1
|
Anyim R, Li S, Armstrong D, Spathis R, James GD, Little MA, Wander K. Predictors of milk cortisol in North American women. Am J Hum Biol 2024; 36:e23985. [PMID: 37712627 DOI: 10.1002/ajhb.23985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES Human milk content varies across mother-child dyads, environments, and populations. Among the hormones in milk is cortisol, a glucocorticoid; its impact on the breastfeeding child is unknown. Milk cortisol may constitute a signal to the child's developing physiology which can shape characteristics (e.g., growth, temperament) to prevailing environmental conditions. This exploratory study evaluated the maternal, breastfeeding, and infant characteristics associated with milk cortisol. METHODS We evaluated archived milk specimens for cortisol using enzyme immunoassay and employed an information-theoretic approach to assess associations between milk cortisol and participant characteristics with linear regression modeling. Because we employed secondary data, information for some variables likely to impact milk cortisol variation (e.g., time of day, socioeconomic status, maternal or infant body mass index, milk energy density) was unavailable. RESULTS Participants were 48 lactating mothers from upstate New York, aged 21-40 years. Milk cortisol ranged from 0.098 to 1.007 μg/dL. Child age ranged from 1 to 26 months. In linear regression employing best fit modeling criteria, milk cortisol increased with child age (B: 0.069; p: .000; a 7.1% increase in milk cortisol for each month of child age), while child symptoms of illness (B: -0.398; p: .057; a 33% decrease) and consumption of complementary foods (B: -.525; p: .020; a 41% decrease) were associated with lower milk cortisol. CONCLUSIONS We speculate that increasing milk cortisol with child age plays a role in signaling development (e.g., as increasing independence increases risk for injury and other negative health outcomes), independent of the maternal stressors we could capture.
Collapse
Affiliation(s)
- Rachael Anyim
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Shanita Li
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Daniel Armstrong
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Rita Spathis
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Gary D James
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Michael A Little
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Katherine Wander
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| |
Collapse
|
2
|
Pittet F, Hinde K. Meager Milk: Lasting Consequences for Adult Daughters of Primiparous Mothers Among Rhesus Macaques (Macaca mulatta). Integr Comp Biol 2023; 63:569-584. [PMID: 37170073 PMCID: PMC10503474 DOI: 10.1093/icb/icad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Among mammals, primipara who initiate reproduction before full maturity can be constrained in their maternal investment, both due to fewer somatic resources and tradeoffs between their own continued development and reproductive effort. Primipara are particularly limited in their capacity to synthesize milk during lactation, the costliest aspect of reproduction for most mammals, especially primates due to long periods of postnatal development. Due to reduced milk transfer, Firstborns may be at elevated risk for long-term consequences of deficits in early life endowment from their primiparous mothers. Here we investigated mass, growth, stature, and lactation performance among N = 273 adult daughters across N = 335 reproductions, who were their own mother's Firstborn or Laterborn progeny, among rhesus macaques (Macaca mulatta) at the California National Primate Research Center. We further explored mass during infancy of the offspring of Firstborn and Laterborn mothers. Firstborns had accelerated growth during infancy, but had slowed growth during juvenility, compared to Laterborns. Although both Firstborns and Laterborns were the same age at reproductive debut, Firstborns had lower body mass, an effect that persisted throughout the reproductive career. Available milk energy, the product of milk energetic density and milk yield, was on average 16% lower for Firstborns compared to Laterborns, a difference that was only partially mediated by their lower mass. Despite differences in their mothers' energy provision through milk, the mass of infants of Firstborn and Laterborn mothers did not differ at peak lactation, suggesting that infants of Firstborns devote a higher proportion of milk energy to growth than infants of Laterborns. To date few studies have explored how early life conditions shape capacities to synthesize milk and milk composition. Our findings contribute new information among primates on how early life maternal endowments are associated with persistent effects long after the period of maternal dependence well into reproductive maturity.
Collapse
Affiliation(s)
- Florent Pittet
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Neville MC, Demerath EW, Hahn-Holbrook J, Hovey RC, Martin-Carli J, McGuire MA, Newton ER, Rasmussen KM, Rudolph MC, Raiten DJ. Parental factors that impact the ecology of human mammary development, milk secretion, and milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 1. Am J Clin Nutr 2023; 117 Suppl 1:S11-S27. [PMID: 37173058 PMCID: PMC10232333 DOI: 10.1016/j.ajcnut.2022.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/15/2023] Open
Abstract
The goal of Working Group 1 in the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to outline factors influencing biological processes governing human milk secretion and to evaluate our current knowledge of these processes. Many factors regulate mammary gland development in utero, during puberty, in pregnancy, through secretory activation, and at weaning. These factors include breast anatomy, breast vasculature, diet, and the lactating parent's hormonal milieu including estrogen, progesterone, placental lactogen, cortisol, prolactin, and growth hormone. We examine the effects of time of day and postpartum interval on milk secretion, along with the role and mechanisms of lactating parent-infant interactions on milk secretion and bonding, with particular attention to the actions of oxytocin on the mammary gland and the pleasure systems in the brain. We then consider the potential effects of clinical conditions including infection, pre-eclampsia, preterm birth, cardiovascular health, inflammatory states, mastitis, and particularly, gestational diabetes and obesity. Although we know a great deal about the transporter systems by which zinc and calcium pass from the blood stream into milk, the interactions and cellular localization of transporters that carry substrates such as glucose, amino acids, copper, and the many other trace metals present in human milk across plasma and intracellular membranes require more research. We pose the question of how cultured mammary alveolar cells and animal models can help answer lingering questions about the mechanisms and regulation of human milk secretion. We raise questions about the role of the lactating parent and the infant microbiome and the immune system during breast development, secretion of immune molecules into milk, and protection of the breast from pathogens. Finally, we consider the effect of medications, recreational and illicit drugs, pesticides, and endocrine-disrupting chemicals on milk secretion and composition, emphasizing that this area needs much more research attention.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO, USA.
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer Hahn-Holbrook
- Department of Psychological Sciences, University of California Merced, Merced, CA, United States
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Jayne Martin-Carli
- Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Mark A McGuire
- Idaho Agricultural Experiment Station, University of Idaho, Moscow, ID, United States
| | - Edward R Newton
- Department of Obstetrics and Gynecology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kathleen M Rasmussen
- Nancy Schlegel Meinig Professor of Maternal and Child Nutrition, Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Michael C Rudolph
- The University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Eisha S, Joarder I, Wijenayake S, McGowan PO. Non-nutritive bioactive components in maternal milk and offspring development: a scoping review. J Dev Orig Health Dis 2022; 13:665-673. [PMID: 35387707 DOI: 10.1017/s2040174422000149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lactation is a critical time in mammalian development, where maternal factors shape offspring outcomes. In this scoping review, we discuss current literature concerning maternal factors that influence lactation biology and highlight important associations between changes in milk composition and offspring outcomes. Specifically, we explore maternal nutritional, psychosocial, and environmental exposures that influence non-nutritive bioactive components in milk and their links to offspring growth, development, metabolic, and behavioral outcomes. A comprehensive literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. Predetermined eligibility criteria were used to analyze 3,275 papers, and the final review included 40 primary research articles. Outcomes of this review identify maternal obesity to be a leading maternal factor influencing the non-nutritive bioactive composition of milk with notable links to offspring outcomes. Offspring growth and development are the most common modes of programming associated with changes in non-nutritive milk composition due to maternal factors in early life. In addition to discussing studies investigating these key associations, we also identify knowledge gaps in the current literature and suggest opportunities and considerations for future studies.
Collapse
Affiliation(s)
- Shafinaz Eisha
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ishraq Joarder
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sanoji Wijenayake
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, Richardson College for the Environment and Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| | - Patrick O McGowan
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Urlacher SS, Kim EY, Luan T, Young LJ, Adjetey B. Minimally invasive biomarkers in human and non-human primate evolutionary biology: Tools for understanding variation and adaptation. Am J Hum Biol 2022; 34:e23811. [PMID: 36205445 PMCID: PMC9787651 DOI: 10.1002/ajhb.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The use of minimally invasive biomarkers (MIBs - physiological biomarkers obtained from minimally invasive sample types) has expanded rapidly in science and medicine over the past several decades. The MIB approach is a methodological strength in the field of human and non-human primate evolutionary biology (HEB). Among humans and our closest relatives, MIBs provide unique opportunities to document phenotypic variation and to operationalize evolutionary hypotheses. AIMS This paper overviews the use of MIBs in HEB. Our objectives are to (1) highlight key research topics which successfully implement MIBs, (2) identify promising yet under-investigated areas of MIB application, and (3) discuss current challenges in MIB research, with suggestions for advancing the field. DISCUSSION AND CONCLUSIONS A range of MIBs are used to investigate focal topics in HEB, including energetics and life history variation/evolution, developmental plasticity, and social status and dominance relationships. Nonetheless, we identify gaps in existing MIB research on traits such as physical growth and gut function that are central to the field. Several challenges remain for HEB research using MIBs, including the need for additional biomarkers and methods of assessment, robust validations, and approaches that are standardized across labs and research groups. Importantly, researchers must provide better support for adaptation and fitness effects in hypothesis testing (e.g., by obtaining complementary measures of energy expenditure, demonstrating redundancy of function, and performing lifetime/longitudinal analyses). We point to continued progress in the use of MIBs in HEB to better understand the past, present, and future of humans and our closest primate relatives.
Collapse
Affiliation(s)
- Samuel S. Urlacher
- Department of AnthropologyBaylor UniversityWacoTexasUSA
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Child and Brain Development ProgramCIFARTorontoOntarioCanada
| | - Elizabeth Y. Kim
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Department of BiologyBaylor UniversityWacoTexasUSA
| | - Tiffany Luan
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Lauren J. Young
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Brian Adjetey
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| |
Collapse
|
6
|
Cleland TP, Power ML. Variation in Milk Proteins Across Lactation in Pongo pygmaeus and Gorilla gorilla. J Proteome Res 2022; 21:2647-2654. [DOI: 10.1021/acs.jproteome.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy P. Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland 20746, United States
| | - Michael L. Power
- Center for Species Survival, Nutrition Laboratory, Smithsonian National Zoo and Conservation Biology Institute, District of Columbia 20008, Washington, D.C., United States
| |
Collapse
|
7
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Love SA, Haslin E, Bellardie M, Andersson F, Barantin L, Filipiak I, Adriaensen H, Fazekas CL, Leroy L, Zelena D, Morisse M, Elleboudt F, Moussu C, Lévy F, Nowak R, Chaillou E. Maternal deprivation and milk replacement affect the integrity of gray and white matter in the developing lamb brain. Dev Neurobiol 2022; 82:214-232. [DOI: 10.1002/dneu.22869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Scott A. Love
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | | | | | | | | | - Csilla L. Fazekas
- Institute of Experimental Medicine Budapest Hungary
- János Szentágothai Doctoral School of Neurosciences Semmelweis University Budapest Hungary
| | - Laurène Leroy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Dóra Zelena
- Institute of Experimental Medicine Budapest Hungary
- Centre for Neuroscience, Szentágothai Research Centre Institute of Physiology Medical School University of Pécs Pécs Hungary
| | - Mélody Morisse
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | - Frédéric Lévy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Raymond Nowak
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | |
Collapse
|
9
|
Blomquist GE, Hinde K, Capitanio JP. Inheritance of hormonal stress response and temperament in infant rhesus macaques (Macaca Mulatta): Nonadditive and sex-specific effects. Behav Neurosci 2022; 136:61-71. [PMID: 34516165 PMCID: PMC9373718 DOI: 10.1037/bne0000493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Early life interindividual variation in hypothalamic-pituitary-adrenal (HPA) reactivity to stress is predictive of later life psychological and physical well-being, including the development of many pathological syndromes that are often sex-biased. A complex and interactive set of environmental and genetic causes for such variation has been implicated by previous studies, though little attention has been paid to nonadditive effects (e.g. dominance, X-linked) or sex-specific genetic effects. METHOD We used a large pedigreed sample of captive 3-4 months old infant rhesus macaques (N = 2,661, 54% female) to fit univariate and multivariate linear mixed quantitative genetic models for four longitudinal blood cortisol samples and three reliable ratings of infant temperament (nervousness, gentleness, confidence) during a mother-infant separation protocol. RESULTS Each trait had a moderate narrow-sense heritability (h², 0.26-0.46), but dominance effects caused the first two cortisol samples to have much larger broad-sense heritabilities (H², 0.57 and 0.77). We found no evidence for X-linked variance or common maternal environment variance. There was a sex difference in heritability of the first cortisol sample (hf² < hm²), suggesting differing genetic architecture of perception of maternal separation and relocation during infancy. Otherwise, genetic covariance matrices for the sexes were very similar. Genetic correlations between cortisol levels and temperament were weak (< |0.4|) but stronger than residual or phenotypic correlations. CONCLUSIONS HPA reactivity and temperament had a primarily additive genetic basis in infant macaques, but there were important complexities to the genetic architecture of including genetic dominance and sex differences in heritability at this early life stage. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Gregory E. Blomquist
- Corresponding author contact information: 112 Swallow Hall, Department of Anthropology, University of Missouri, Columbia, MO 65211, 573-882-4731,
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University
| | - John P. Capitanio
- California National Primate Research Center and Department of Psychology, University of California, Davis
| |
Collapse
|
10
|
Malalaharivony HS, Kappeler PM, Fichtel C. Infant Development and Maternal Care in Wild Verreaux’s Sifaka (Propithecus verreauxi). INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
12
|
Quinn EA. Centering human milk composition as normal human biological variation. Am J Hum Biol 2021; 33:e23564. [DOI: 10.1002/ajhb.23564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elizabeth A. Quinn
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri USA
| |
Collapse
|
13
|
Wells JCK. Developmental plasticity as adaptation: adjusting to the external environment under the imprint of maternal capital. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180122. [PMID: 30966888 DOI: 10.1098/rstb.2018.0122] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plasticity is assumed to enable beneficial adjustment to the environment. In this context, developmental plasticity is generally approached within a two-stage framework, whereby adjustments to ecological cues in stage 1 are exposed to selection in stage 2. This conceptual approach may have limitations, because in species providing parental investment, particularly placental mammals such as humans, initial adjustments are not to the environment directly, but rather to the niche generated by parental phenotype (in mammals, primarily that of the mother). Only as maternal investment is withdrawn is the developing organism exposed directly to prevailing ecological conditions. A three-stage model may therefore be preferable, where developmental trajectory first adjusts to maternal investment, then to the external environment. Each offspring experiences a trade-off, benefitting from maternal investment during the most vulnerable stages of development, at the cost of exposure to investment strategies that maximize maternal fitness. Maternal life-history trade-offs impact the magnitude and schedule of her investment in her offspring, generating lifelong effects on traits related to health outcomes. Understanding the imprint of maternal capital on offspring is particularly important in species demonstrating social hierarchy. Interventions targeting maternal capital might offer new opportunities to improve health outcomes of both mother and offspring. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health , 30 Guilford Street, London WC 1N 1EH , UK
| |
Collapse
|
14
|
Kuziez D, Harkey J, Burack S, Borja J, Quinn EA. Maternal birth weight is associated with milk epidermal growth factor in Filipino women. Am J Hum Biol 2020; 32:e23403. [DOI: 10.1002/ajhb.23403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Duaa Kuziez
- Saint Louis University School of Medicine, Saint Louis University Saint Louis Missouri
| | - Jamie Harkey
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri
| | - Sarah Burack
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri
| | - Judith Borja
- Office of Population Studies University of San Carlos Cebu Philippines
| | - Elizabeth A. Quinn
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri
| |
Collapse
|
15
|
Samuni L, Tkaczynski P, Deschner T, Löhrrich T, Wittig RM, Crockford C. Maternal effects on offspring growth indicate post-weaning juvenile dependence in chimpanzees ( Pan troglodytes verus). Front Zool 2020; 17:1. [PMID: 31911809 PMCID: PMC6945487 DOI: 10.1186/s12983-019-0343-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In animals with altricial offspring, most growth occurs after birth and may be optimized by post-natal maternal care. Maternal effects on growth may be influenced by individual characteristics of the mothers, such as social status, individual investment strategies and the length of association with offspring. The prolonged juvenile dependence seen in humans is a distinctive life history adaptation, which may have evolved to facilitate sustained somatic and brain growth.In chimpanzees, offspring are typically weaned at approximately 4 years old, yet immature individuals continue to associate with their mothers for up to 10 years beyond weaning. Whether this lengthy association or the individual characteristics of mothers influences growth patterns in this species is not clear.The relationship between urinary creatinine and specific gravity is an established non-invasive measure of muscle mass in humans and chimpanzees. We analysed the urinary creatinine and specific gravity of 1318 urine samples from 70 wild chimpanzees from the Taï Forest, Ivory Coast aged 4 to 15 years. RESULTS We showed a clear increase in urinary creatinine levels with age in both males and females, replicating established growth curves in this species and reaffirming this measure as a reliable proxy for lean body mass. Comparing those who experience maternal loss (orphans) with non-orphan chimpanzees, maternal presence beyond weaning age and into late juvenility positively influenced offspring muscle mass throughout ontogeny such that orphans had significantly less muscle mass than age-matched non-orphans. In age-matched offspring with mothers, those with high-ranking mothers had greater muscle mass. Accounting for variation in muscle mass attributable to maternal presence, we found no effect of maternal investment (length of inter birth interval, from own birth to birth of following sibling) on offspring muscle mass. CONCLUSION Chimpanzee mothers have an extended and multi-faceted influence on offspring phenotypes. Our results suggest that maternal investment extends beyond lactation and into early adulthood and has clear benefits to offspring physical development. Therefore, prolonged juvenile dependence, although unique in its form in human societies, may be a trait with deeper evolutionary origins.
Collapse
Affiliation(s)
- Liran Samuni
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
- Department of Human Evolutionary Biology, Harvard University, Cambridge, UK
| | - Patrick Tkaczynski
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Therese Löhrrich
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, Bangui, Central African Republic
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Roman M. Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Catherine Crockford
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| |
Collapse
|
16
|
Gardner H, Kent JC, Lai CT, Geddes DT. Comparison of maternal milk ejection characteristics during pumping using infant-derived and 2-phase vacuum patterns. Int Breastfeed J 2019; 14:47. [PMID: 31708998 PMCID: PMC6833300 DOI: 10.1186/s13006-019-0237-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/16/2019] [Indexed: 11/10/2022] Open
Abstract
Background Milk ejection characteristics remain consistent throughout 12 months of lactation in women who expressed breastmilk with an electric breast pump. In addition these characteristics appear to remain constant when women are breastfeeding or pumping suggesting that milk ejection is a robust physiological response. It is not known whether the stimulation of an infant at the breast in the early post partum period influences milk ejection patterns or whether this is a programmed event. However, as more data become available on the mechanisms involved in infant feeding, pumping patterns mimicking the infant more closely may provide enhanced results. The objective of this study was to compare milk ejection characteristics obtained when using a novel infant-derived pumping pattern with an established 2-phase pattern. Methods A convenience sample of ten lactating mothers, 1 to 40 weeks of lactation with normal milk production were recruited in 2015. Each participated in two pumping sessions in which either a 2-phase pattern or infant-derived pattern were randomly assigned. Milk volume and milk ejection characteristics were recorded and the percentage of available milk removed (PAMR) was calculated. Statistical analysis used linear mixed effects modeling to determine any differences between breasts and pump patterns with the consideration of individual variability as a random effect. Results The number of milk ejections and milk ejection characteristics did not differ between patterns. Milk volumes removed were 53.6 ± 28.5 ml (PAMR 58.2 ± 28.4) for the 2-phase pattern and and 54.2 ± 26.3 ml (PAMR 52.2 ± 22.3) for the infant derived pattern. Peak milk flow rates were positively associated with the available milk (p = 0.0003) and PAMR (p = 0.0001), as was the volume of milk removed during each milk ejection (p = 0.001 and p = 0.0001). Conclusion An experimental pumping pattern designed to resemble infant sucking characteristics did not alter milk ejection characteristics or milk removal parameters compared with an established 2-phase pattern. Theses findings provide further evidence that milk ejection is a robust physiological response.
Collapse
Affiliation(s)
- Hazel Gardner
- School of Molecular Sciences, M310, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| | - Jacqueline C Kent
- School of Molecular Sciences, M310, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| | - Ching Tat Lai
- School of Molecular Sciences, M310, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| | - Donna T Geddes
- School of Molecular Sciences, M310, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| |
Collapse
|
17
|
Petrullo L, Hinde K, Lu A. Steroid hormone concentrations in milk predict sex-specific offspring growth in a nonhuman primate. Am J Hum Biol 2019; 31:e23315. [PMID: 31468643 DOI: 10.1002/ajhb.23315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES In humans and other mammals, maternal hormones are transferred to offspring during lactation via milk and may regulate postnatal development, including the pace of early growth. Here, we used a nonhuman primate model to test the hypotheses that milk cortisol and dehydroepiandrosterone-sulfate (DHEAS) concentrations reflect maternal characteristics, and that changes in these hormones across lactation are associated with early postnatal growth rates. METHODS Demographic information, morphometrics, and milk samples were collected from rhesus macaque mothers and their infants at the California National Primate Research Center in Davis, California. Using linear models, we examined the relationship between maternal traits and milk hormone concentrations (N = 104 females) and explored the effect of milk hormones on the rate of offspring growth (N = 72 mother-infant dyads), controlling for available milk energy. RESULTS Contrary to previous studies, we found that milk cortisol concentrations were categorically higher in multiparous females than in primiparous females. However, milk DHEAS concentrations decreased with maternal parity. Neither milk cortisol nor DHEAS were related to maternal rank. Finally, changes in milk hormones predicted offspring growth in a sex-specific and temporal manner: increases in cortisol from peak to late lactation predicted faster female growth, and increases in DHEAS concentrations from early to peak and peak to late lactation predicted faster male growth. CONCLUSIONS Our findings shed light on how hormonal components of milk have sex-specific effects on offspring growth during early postnatal life with varying temporal windows of sensitivity.
Collapse
Affiliation(s)
- Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - Katie Hinde
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona.,School for Human Evolution and Social Change, Arizona State University, Tempe, Arizona.,Brain, Mind, and Behavior Unit, California National Primate Research Center, Davis, California
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
18
|
Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactational programming of glucose homeostasis: a window of opportunity. Reproduction 2018; 156:R23-R42. [PMID: 29752297 PMCID: PMC6668618 DOI: 10.1530/rep-17-0780] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.
Collapse
Affiliation(s)
- Lindsay Ellsworth
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Emma Harman
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | | | - Brigid Gregg
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Karniski C, Krzyszczyk E, Mann J. Senescence impacts reproduction and maternal investment in bottlenose dolphins. Proc Biol Sci 2018; 285:20181123. [PMID: 30051841 PMCID: PMC6083244 DOI: 10.1098/rspb.2018.1123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 01/13/2023] Open
Abstract
Reproductive senescence is evident across many mammalian species. An emerging perspective considers components of reproductive senescence as evolutionarily distinct phenomena: fertility senescence and maternal-effect senescence. While fertility senescence is regarded as the ageing of reproductive physiology, maternal-effect senescence pertains to the declining capacity to provision and rear surviving offspring due to age. Both contribute to reproductive failure in utero making it difficult to differentiate between the two prenatally in the wild. We investigated both components in a long-lived mammal with prolonged maternal care through three parameters: calf survival, interbirth interval (IBI) and lactation period. We provide clear evidence for reproductive senescence in a wild population of bottlenose dolphins (Tursiops aduncus) using 34+ years of longitudinal data on 229 adult females and 562 calves. Calf survival decreased with maternal age, and calves with older mothers had lower survival than predicted by birth order, suggesting maternal-effect senescence. Both lactation period and IBIs increased with maternal age, and IBIs increased regardless of calf mortality, indicating interactions between fertility and maternal-effect senescence. Of calves that survived to weaning, last-born calves weaned later than earlier-born calves, evidence of terminal investment, a mitigating strategy given reduced reproductive value caused by either components of reproductive senescence.
Collapse
Affiliation(s)
- Caitlin Karniski
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Ewa Krzyszczyk
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Janet Mann
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
20
|
Pittet F, Johnson C, Hinde K. Age at reproductive debut: Developmental predictors and consequences for lactation, infant mass, and subsequent reproduction in rhesus macaques (Macaca mulatta). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:457-476. [PMID: 28895116 PMCID: PMC5759967 DOI: 10.1002/ajpa.23286] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The age at which females initiate their reproductive career is a critical life-history parameter with potential consequences on their residual reproductive value and lifetime fitness. The age at reproductive debut may be intimately tied to the somatic capacity of the mother to rear her young, but relatively little is known about the influence of age of first birth on milk synthesis within a broader framework of reproductive scheduling, infant outcomes, and other life-history tradeoffs. MATERIAL AND METHODS Our study investigated the predictors of age at first reproduction among 108 captive rhesus macaque (Macaca mulatta) females, and associations with their milk synthesis at peak lactation, infant mass, and ability to subsequently conceive and reproduce. RESULTS The majority of females reproduced in their fourth year (typical breeders); far fewer initiated their reproductive career one year earlier or one year later (respectively early and late breeders). Early breeders (3-year-old) benefited from highly favorable early life development (better juvenile growth, high dominance rank) to accelerate reproduction, but were impaired in milk synthesis due to lower somatic resources and their own continued growth. Comparatively, late breeders suffered from poor developmental conditions, only partially compensated by their delayed reproduction, and evinced compromised milk synthesis. Typical breeders not only produced higher available milk energy but also had best reproductive performance during the breeding and birth seasons following primiparity. DISCUSSION Here, we refine and extend our understanding of how life-history tradeoffs manifest in the magnitude, sources, and consequences of variation in age of reproductive debut. These findings provide insight into primate reproductive flexibility in the context of constraints and opportunities.
Collapse
Affiliation(s)
- Florent Pittet
- Brain, Mind, and Behavior Unit, California National Primate Research Center
- Center for Evolution and Medicine, Arizona State University
- School for Human Evolution and Social Change, Arizona State University
| | | | - Katie Hinde
- Brain, Mind, and Behavior Unit, California National Primate Research Center
- Center for Evolution and Medicine, Arizona State University
- School for Human Evolution and Social Change, Arizona State University
| |
Collapse
|
21
|
Aguirre-Benítez EL, Porras MG, Parra L, González-Ríos J, Garduño-Torres DF, Albores-García D, Avendaño A, Ávila-Rodríguez MA, Melo AI, Jiménez-Estrada I, Mendoza-Garrido ME, Toriz C, Diaz D, Ibarra-Coronado E, Mendoza-Ángeles K, Hernández-Falcón J. Disruption of behavior and brain metabolism in artificially reared rats. Dev Neurobiol 2017; 77:1413-1429. [DOI: 10.1002/dneu.22548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mercedes G. Porras
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Leticia Parra
- Departamento de Anatomía, Facultad de Medicina; UNAM; México Mexico
| | | | | | | | - Arturo Avendaño
- Unidad Radiofarmacia-Ciclotrón, Facultad de Medicina, UNAM; México Mexico
| | | | - Angel I. Melo
- Centro de Investigación en Reproducción Animal CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62. C.P. Tlaxcala, C.P; Tlaxcala 90000 México
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - Ma. Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - César Toriz
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - Daniel Diaz
- Centro de Ciencias de la Complejidad (C3) UNAM; México México
| | - Elizabeth Ibarra-Coronado
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Karina Mendoza-Ángeles
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Jesús Hernández-Falcón
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| |
Collapse
|
22
|
Badillo-Suárez PA, Rodríguez-Cruz M, Nieves-Morales X. Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity. J Mammary Gland Biol Neoplasia 2017; 22:171-191. [PMID: 28653126 DOI: 10.1007/s10911-017-9382-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity is the most common metabolic disease whose prevalence is increasing worldwide. This condition is considered a serious public health problem due to associated comorbidities such as diabetes mellitus and hypertension. Perinatal morbidity related to obesity does not end with birth; this continues affecting the mother/infant binomial and could negatively impact on metabolism during early infant nutrition. Nutrition in early stages of growth may be essential in the development of obesity in adulthood, supporting the concept of "nutritional programming". For this reason, breastfeeding may play an important role in this programming. Breast milk is the most recommended feeding for the newborn due to the provided benefits such as protection against obesity and diabetes. Health benefits are based on milk components such as bioactive molecules, specifically hormones involved in the regulation of food intake. Identification of these molecules has increased in recent years but its action has not been fully clarified. Hormones such as leptin, insulin, ghrelin, adiponectin, resistin, obestatin and insulin-like growth factor-1 copeptin, apelin, and nesfatin, among others, have been identified in the milk of normal-weight women and may influence the energy balance because they can activate orexigenic or anorexigenic pathways depending on energy requirements and body stores. It is important to emphasize that, although the number of biomolecules identified in milk involved in regulating food intake has increased considerably, there is a lack of studies aimed at elucidating the effect these hormones may have on metabolism and development of the newborn. Therefore, we present a state-of-the-art review regarding bioactive compounds such as hormones secreted in breast milk and their possible impact on nutritional programming in the infant, analyzing their functions in appetite regulation.
Collapse
Affiliation(s)
- Pilar Amellali Badillo-Suárez
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc No. 330, Col. Doctores, Deleg. Cuauhtémoc, 06725, México, DF, México
| | - Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc No. 330, Col. Doctores, Deleg. Cuauhtémoc, 06725, México, DF, México.
| | - Xóchitl Nieves-Morales
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc No. 330, Col. Doctores, Deleg. Cuauhtémoc, 06725, México, DF, México
| |
Collapse
|
23
|
Bagnell CA, Ho TY, George AF, Wiley AA, Miller DJ, Bartol FF. Maternal lactocrine programming of porcine reproductive tract development. Mol Reprod Dev 2017; 84:957-968. [PMID: 28407326 DOI: 10.1002/mrd.22815] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
Abstract
The lactocrine hypothesis for maternal programming of female reproductive tract development is based on the idea that non-nutritive, milk-borne bioactive factors (MbFs), delivered from mother to offspring during nursing, play a role in determining the trajectory of development with long-term consequences in the adult. Porcine female reproductive tract development is completed postnatally, and the period during which maternal support of neonatal growth derives exclusively from colostrum/milk defines a window of opportunity for lactocrine programming of reproductive tissues. Beyond nutrition, milk serves as a delivery system for a variety of bioactive factors. Porcine relaxin is a prototypical MbF. Present in colostrum at highest concentrations at birth, relaxin is transmitted into the circulation of nursing piglets where it can act on Relaxin receptors found in neonatal female reproductive tract tissues. This process is facilitated by the physiology of the maternal-neonatal dyad and the fact that the neonatal gastrointestinal tract is open to absorb macromolecules for a period of time postnatally. Age at first nursing and duration of nursing from birth are also important for porcine female reproductive tract development. These parameters affect both the quality and quantity of colostrum consumed. Disruption of lactocrine signaling by feeding milk replacer from birth altered porcine uterine, cervical, and testicular development by postnatal Day 2. Moreover, insufficient colostrum consumption in nursing piglets can impair uterine capacity to support viable litters of optimal size in adulthood. In the pig, lactocrine signaling supports neonatal organizational events associated with normal reproductive development and may program adult uterine capacity.
Collapse
Affiliation(s)
- Carol A Bagnell
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey
| | - Teh-Yuan Ho
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey
| | - Ashley F George
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey
| | - Anne A Wiley
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama
| | - Dori J Miller
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama
| |
Collapse
|
24
|
Dettmer AM, Murphy AM, Guitarra D, Slonecker E, Suomi SJ, Rosenberg KL, Novak MA, Meyer JS, Hinde K. Cortisol in Neonatal Mother's Milk Predicts Later Infant Social and Cognitive Functioning in Rhesus Monkeys. Child Dev 2017; 89:525-538. [PMID: 28369689 DOI: 10.1111/cdev.12783] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Milk provides not only the building blocks for somatic development but also the hormonal signals that contribute to the biopsychological organization of the infant. Among mammals, glucocorticoids (GCs) in mother's milk have been associated with infant temperament. This study extended prior work to investigate rhesus monkey (Macaca mulatta) mother-infant dyads (N = 34) from birth through 8 months postpartum. Regression analysis revealed that cortisol concentrations in milk during the neonatal period predicted impulsivity on a cognitive task, but not global social behaviors, months later. During this time period, sex-differentiated social behavior emerged. For female infants, milk cortisol concentrations predicted total frequency of play. Collectively, these findings support and extend the "lactational programming" hypothesis on the impact of maternal-origin hormones ingested via milk.
Collapse
Affiliation(s)
- Amanda M Dettmer
- Eunice Kennedy Shriver National Institute of Child Health & Human Development
| | - Ashley M Murphy
- Eunice Kennedy Shriver National Institute of Child Health & Human Development
| | - Denisse Guitarra
- Eunice Kennedy Shriver National Institute of Child Health & Human Development
| | - Emily Slonecker
- Eunice Kennedy Shriver National Institute of Child Health & Human Development
| | - Stephen J Suomi
- Eunice Kennedy Shriver National Institute of Child Health & Human Development
| | | | | | | | | |
Collapse
|
25
|
Frihauf JB, Fekete ÉM, Nagy TR, Levin BE, Zorrilla EP. Maternal Western diet increases adiposity even in male offspring of obesity-resistant rat dams: early endocrine risk markers. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1045-R1059. [PMID: 27654396 PMCID: PMC5256983 DOI: 10.1152/ajpregu.00023.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
Abstract
Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain.
Collapse
Affiliation(s)
- Jennifer B Frihauf
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Éva M Fekete
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Barry E Levin
- Neurology Service, VA Medical Center, East Orange, New Jersey; and
- Department of Neurology, Rutgers, New Jersey Medical School, Newark, New Jersey
| | - Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California;
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
26
|
Power ML, Schulkin J, Drought H, Milligan LA, Murtough KL, Bernstein RM. Patterns of milk macronutrients and bioactive molecules across lactation in a western lowland gorilla (Gorilla gorilla) and a Sumatran orangutan (Pongo abelii). Am J Primatol 2016; 79:1-11. [DOI: 10.1002/ajp.22609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Michael L. Power
- Smithsonian Conservation Biology Institute, Conservation Ecology Center; Nutrition; Laboratory, National Zoological Park; Washington District of Columbia
- Research Department; American College of Obstetricians and Gynecologists; Washington District of Columbia
| | - Jay Schulkin
- Research Department; American College of Obstetricians and Gynecologists; Washington District of Columbia
- Department of Neuroscience; Georgetown University; Washington District of Columbia
| | - Heather Drought
- Department of Anthropology, The George Washington University; Washington District of Columbia
| | - Lauren A. Milligan
- Smithsonian Conservation Biology Institute, Conservation Ecology Center; Nutrition; Laboratory, National Zoological Park; Washington District of Columbia
- Anthropology Department, Mira Costa College; Oceanside California
| | - Katie L. Murtough
- Smithsonian Conservation Biology Institute, Conservation Ecology Center; Nutrition; Laboratory, National Zoological Park; Washington District of Columbia
- College of Computer, Mathematical, and Natural Sciences; University of Maryland; College Park Maryland
| | - Robin M. Bernstein
- Department of Anthropology; University of Colorado Boulder; Boulder Colorado
- Health and Society Program; Institute of Behavioral Science, University of Colorado Boulder; Boulder Colorado
| |
Collapse
|