1
|
Weary TE, Mehta KPM, Goldberg TL. Novel Gammapapillomavirus type in the nasal cavity of a wild red colobus (Piliocolobus tephrosceles). Access Microbiol 2024; 6:000866.v3. [PMID: 39165252 PMCID: PMC11334581 DOI: 10.1099/acmi.0.000866.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Papillomaviruses (PVs) are double-stranded, circular, epitheliotropic DNA viruses causing benign warts (papillomas) or inducing dysplasia that can progress to cancer. Although they have been identified in all vertebrate taxa, most classified types are human PVs (HPVs); relatively little is known about PVs in other species. Here we characterize a novel Gammapapillomavirus type, PtepPV1, from a nasal swab of a wild red colobus (Piliocolobus tephrosceles) in Kibale National Park, Uganda. The virus has a genome of 6576 bases, encoding the seven canonical early (E) ORFs (E6, E7, E1, E2, E4, E1^E4 and E8^E2) and two late (L) ORFs (L1 and L2) of the gammapapillomaviruses, and is 81.0% similar to HPV-mSK_118, detected in a cutaneous wart from an immunocompromised human patient, in the L1 gene at the amino acid level. Alphapapillomaviruses (genus Alphapapillomavirus) cause anogenital carcinomas such as cervical cancer and have been described previously in several nonhuman primates. However, the first gammapapillomavirus (genus Gammapapillomavirus), which cause transient cutaneous infections, was not described until 2019 in a healthy rhesus macaque (Macaca mulatta) genital swab. The new virus from red colobus, PtepPV1, has many genomic features encoded by high-risk oncogenic PVs, such as the E7 gene LXSXE and CXXC motifs, suggesting potential for pRb and zinc-finger binding, respectively. To our knowledge, PtepPV1 is also the first reported nonhuman primate PV found in the nasal cavity. PtepPV1 expands the known host range, geographical distribution, tissue tropism and biological characteristics of nonhuman primate PVs.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kavi P. M. Mehta
- Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| |
Collapse
|
2
|
Skinner MF, Delezene LK, Skinner MM, Mahoney P. Linear enamel hypoplasia in Homo naledi reappraised in light of new Retzius periodicities. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24927. [PMID: 38433613 DOI: 10.1002/ajpa.24927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Among low-latitude apes, developmental defects of enamel often recur twice yearly, linkable to environmental cycles. Surprisingly, teeth of Homo naledi from Rising Star in South Africa (241-335 kya), a higher latitude site with today a single rainy season, also exhibit bimodally distributed hypoplastic enamel defects, but with uncertain timing and etiology. Newly determined Retzius periodicities for enamel formation in this taxon enable a reconstruction of the temporal patterning of childhood stress. METHODS Using high resolution casts of 31 isolated anterior teeth from H. naledi, 82 enamel defects (linear enamel hypoplasia [LEH]) were identified. Seventeen teeth are assigned to three individuals. Perikymata in the occlusal wall of enamel furrows and between the onsets of successive LEH were visualized with scanning electron microscopy and counted. Defects were measured with an optical scanner. Conversion of perikymata counts to estimates of LEH duration and inter-LEH interval draws upon Retzius periodicities of 9 and 11 days. RESULTS Anterior teeth record more than a year of developmental distress, expressed as two asymmetric intervals centered on 4.5 and 7.5 months bounded by three LEH. Durations, also, show bimodal distributions, lasting 3 or 12 weeks. Short duration LEH are more severe than long duration. Relative incisor/canine rates of formation are indistinguishable from modern humans. DISCUSSION We invoke a disease and dearth model, with short episodes of distress reflecting onset of disease in young infants, lasting about 3 weeks, followed by a season of undernutrition, possibly intensified by secondary plant compounds, spanning about 12 weeks, inferably coincident with austral winter.
Collapse
Affiliation(s)
- Mark Fretson Skinner
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lucas Kyle Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| |
Collapse
|
3
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Otali E, Emery Thompson M, Ross E, Gern JE, Goldberg TL. Common cold viruses circulating in children threaten wild chimpanzees through asymptomatic adult carriers. Sci Rep 2024; 14:10431. [PMID: 38714841 PMCID: PMC11076286 DOI: 10.1038/s41598-024-61236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.
Collapse
Affiliation(s)
- Taylor E Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA
| | - Tressa Pappas
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Emily Otali
- The Kasiisi Project, Fort Portal, Uganda
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Melissa Emery Thompson
- Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | | | - James E Gern
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA.
| |
Collapse
|
4
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Ross E, Gern JE, Goldberg TL. High frequencies of nonviral colds and respiratory bacteria colonization among children in rural Western Uganda. Front Pediatr 2024; 12:1379131. [PMID: 38756971 PMCID: PMC11096560 DOI: 10.3389/fped.2024.1379131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Respiratory illness is the most common childhood disease globally, especially in developing countries. Previous studies have detected viruses in approximately 70-80% of respiratory illnesses. Methods In a prospective cohort study of 234 young children (ages 3-11 years) and 30 adults (ages 22-51 years) in rural Western Uganda sampled monthly from May 2019 to August 2021, only 24.2% of nasopharyngeal swabs collected during symptomatic disease had viruses detectable by multiplex PCR diagnostics and metagenomic sequencing. In the remaining 75.8% of swabs from symptomatic participants, we measured detection rates of respiratory bacteria Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae by quantitative PCR. Results 100% of children tested positive for at least one bacterial species. Detection rates were 87.2%, 96.8%, and 77.6% in children and 10.0%, 36.7%, and 13.3% for adults for H. influenzae, M. catarrhalis, and S. pneumoniae, respectively. In children, 20.8% and 70.4% were coinfected with two and three pathogens, respectively, and in adults 6.7% were coinfected with three pathogens but none were coinfected with two. Detection of any of the three pathogens was not associated with season or respiratory symptoms severity, although parsing detection status by symptoms was challenged by children experiencing symptoms in 80.3% of monthly samplings, whereas adults only reported symptoms 26.6% of the time. Pathobiont colonization in children in Western Uganda was significantly more frequent than in children living in high-income countries, including in a study of age-matched US children that utilized identical diagnostic methods. Detection rates were, however, comparable to rates in children living in other Sub-Saharan African countries. Discussion Overall, our results demonstrate that nonviral colds contribute significantly to respiratory disease burden among children in rural Uganda and that high rates of respiratory pathobiont colonization may play a role. These conclusions have implications for respiratory health interventions in the area, such as increasing childhood immunization rates and decreasing air pollutant exposure.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Tressa Pappas
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | | | | | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
5
|
Wood BM, Negrey JD, Brown JL, Deschner T, Thompson ME, Gunter S, Mitani JC, Watts DP, Langergraber KE. Demographic and hormonal evidence for menopause in wild chimpanzees. Science 2023; 382:eadd5473. [PMID: 37883540 PMCID: PMC10645439 DOI: 10.1126/science.add5473] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
Among mammals, post-reproductive life spans are currently documented only in humans and a few species of toothed whales. Here we show that a post-reproductive life span exists among wild chimpanzees in the Ngogo community of Kibale National Park, Uganda. Post-reproductive representation was 0.195, indicating that a female who reached adulthood could expect to live about one-fifth of her adult life in a post-reproductive state, around half as long as human hunter-gatherers. Post-reproductive females exhibited hormonal signatures of menopause, including sharply increasing gonadotropins after age 50. We discuss whether post-reproductive life spans in wild chimpanzees occur only rarely, as a short-term response to favorable ecological conditions, or instead are an evolved species-typical trait as well as the implications of these alternatives for our understanding of the evolution of post-reproductive life spans.
Collapse
Affiliation(s)
- Brian M. Wood
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Behavior, Ecology and Culture, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
| | - Jacob D. Negrey
- School of Anthropology, University of Arizona, Tucson, AZ, USA
| | - Janine L. Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | | | - Sholly Gunter
- Biology Department, McLennan Community College, Waco, TX, USA
- Department of Anthropology, Yale University, New Haven, CT, USA
| | - John C. Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - David P. Watts
- Department of Anthropology, Yale University, New Haven, CT, USA
| | - Kevin E. Langergraber
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
6
|
Rosenbaum S, Kuzawa CW. The promise of great apes as model organisms for understanding the downstream consequences of early life experiences. Neurosci Biobehav Rev 2023; 152:105240. [PMID: 37211151 DOI: 10.1016/j.neubiorev.2023.105240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Early life experiences have a significant influence on adult health and aging processes in humans. Despite widespread interest in the evolutionary roots of this phenomenon, very little research on this topic has been conducted in humans' closest living relatives, the great apes. The longitudinal data sets that are now available on wild and captive great ape populations hold great promise to clarify the nature, evolutionary function, and mechanisms underlying these connections in species which share key human life history characteristics. Here, we explain features of great ape life history and socioecologies that make them of particular interest for this topic, as well as those that may limit their utility as comparative models; outline the ways in which available data are complementary to and extend the kinds of data that are available for humans; and review what is currently known about the connections among early life experiences, social behavior, and adult physiology and biological fitness in our closest living relatives. We conclude by highlighting key next steps for this emerging area of research.
Collapse
Affiliation(s)
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, USA; Institute for Policy Research, Northwestern University, USA
| |
Collapse
|
7
|
Dunay E, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in saliva from sanctuary chimpanzees (Pan troglodytes) in Republic of Congo and Uganda. PLoS One 2023; 18:e0288007. [PMID: 37384730 PMCID: PMC10310015 DOI: 10.1371/journal.pone.0288007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Pathogen surveillance for great ape health monitoring has typically been performed on non-invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. However, many important primate pathogens, including known zoonoses, are shed in saliva and transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva samples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to 87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Herpesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses identified have been shown to cause disease in chimpanzees or, to our knowledge, in humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral fluids in sanctuaries may be lower than commonly assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary / Chimpanzee Trust, Entebbe, Uganda
| | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe-Noire, Republic of Congo
| | - Megan F. Cole
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Narat V, Salmona M, Kampo M, Heyer T, Rachik AS, Mercier-Delarue S, Ranger N, Rupp S, Ambata P, Njouom R, Simon F, Le Goff J, Giles-Vernick T. Higher convergence of human-great ape enteric eukaryotic viromes in central African forest than in a European zoo: a One Health analysis. Nat Commun 2023; 14:3674. [PMID: 37339968 DOI: 10.1038/s41467-023-39455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Human-animal pathogenic transmissions threaten both human and animal health, and the processes catalyzing zoonotic spillover and spillback are complex. Prior field studies offer partial insight into these processes but overlook animal ecologies and human perceptions and practices facilitating human-animal contact. Conducted in Cameroon and a European zoo, this integrative study elucidates these processes, incorporating metagenomic, historical, anthropological and great ape ecological analyses, and real-time evaluation of human-great ape contact types and frequencies. We find more enteric eukaryotic virome sharing between Cameroonian humans and great apes than in the zoo, virome convergence between Cameroonian humans and gorillas, and adenovirus and enterovirus taxa as most frequently shared between Cameroonian humans and great apes. Together with physical contact from hunting, meat handling and fecal exposure, overlapping human cultivation and gorilla pillaging in forest gardens help explain these findings. Our multidisciplinary study identifies environmental co-use as a complementary mechanism for viral sharing.
Collapse
Affiliation(s)
- Victor Narat
- Eco-anthropologie, MNHN/CNRS/Univ. Paris Cité, Paris, France
| | - Maud Salmona
- Virology, AP-HP, Hôpital Saint Louis, Paris, France
- INSIGHT U976, INSERM, Université Paris Cité, Paris, France
| | - Mamadou Kampo
- Anthropology and Ecology of Disease Emergence Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | | | | | - Noémie Ranger
- Laboratoire de virologie, Institut fédératif de Biologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Stephanie Rupp
- Department of Anthropology, City University of NewYork - Lehman College, NewYork, NY, USA
| | - Philippe Ambata
- Ministry of Agriculture and Rural Development, Yaounde, Cameroon
| | | | - François Simon
- Virology, AP-HP, Hôpital Saint Louis, Paris, France
- INSIGHT U976, INSERM, Université Paris Cité, Paris, France
| | - Jérôme Le Goff
- Virology, AP-HP, Hôpital Saint Louis, Paris, France.
- INSIGHT U976, INSERM, Université Paris Cité, Paris, France.
| | - Tamara Giles-Vernick
- Anthropology and Ecology of Disease Emergence Unit, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
10
|
Reddy RB, Sandel AA, Dahl RE. Puberty initiates a unique stage of social learning and development prior to adulthood: Insights from studies of adolescence in wild chimpanzees. Dev Cogn Neurosci 2022; 58:101176. [PMID: 36427434 PMCID: PMC9699942 DOI: 10.1016/j.dcn.2022.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
In humans, puberty initiates a period of rapid growth, change, and formative neurobehavioral development. Brain and behavior changes during this maturational window contribute to opportunities for social learning. Here we provide new insights into adolescence as a unique period of social learning and development by describing field studies of our closest living relatives, chimpanzees. Like humans, chimpanzees have a multiyear juvenile life stage between weaning and puberty onset followed by a multiyear adolescent life stage after pubertal onset but prior to socially-recognized adulthood. As they develop increasing autonomy from caregivers, adolescent chimpanzees explore and develop many different types of social relationships with a wide range of individuals in a highly flexible social environment. We describe how adolescent social motivations and experiences differ from those of juveniles and adults and expose adolescents to high levels of uncertainty, risk, and vulnerability, as well as opportunities for adaptive social learning. We discuss how these adolescent learning experiences may be shaped by early life and in turn shape varied adult social outcomes. We outline how future chimpanzee field research can contribute in new ways to a more integrative interdisciplinary understanding of adolescence as a developmental window of adaptive social learning and resilience.
Collapse
Affiliation(s)
- Rachna B Reddy
- Department of Human Evolutionary Biology, Harvard University, USA; Department of Psychology, Harvard University, USA; Department of Evolutionary Anthropology, Duke University, USA.
| | - Aaron A Sandel
- Department of Anthropology, University of Texas at Austin, USA
| | - Ronald E Dahl
- Institute of Human Development, University of California, Berkeley, USA; School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
11
|
Gerstner KF, Pruetz JD. Wild Chimpanzee Welfare: A Focus on Nutrition, Foraging and Health to Inform Great Ape Welfare in the Wild and in Captivity. Animals (Basel) 2022; 12:ani12233370. [PMID: 36496890 PMCID: PMC9735707 DOI: 10.3390/ani12233370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Adequate nutrition is essential for individual well-being, survival and reproductive fitness. Yet, in wild animals, including great apes, scoring nutrition or health comes with many challenges. Here, we have two aims: first, broadly review the scientific literature regarding nutritional data on wild chimpanzee foods to get a better understanding what nutrients foods comprise of, and second, highlight important findings on wild chimpanzee nutrition and welfare pertaining to diet. We discuss variation in macro and micronutrients in food items consumed and their role in chimpanzee health across chimpanzee subspecies from multiple study sites. We found a lack of information pertaining to nutritional consumption rates of daily diets. Second, we call for a fresh, in-depth discussion on wild chimpanzee welfare issues is of foremost importance to inform conservation projects and particularly settings where humans and chimpanzees may interact, because such conversation can reveal how specific or general welfare measures can (a) inform our knowledge of an individual's, group's, and population's welfare, (b) provide additional measures from the study of wild chimpanzee ecology that can guide the welfare of captive chimpanzees, and (c) can enable comparative study of welfare across wild populations. A summary of the current literature on approaches to measuring wild chimpanzee health and welfare status, to our knowledge, has yet to be done.
Collapse
|
12
|
Abstract
While evolutionary explanations for aging have been widely acknowledged, the application of evolutionary principles to the practice of aging research has, until recently, been limited. Aging research has been dominated by studies of populations in evolutionarily novel industrialized environments and by use of short-lived animal models that are distantly related to humans. In this review, I address several emerging areas of "evolutionarily relevant" aging research, which provide a valuable complement to conventional biomedical research on aging. Nonhuman primates offer particular value as both translational and comparative models due to their long life spans, shared evolutionary history with humans, and social complexity. Additionally, because the human organism evolved in a radically different environment than that in which most humans live today, studying populations living in diverse ecologies has redefined our understanding of healthy aging by revealing the contribution of industrialized human environments to age-related pathologies.
Collapse
Affiliation(s)
- Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
13
|
Negrey JD, Emery Thompson M, Dunn CD, Otali E, Wrangham RW, Mitani JC, Machanda ZP, Muller MN, Langergraber KE, Goldberg TL. Female reproduction and viral infection in a long-lived mammal. J Anim Ecol 2022; 91:1999-2009. [PMID: 35988037 PMCID: PMC9532343 DOI: 10.1111/1365-2656.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 01/07/2023]
Abstract
For energetically limited organisms, life-history theory predicts trade-offs between reproductive effort and somatic maintenance. This is especially true of female mammals, for whom reproduction presents multifarious energetic and physiological demands. Here, we examine longitudinal changes in the gut virome (viral community) with respect to reproductive status in wild mature female chimpanzees Pan troglodytes schweinfurthii from two communities, Kanyawara and Ngogo, in Kibale National Park, Uganda. We used metagenomic methods to characterize viromes of individual chimpanzees while they were cycling, pregnant and lactating. Females from Kanyawara, whose territory abuts the park's boundary, had higher viral richness and loads (relative quantity of viral sequences) than females from Ngogo, whose territory is more energetically rich and located farther from large human settlements. Viral richness (total number of distinct viruses per sample) was higher when females were lactating than when cycling or pregnant. In pregnant females, viral richness increased with estimated day of gestation. Richness did not vary with age, in contrast to prior research showing increased viral abundance in older males from these same communities. Our results provide evidence of short-term physiological trade-offs between reproduction and infection, which are often hypothesized to constrain health in long-lived species.
Collapse
Affiliation(s)
- Jacob D. Negrey
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - Christopher D. Dunn
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | | | - John C. Mitani
- Department of AnthropologyUniversity of MichiganAnn ArborMIUSA
| | | | - Martin N. Muller
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNMUSA
| | - Kevin E. Langergraber
- School of Human Evolution and Social ChangeArizona State UniversityTempeAZUSA,Institute of Human OriginsArizona State UniversityTempeAZUSA
| | - Tony L. Goldberg
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
14
|
Negrey JD, Mitani JC, Wrangham RW, Otali E, Reddy RB, Pappas TE, Grindle KA, Gern JE, Machanda ZP, Muller MN, Langergraber KE, Thompson ME, Goldberg TL. Viruses associated with ill health in wild chimpanzees. Am J Primatol 2022; 84:e23358. [PMID: 35015311 PMCID: PMC8853648 DOI: 10.1002/ajp.23358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Viral infection is a major cause of ill health in wild chimpanzees (Pan troglodytes), but most evidence to date has come from conspicuous disease outbreaks with high morbidity and mortality. To examine the relationship between viral infection and ill health during periods not associated with disease outbreaks, we conducted a longitudinal study of wild eastern chimpanzees (P. t. schweinfurthii) in the Kanyawara and Ngogo communities of Kibale National Park, Uganda. We collected standardized, observational health data for 4 years and then used metagenomics to characterize gastrointestinal viromes (i.e., all viruses recovered from fecal samples) in individual chimpanzees before and during episodes of clinical disease. We restricted our analyses to viruses thought to infect mammals or primarily associated with mammals, discarding viruses associated with nonmammalian hosts. We found 18 viruses (nine of which were previously identified in this population) from at least five viral families. Viral richness (number of viruses per sample) did not vary by health status. By contrast, total viral load (normalized proportion of sequences mapping to viruses) was significantly higher in ill individuals compared with healthy individuals. Furthermore, when ill, Kanyawara chimpanzees exhibited higher viral loads than Ngogo chimpanzees, and males, but not females, exhibited higher infection rates with certain viruses and higher total viral loads as they aged. Post-hoc analyses, including the use of a machine-learning classification method, indicated that one virus, salivirus (Picornaviridae), was the main contributor to health-related and community-level variation in viral loads. Another virus, chimpanzee stool-associated virus (chisavirus; unclassified Picornavirales), was associated with ill health at Ngogo but not at Kanyawara. Chisavirus, chimpanzee adenovirus (Adenoviridae), and bufavirus (Parvoviridae) were also associated with increased age in males. Associations with sex and age are consistent with the hypothesis that nonlethal viral infections cumulatively reflect or contribute to senescence in long-lived species such as chimpanzees.
Collapse
Affiliation(s)
- Jacob D. Negrey
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - John C. Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard W. Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Rachna B. Reddy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Tressa E. Pappas
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristine A. Grindle
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Zarin P. Machanda
- Department of Anthropology, Tufts University, Medford, MA, 02155, USA
| | - Martin N. Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kevin E. Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|