Martinez J, Parkin G. N-Heterocyclic Carbene Complexes of Nickel, Palladium, and Iridium Derived from Nitron: Synthesis, Structures, and Catalytic Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick J. Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Aaron Loo
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Daniel G. Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Joan Martinez
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|