1
|
Panagiotopoulou O, Iriarte-Diaz J, Mehari Abraha H, Taylor AB, Wilshin S, Dechow PC, Ross CF. Biomechanics of the mandible of Macaca mulatta during the power stroke of mastication: Loading, deformation, and strain regimes and the impact of food type. J Hum Evol 2020; 147:102865. [PMID: 32905895 PMCID: PMC7541691 DOI: 10.1016/j.jhevol.2020.102865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Mandible morphology has yet to yield definitive information on primate diet, probably because of poor understanding of mandibular loading and strain regimes, and overreliance on simple beam models of mandibular mechanics. We used a finite element model of a macaque mandible to test hypotheses about mandibular loading and strain regimes and relate variation in muscle activity during chewing on different foods to variation in strain regimes. The balancing-side corpus is loaded primarily by sagittal shear forces and sagittal bending moments. On the working side, sagittal bending moments, anteroposterior twisting moments, and lateral transverse bending moments all reach similar maxima below the bite point; sagittal shear is the dominant loading regime behind the bite point; and the corpus is twisted such that the mandibular base is inverted. In the symphyseal region, the predominant loading regimes are lateral transverse bending and negative twisting about a mediolateral axis. Compared with grape and dried fruit chewing, nut chewing is associated with larger sagittal and transverse bending moments acting on balancing- and working-side mandibles, larger sagittal shear on the working side, and larger twisting moments about vertical and transverse axes in the symphyseal region. Nut chewing is also associated with higher minimum principal strain magnitudes in the balancing-side posterior ramus; higher sagittal shear strain magnitudes in the working-side buccal alveolar process and the balancing-side oblique line, recessus mandibulae, and endocondylar ridge; and higher transverse shear strains in the symphyseal region, the balancing-side medial prominence, and the balancing-side endocondylar ridge. The largest food-related differences in maximum principal and transverse shear strain magnitudes are in the transverse tori and in the balancing-side medial prominence, extramolar sulcus, oblique line, and endocondylar ridge. Food effects on the strain regime are most salient in areas not traditionally investigated, suggesting that studies seeking dietary effects on mandible morphology might be looking in the wrong places.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia.
| | - Jose Iriarte-Diaz
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| | - Hyab Mehari Abraha
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | | | - Simon Wilshin
- Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL97TA, UK
| | - Paul C Dechow
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Masticatory Loading and Ossification of the Mandibular Symphysis during Anthropoid Origins. Sci Rep 2020; 10:5950. [PMID: 32249773 PMCID: PMC7136211 DOI: 10.1038/s41598-020-62025-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
An ossified or 'fused' mandibular symphysis characterizes the origins of the Anthropoidea, a primate suborder that includes humans. Longstanding debate about the adaptive significance of variation in this jaw joint centers on whether a bony symphysis is stronger than an unfused one spanned by cartilage and ligaments. To provide essential information regarding mechanical performance, intact adult symphyses from representative primates and scandentians were loaded ex vivo to simulate stresses during biting and chewing - dorsoventral (DV) shear and lateral transverse bending ('wishboning'). The anthropoid symphysis requires significantly more force to induce structural failure vs. strepsirrhines and scandentians with unfused joints. In wishboning, symphyseal breakage always occurs at the midline in taxa with unfused conditions, further indicating that an ossified symphysis is stronger than an unfused joint. Greater non-midline fractures among anthropoids suggest that fusion imposes unique constraints on masticatory function elsewhere along the mandible, a phenomenon likely to characterize the evolution of fusion and jaw form throughout Mammalia.
Collapse
|
3
|
Knigge RP, Vinyard CJ, McNulty KP. Mandibular symphyseal fusion in fossil primates: Insights from correlated patterns of jaw shape and masticatory function in living primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:322-336. [PMID: 32167167 DOI: 10.1002/ajpa.24048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 02/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Variation in primate masticatory form and function has been extensively researched through both morphological and experimental studies. As a result, symphyseal fusion in different primate clades has been linked to either the recruitment of vertically directed balancing-side muscle force, the timing and recruitment of transversely directed forces, or both. This study investigates the relationship between jaw muscle activity patterns and morphology in extant primates to make inferences about masticatory function in extinct primates, with implications for understanding the evolution of symphyseal fusion. MATERIALS AND METHODS Three-dimensional mandibular landmark data were collected for 31 extant primates and nine fossil anthropoids and subfossil lemur species. Published electromyography (EMG) data were available for nine of the extant primate species. Partial least squares analysis and phylogenetic partial least squares analysis were used to identify relationships between EMG and jaw shape data and evaluate variation in jaw morphology. RESULTS Primates with partial and complete symphyseal fusion exhibit shape-function patterns associated with the wishboning motor pattern and loading regime, in contrast to shape-function patterns of primates with unfused jaws. All fossil primates examined (except Apidium) exhibit jaw morphologies suggestive of the wishboning motor pattern demonstrated in living anthropoids and indriids. DISCUSSION Partial fusion in Catopithecus, similar to indriids and some subfossil lemurs, may be sufficient to resist, or transfer, some amounts of transversely directed balancing-side muscle force at the symphysis, representing a transition to greater reliance on transverse jaw movement during mastication. Furthermore, possible functional convergences in physiological patterns during chewing (i.e., Archaeolemur) are identified.
Collapse
Affiliation(s)
- Ryan P Knigge
- Evolutionary Anthropology Lab, Department of Anthropology, University of Minnesota, Minneapolis, Minnesota.,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Kieran P McNulty
- Evolutionary Anthropology Lab, Department of Anthropology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Monson TA, Hlusko LJ. Breaking the rules: Phylogeny, not life history, explains dental eruption sequence in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:217-233. [DOI: 10.1002/ajpa.23618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tesla A. Monson
- Department of Integrative Biology; University of California; Berkeley California 94720
- Museum of Vertebrate Zoology, Department of Integrative Biology; University of California; Berkeley California 94720
- Human Evolution Research Center, Department of Integrative Biology; University of California; Berkeley California 94720
| | - Leslea J. Hlusko
- Department of Integrative Biology; University of California; Berkeley California 94720
- Museum of Vertebrate Zoology, Department of Integrative Biology; University of California; Berkeley California 94720
- Human Evolution Research Center, Department of Integrative Biology; University of California; Berkeley California 94720
| |
Collapse
|
5
|
Perry JMG, Prufrock KA. Muscle Functional Morphology in Paleobiology: The Past, Present, and Future of “Paleomyology”. Anat Rec (Hoboken) 2018; 301:538-555. [DOI: 10.1002/ar.23772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Kristen A. Prufrock
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
6
|
Perry JMG. Inferring the Diets of Extinct Giant Lemurs from Osteological Correlates of Muscle Dimensions. Anat Rec (Hoboken) 2018; 301:343-362. [DOI: 10.1002/ar.23719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
7
|
Stover KK, Sidote J, Williams SH. An ontogenetic perspective on symphyseal fusion, occlusion and mandibular loading in alpacas (Vicugna pacos). ZOOLOGY 2017; 124:95-105. [PMID: 28811168 DOI: 10.1016/j.zool.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
A primary hypothesis for the evolution of mandibular symphyseal fusion in some mammals is that it functions to resist loads incurred during routine mastication. Anecdotal support for this hypothesis is based on the fact that when the symphysis fuses, it typically does so early during postnatal ontogeny prior to or around the time of weaning. However, little is known about the process of fusion, particularly relative to feeding behaviors and the dynamics of mastication, including occlusion and masticatory loading. In the present study, we investigate the timing and process of symphyseal fusion in alpacas (Vicugna pacos) in the context of maturation of the oral apparatus and oral behavior. We also report on in vivo strains from the symphysis and corpus in young alpacas prior to and following full fusion and M1 occlusion. Results show that fusion begins rostrally by 1 month and is complete by 6-7 months whereas all deciduous premolars and M1 come into occlusion by 6 months. Although symphyseal loading patterns are maintained throughout ontogeny, in young alpacas symphyseal strain magnitudes are low compared with adults but corpus strain magnitudes are comparable to those found in adults. Reduced symphyseal loading in young individuals is contrary to what might be predicted given that the symphysis is still fusing. When considered in light of the development of occlusion and rumination, strain magnitudes may be necessarily low and reflect an overall delay in the maturation of masticatory dynamics.
Collapse
Affiliation(s)
- Kristin K Stover
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - JoAnna Sidote
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 228 Irvine Hall, Athens, OH 45701, USA
| | - Susan H Williams
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 228 Irvine Hall, Athens, OH 45701, USA.
| |
Collapse
|
8
|
Godfrey LR, Muldoon KM. Elwyn Simons: Opening windows into Madagascar's past. Evol Anthropol 2017. [PMID: 28627783 DOI: 10.1002/evan.21518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laurie R Godfrey
- Department of Anthropology, University of Massachusetts, Amherst, MA, 01003
| | - Kathleen M Muldoon
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ, 85308
| |
Collapse
|
9
|
Holton NE, Bonner LL, Scott JE, Marshall SD, Franciscus RG, Southard TE. The ontogeny of the chin: an analysis of allometric and biomechanical scaling. J Anat 2015; 226:549-59. [PMID: 25865897 DOI: 10.1111/joa.12307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/29/2022] Open
Abstract
The presence of a prominent chin in modern humans has been viewed by some researchers as an architectural adaptation to buttress the anterior corpus from bending stresses during mastication. In contrast, ontogenetic studies of mandibular symphyseal form suggest that a prominent chin results from the complex spatial interaction between the symphysis and surrounding soft tissue and skeletal anatomy during development. While variation in chin prominence is clearly influenced by differential growth and spatial constraints, it is unclear to what degree these developmental dynamics influence the mechanical properties of the symphysis. That is, do ontogenetic changes in symphyseal shape result in increased symphyseal bending resistance? We examined ontogenetic changes in the mechanical properties and shape of the symphysis using subjects from a longitudinal cephalometric growth study with ages ranging from 3 to 20+ years. We first examined whether ontogenetic changes in symphyseal shape were correlated with symphyseal vertical bending and wishboning resistance using multivariate regression. Secondly, we examined ontogenetic scaling of bending resistance relative to bending moment arm lengths. An ontogenetic increase in chin prominence was associated with decreased vertical bending resistance, while wishboning resistance was uncorrelated with ontogenetic development of the chin. Relative to bending moment arm lengths, vertical bending resistance scaled with significant negative allometry whereas wishboning resistance scaled isometrically. These results suggest a complex interaction between symphyseal ontogeny and bending resistance, and indicate that ontogenetic increases in chin projection do not provide greater bending resistance to the mandibular symphysis.
Collapse
Affiliation(s)
- N E Holton
- Department of Orthodontics, The University of Iowa, Iowa City, IA, USA.,Department of Anthropology, The University of Iowa, Iowa City, IA, USA
| | - L L Bonner
- Department of Orthodontics, The University of Iowa, Iowa City, IA, USA
| | - J E Scott
- Department of Anthropology, The University of Iowa, Iowa City, IA, USA
| | - S D Marshall
- Department of Orthodontics, The University of Iowa, Iowa City, IA, USA
| | - R G Franciscus
- Department of Anthropology, The University of Iowa, Iowa City, IA, USA
| | - T E Southard
- Department of Orthodontics, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
|
11
|
SCOTT JE, HOGUE AS, RAVOSA MJ. The adaptive significance of mandibular symphyseal fusion in mammals. J Evol Biol 2012; 25:661-73. [DOI: 10.1111/j.1420-9101.2012.02457.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hylander WL, Vinyard CJ, Wall CE, Williams SH, Johnson KR. Functional and Evolutionary significance of the recruitment and firing patterns of the jaw adductors during chewing in verreaux's sifaka (Propithecus verreauxi). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:531-47. [DOI: 10.1002/ajpa.21529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/17/2011] [Indexed: 11/09/2022]
|
13
|
Scott J, Godfrey L, Jungers W, Scott R, Simons E, Teaford M, Ungar P, Walker A. Dental microwear texture analysis of two families of subfossil lemurs from Madagascar. J Hum Evol 2009; 56:405-16. [DOI: 10.1016/j.jhevol.2008.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/03/2008] [Accepted: 11/16/2008] [Indexed: 11/26/2022]
|
14
|
Miller SF, White JL, Ciochon RL. Assessing mandibular shape variation withinGigantopithecususing a geometric morphometric approach. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 137:201-12. [DOI: 10.1002/ajpa.20856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
|
16
|
Ravosa MJ, Kunwar R, Stock SR, Stack MS. Pushing the limit: masticatory stress and adaptive plasticity in mammalian craniomandibular joints. ACTA ACUST UNITED AC 2007; 210:628-41. [PMID: 17267649 DOI: 10.1242/jeb.02683] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Excessive, repetitive and altered loading have been implicated in the initiation of a series of soft- and hard-tissue responses or ;functional adaptations' of masticatory and locomotor elements. Such adaptive plasticity in tissue types appears designed to maintain a sufficient safety factor, and thus the integrity of given element or system, for a predominant loading environment(s). Employing a mammalian species for which considerable in vivo data on masticatory behaviors are available, genetically similar domestic white rabbits were raised on diets of different mechanical properties so as to develop an experimental model of joint function in a normal range of physiological loads. These integrative experiments are used to unravel the dynamic inter-relationships among mechanical loading, tissue adaptive plasticity, norms of reaction and performance in two cranial joint systems: the mandibular symphysis and temporomandibular joint (TMJ). Here, we argue that a critical component of current and future research on adaptive plasticity in the skull, and especially cranial joints, should employ a multifaceted characterization of a functional system, one that incorporates data on myriad tissues so as to evaluate the role of altered load versus differential tissue response on the anatomical, cellular and molecular processes that contribute to the strength of such composite structures. Our study also suggests that the short-term duration of earlier analyses of cranial joint tissues may offer a limited notion of the complex process of developmental plasticity, especially as it relates to the effects of long-term variation in mechanical loads, when a joint is increasingly characterized by adaptive and degradative changes in tissue structure and composition. Indeed, it is likely that a component of the adaptive increases in rabbit TMJ and symphyseal proportions and biomineralization represent a compensatory mechanism to cartilage degradation that serves to maintain the overall functional integrity of each joint system. Therefore, while variation in cranial joint anatomy and performance among sister taxa is, in part, an epiphenomenon of interspecific differences in diet-induced masticatory stresses characterizing the individual ontogenies of the members of a species, this behavioral signal may be increasingly mitigated in over-loaded and perhaps older organisms by the interplay between adaptive and degradative tissue responses.
Collapse
Affiliation(s)
- Matthew J Ravosa
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, M263 Medical Sciences Building, One Hospital Drive DC055.07, Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
17
|
Langenbach GEJ, Zhang F, Herring SW, van Eijden TMGJ, Hannam AG. Dynamic mechanics in the pig mandibular symphysis. J Anat 2007; 209:69-78. [PMID: 16822271 PMCID: PMC2100305 DOI: 10.1111/j.1469-7580.2006.00584.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During mastication, various biomechanical events occur at the mammalian jaw symphysis. Previously, these events have been studied in the static environment, or by direct recording of surface bone strains. Thus far, however, it has not been possible to demonstrate directly the forces and torques passing through the symphysis in association with dynamically changing muscle tensions. Therefore, we modified a previously published dynamic pig jaw model to predict the forces and torques at the symphysis, and related these to simulated masticatory muscle tensions, and bite, joint and food bolus forces. An artificial rigid joint was modelled at the symphysis, allowing measurements of the tri-axial forces and torques passing through it. The model successfully confirmed three previously postulated loading patterns at the symphysis. Dorsoventral shear occurred when the lower teeth hit the artificial food bolus. It was associated with balancing-side jaw adductor forces, and reaction forces from the working-side bite point. Medial transverse bending occurred during jaw opening, and was associated with bilateral tensions in the lateral pterygoid. Lateral transverse bending (wishboning) occurred at the late stage of the power stroke, and was associated with the actions of the deep and superficial masseters. The largest predicted force was dorsoventral shear force, and the largest torque was a 'wishboning' torque about the superoinferior axis. We suggest that dynamic modelling offers a new and powerful method for studying jaw biomechanics, especially when the parameters involved are difficult or impossible to measure in vivo.
Collapse
Affiliation(s)
- G E J Langenbach
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam en Vrije Universiteit, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Godfrey LR, Semprebon GM, Schwartz GT, Burney DA, Jungers WL, Flanagan EK, Cuozzo FP, King SJ. New Insights into Old Lemurs: The Trophic Adaptations of the Archaeolemuridae. INT J PRIMATOL 2005. [DOI: 10.1007/s10764-005-5325-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Vinyard CJ, Williams SH, Wall CE, Johnson KR, Hylander WL. Jaw-muscle electromyography during chewing in Belanger's treeshrews (Tupaia belangeri). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 127:26-45. [PMID: 15486965 DOI: 10.1002/ajpa.20176] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined masseter and temporalis recruitment and firing patterns during chewing in five male Belanger's treeshrews (Tupaia belangeri), using electromyography (EMG). During chewing, the working-side masseters tend to show almost three times more scaled EMG activity than the balancing-side masseters. Similarly, the working-side temporalis muscles have more than twice the scaled EMG activity of the balancing-side temporalis. The relatively higher activity in the working-side muscles suggests that treeshrews recruit less force from their balancing-side muscles during chewing. Most of the jaw-closing muscles in treeshrews can be sorted into an early-firing or late-firing group, based on occurrence of peak activity during the chewing cycle. Specifically, the first group of jaw-closing muscles to reach peak activity consists of the working-side anterior and posterior temporalis and the balancing-side superficial masseter. The balancing-side anterior and posterior temporalis and the working-side superficial masseter peak later in the power stroke. The working-side deep masseter peaks, on average, slightly before the working-side superficial masseter. The balancing-side deep masseter typically peaks early, at about the same time as the balancing-side superficial masseter. Thus, treeshrews are unlike nonhuman anthropoids that peak their working-side deep masseters early and their balancing-side deep masseters late in the power stroke. Because in anthropoids the late firing of the balancing-side deep masseter contributes to wishboning of the symphysis, the treeshrew EMG data suggest that treeshrews do not routinely wishbone their symphyses during chewing. Based on the treeshrew EMG data, we speculate that during chewing, primitive euprimates 1) recruited more force from the working-side jaw-closing muscles as compared to the balancing-side muscles, 2) fired an early group of jaw-closing muscles followed by a second group of muscles that peaked later in the power stroke, 3) did not fire their working-side deep masseter significantly earlier than their working-side superficial masseter, and 4) did not routinely fire their balancing-side deep masseter after the working-side superficial masseter.
Collapse
Affiliation(s)
- Christopher J Vinyard
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
20
|
Vinyard CJ, Wall CE, Williams SH, Hylander WL. Comparative functional analysis of skull morphology of tree-gouging primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; 120:153-70. [PMID: 12541333 DOI: 10.1002/ajpa.10129] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many primates habitually feed on tree exudates such as gums and saps. Among these exudate feeders, Cebuella pygmaea, Callithrix spp., Phaner furcifer, and most likely Euoticus elegantulus elicit exudate flow by biting into trees with their anterior dentition. We define this behavior as gouging. Beyond the recent publication by Dumont ([1997] Am J Phys Anthropol 102:187-202), there have been few attempts to address whether any aspect of skull form in gouging primates relates to this specialized feeding behavior. However, many researchers have proposed that tree gouging results in larger bite force, larger internal skull loads, and larger jaw gapes in comparison to other chewing and biting behaviors. If true, then we might expect primate gougers to exhibit skull modifications that provide increased abilities to produce bite forces at the incisors, withstand loads in the skull, and/or generate large gapes for gouging. We develop 13 morphological predictions based on the expectation that gouging involves relatively large jaw forces and/or jaw gapes. We compare skull shapes for P. furcifer to five cheirogaleid taxa, E. elegantulus to six galagid species, and C. jacchus to two tamarin species, so as to assess whether gouging primates exhibit these predicted morphological shapes. Our results show little morphological evidence for increased force-production or load-resistance abilities in the skulls of these gouging primates. Conversely, these gougers tend to have skull shapes that are advantageous for creating large gapes. For example, all three gouging species have significantly lower condylar heights relative to the toothrow at a given mandibular length in comparison with closely related, nongouging taxa. Lowering the height of the condyle relative to the mandibular toothrow should reduce the stretching of the masseters and medial pterygoids during jaw opening, as well as position the mandibular incisors more anteriorly at wide jaw gapes. In other words, the lower incisors will follow a more vertical trajectory during both jaw opening and closing. We predict, based on these findings, that tree-gouging primates do not generate unusually large forces, but that they do use relatively large gapes during gouging. Of course, in vivo data on jaw forces and jaw gapes are required to reliably assess skull functions during gouging.
Collapse
|
21
|
King SJ, Godfrey LR, Simons EL. Adaptive and phylogenetic significance of ontogenetic sequences in Archaeolemur, subfossil lemur from Madagascar. J Hum Evol 2001; 41:545-76. [PMID: 11782109 DOI: 10.1006/jhev.2001.0509] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the best known of recently extinct Malagasy lemurs is Archaeolemur, which is represented by many hundreds of specimens. The phylogenetic affinities of this taxon are unclear, especially in light of recent preliminary analysis of ancient DNA which does not support its previously accepted close relationship with the living Indridae. We examined the nearly complete skeletons of two adults and one juvenile and other less complete specimens to reconstruct aspects of the ontogeny of Archaeolemur. To compare the development of Archaeolemur to that of living strepsirrhines we collected data on Propithecus verreauxi, Eulemur fulvus, and Lemur catta. Additionally, because Archaeolemur exhibits some morphological convergences with distantly related papionins, we tested for convergence in the developmental patterns of Archaeolemur and Macaca fascicularis. Data include the status of tooth eruption, craniofacial sutural closure, and postcranial epiphyseal fusion, as well as linear measurements. We used discriminant function analysis and other tools to explore ontogenetic similarities and differences. The adaptive and phylogenetic significance of ontogenetic information is discussed. Our analysis shows that Archaeolemur displays a clear strepsirrhine pattern of development with only minor macaque convergences. Among the Strepsirrhini, Archaeolemur is slightly more similar developmentally to E. fulvus and L. catta than to P. verreauxi. Some of the distinctive features of the ontogeny of Archaeolemur may be related to diet, while others bear apparent testimony to a relatively rapid absolute pace of growth and development.
Collapse
Affiliation(s)
- S J King
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts 01003-9278, USA.
| | | | | |
Collapse
|
22
|
Abstract
Experimental investigation of mandibular bone strain in cercopithecine primates has established that the mandible is bent in the transverse plane during the power stroke of mastication. Additional comparative work also supports the assumption that the morphology of the mandibular symphysis is functionally linked to the biomechanics of lateral transverse bending, or "wishboning" of the mandibular corpus. There are currently no experimental data to verify that lateral transverse bending constitutes an important loading regime among hominoid primates. There are, however, allometric models from cercopithecoid primates that allow prediction of scaling patterns in hominoid mandibular dimensions that would be consistent with a mechanical environment that includes wishboning as a significant component. This study uses computed tomography (CT) scans to visualize cortical bone distribution in the anterior corpus of a sample of four genera of extant hominoids. From the cortical bone contours, area properties of the mandibular symphysis are calculated, and these variables are subjected to an allometric analysis to detect whether scaling of jaw dimensions are consistent with a wishboning loading regime. Scaling of the hominoid symphysis recalls patterns observed in cercopithecoid monkeys, which lends indirect support for the hypothesis that wishboning is an integral part of the masticatory loading environment in living apes. Inclination of the symphysis, rather than changes in cross-sectional shape or development of the superior transverse torus, represents a morphological solution for minimizing the potentially harmful effects of wishboning in the jaws of these primates.
Collapse
Affiliation(s)
- D J Daegling
- Department of Anthropology, University of Florida, Gainesville, Florida 32611-7305, USA.
| |
Collapse
|
23
|
Hogue AS, Ravosa MJ. Transverse masticatory movements, occlusal orientation, and symphyseal fusion in selenodont artiodactyls. J Morphol 2001; 249:221-41. [PMID: 11517466 DOI: 10.1002/jmor.1051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Based on extensive experimental work on primates, two masticatory loading regimes have emerged as the likely determinants of mandibular symphyseal fusion-dorsoventral shear and lateral transverse bending (wishboning) (Ravosa and Hylander, 1994; Hylander et al., 1998, 2000). Recently, however, it has been argued that, rather than functioning to strengthen the symphysis during mastication, fusion serves to stiffen the symphyseal joint so as to facilitate increased transverse jaw movements during occlusion (Lieberman and Crompton, 2000). As part of this transverse stiffness model, it has been suggested that taxa with fused symphyses should also exhibit more horizontally oriented occlusal wear facets. Using a series of univariate and bivariate analyses, we test predictions of these three models in a sample of 44 species of selenodont artiodactyls. Consistent with the wishboning and transverse stiffness models, taxa with fused symphyses (camelids) have more horizontally oriented M(2) and M(2) occlusal wear facets, anteroposteriorly (AP) elongate symphyses, and relatively wider corpora. Contrary to the dorsoventral shear model, camelids do not have relatively deeper corpora (due to greater parasagittal bending). While taxa with ossified symphyses have relatively larger symphysis cross-sectional areas, this appears to be the byproduct of an increase in AP symphysis length due to greater lateral transverse bending of the mandible. Theoretical consideration of the biomechanics of mastication further suggests that strength, not stiffness, is the critical factor in determining symphyseal ossification. Thus, like anthropoid primates, fusion in selenodont artiodactyls appears to function in resisting increased wishboning stresses arising from an emphasis on transverse occlusal/mandibular movements and loads.
Collapse
Affiliation(s)
- A S Hogue
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
| | | |
Collapse
|
24
|
Hylander WL, Ravosa MJ, Ross CF, Wall CE, Johnson KR. Symphyseal fusion and jaw-adductor muscle force: an EMG study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 112:469-92. [PMID: 10918125 DOI: 10.1002/1096-8644(200008)112:4<469::aid-ajpa5>3.0.co;2-v] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study is to test various hypotheses about balancing-side jaw muscle recruitment patterns during mastication, with a major focus on testing the hypothesis that symphyseal fusion in anthropoids is due mainly to vertically- and/or transversely-directed jaw muscle forces. Furthermore, as the balancing-side deep masseter has been shown to play an important role in wishboning of the macaque mandibular symphysis, we test the hypothesis that primates possessing a highly mobile mandibular symphysis do not exhibit the balancing-side deep masseter firing pattern that causes wishboning of the anthropoid mandible. Finally, we also test the hypothesis that balancing-side muscle recruitment patterns are importantly related to allometric constraints associated with the evolution of increasing body size. Electromyographic (EMG) activity of the left and right superficial and deep masseters were recorded and analyzed in baboons, macaques, owl monkeys, and thick-tailed galagos. The masseter was chosen for analysis because in the frontal projection its superficial portion exerts force primarily in the vertical (dorsoventral) direction, whereas its deep portion has a relatively larger component of force in the transverse direction. The symphyseal fusion-muscle recruitment hypothesis predicts that unlike anthropoids, galagos develop bite force with relatively little contribution from their balancing-side jaw muscles. Thus, compared to galagos, anthropoids recruit a larger percentage of force from their balancing-side muscles. If true, this means that during forceful mastication, galagos should have working-side/balancing-side (W/B) EMG ratios that are relatively large, whereas anthropoids should have W/B ratios that are relatively small. The EMG data indicate that galagos do indeed have the largest average W/B ratios for both the superficial and deep masseters (2.2 and 4.4, respectively). Among the anthropoids, the average W/B ratios for the superficial and deep masseters are 1.9 and 1.0 for baboons, 1.4 and 1.0 for macaques, and both values are 1.4 for owl monkeys. Of these ratios, however, the only significant difference between thick-tailed galagos and anthropoids are those associated with the deep masseter. Furthermore, the analysis of masseter firing patterns indicates that whereas baboons, macaques and owl monkeys exhibit the deep masseter firing pattern associated with wishboning of the macaque mandibular symphysis, galagos do not exhibit this firing pattern. The allometric constraint-muscle recruitment hypothesis predicts that larger primates must recruit relatively larger amounts of balancing-side muscle force so as to develop equivalent amounts of bite force. Operationally this means that during forceful mastication, the W/B EMG ratios for the superficial and deep masseters should be negatively correlated with body size. Our analysis clearly refutes this hypothesis. As already noted, the average W/B ratios for both the superficial and deep masseter are largest in thick-tailed galagos, and not, as predicted by the allometric constraint hypothesis, in owl monkeys, an anthropoid whose body size is smaller than that of thick-tailed galagos. Our analysis also indicates that owl monkeys have W/B ratios that are small and more similar to those of the much larger-sized baboons and macaques. Thus, both the analysis of the W/B EMG ratios and the muscle firing pattern data support the hypothesis that symphyseal fusion and transversely-directed muscle force in anthropoids are functionally linked. This in turn supports the hypothesis that the evolution of symphyseal fusion in anthropoids is an adaptation to strengthen the symphysis so as to counter increased wishboning stress during forceful unilateral mastication. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- W L Hylander
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
25
|
Lieberman DE, Crompton AW. Why fuse the mandibular symphysis? A comparative analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 112:517-40. [PMID: 10918127 DOI: 10.1002/1096-8644(200008)112:4<517::aid-ajpa7>3.0.co;2-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fused symphyses, which evolved independently in several mammalian taxa, including anthropoids, are stiffer and stronger than unfused symphyses. This paper tests the hypothesis that orientations of tooth movements during occlusion are the primary basis for variations in symphyseal fusion. Mammals whose teeth have primarily dorsally oriented occlusal trajectories and/or rotate their mandibles during occlusion will not benefit from symphyseal fusion because it prevents independent mandibular movements and because unfused symphyses transfer dorsally oriented forces with equal efficiency; mammals with predominantly transverse power strokes are predicted to benefit from symphyseal fusion or greatly restricted mediolateral movement at the symphysis in order to increase force transfer efficiency across the symphysis in the transverse plane. These hypotheses are tested with comparative data on symphyseal and occlusal morphology in several mammals, and with kinematic and EMG analyses of mastication in opossums (Didelphis virginiana) and goats (Capra hircus) that are compared with published data on chewing in primates. Among mammals, symphyseal fusion or a morphology that greatly restricts movement correlates significantly with occlusal orientation: species with more transversely oriented occlusal planes tend to have fused symphyses. The ratio of working- to balancing-side adductor muscle force in goats and opossums is close to 1:1, as in macaques, but goats and opossums have mandibles that rotate independently during occlusion, and have predominantly vertically oriented tooth movements during the power stroke. Symphyseal fusion is therefore most likely an adaptation for increasing the efficiency of transfer of transversely oriented occlusal forces in mammals whose mandibles do not rotate independently during the power stroke.
Collapse
Affiliation(s)
- D E Lieberman
- Department of Anthropology, George Washington University, Washington, DC 20052, and Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | | |
Collapse
|
26
|
Ravosa MJ, Vinyard CJ, Gagnon M, Islam SA. Evolution of anthropoid jaw loading and kinematic patterns. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 112:493-516. [PMID: 10918126 DOI: 10.1002/1096-8644(200008)112:4<493::aid-ajpa6>3.0.co;2-p] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Major transformations in the skull and masticatory system characterized the evolution of crown anthropoids. To offer further insight into the phylogenetic and arguably adaptive significance of specific primate mandibular loading and kinematic patterns, allometric analyses of metric parameters linked to masticatory function are performed within and between 47 strepsirhine and 45 recent anthropoid species. When possible, basal anthropoids are considered. These results are subsequently integrated with prior experimental and morphological work on primate skull form. As compared to strepsirhines, crown anthropoids have a vertically longer ascending ramus linked to a glenoid and condyle positioned relatively higher above the occlusal plane. Interestingly, anthropoids and strepsirhines do not exhibit different mean ratios of condylar to glenoid height, which suggests that both clades are similar in their ability to evenly distribute occlusal contacts and perhaps forces along the postcanine teeth. Thus, given the considerable suborder differences in the scaling of both glenoid and condylar height, we argue that much of this variation in jaw-joint height is linked to suborder differences in relative facial height due in turn to increased encephalization, basicranial flexion, and facial kyphosis in anthropoids. Due to a more elongate ascending ramus, anthropoids evince more vertically oriented masseters than like-sized strepsirhines. Having a relatively longer ramus and a more medially displaced lateral pterygoid plate, crown anthropoids exhibit medial pterygoids oriented similar to those of strepsirhines, but with a variably longer lever arm. As anthropoid masseters are less advantageously placed to effect transverse movements/forces, we argue that balancing-side deep-masseter activity underlying a wishboning loading regime serves to increase, or at least maintain, transverse levels of jaw movement and occlusal force at the end of the masticatory power stroke. Crown anthropoids are also more isognathic and isodontic than strepsirhines. A consideration of early anthropoids suggests that the crown anthropoid masticatory pattern, i.e., more vertical masseters due to a high condyle as well as greater isognathy and isodonty, occurred stepwise during stem anthropoid evolution. This appears to correspond to a more transverse, and perhaps progressively larger, power stroke across oligopithecids, parapithecids, and propliopithecids.
Collapse
Affiliation(s)
- M J Ravosa
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
| | | | | | | |
Collapse
|
27
|
Hylander WL, Ravosa MJ, Ross CF, Johnson KR. Mandibular corpus strain in primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1998; 107:257-71. [PMID: 9821491 DOI: 10.1002/(sici)1096-8644(199811)107:3<257::aid-ajpa3>3.0.co;2-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous work indicates that compared to adult thick-tailed galagos, adult long-tailed macaques have much more bone strain on the balancing-side mandibular corpus during unilateral isometric molar biting (Hylander [1979a] J. Morphol. 159:253-296). Recently we have confirmed in these same two species the presence of similar differences in bone-strain patterns during forceful mastication. Moreover, we have also recorded mandibular bone strain patterns in adult owl monkeys, which are slightly smaller than the galago subjects. The owl monkey data indicate the presence of a strain pattern very similar to that recorded for macaques, and quite unlike that recorded for galagos. We interpret these bone-strain pattern differences to be importantly related to differences in balancing-side jaw-adductor muscle force recruitment patterns. That is, compared to galagos, macaques and owl monkeys recruit relatively more balancing-side jaw-adductor muscle force during forceful mastication. Unlike an earlier study (Hylander [1979b] J. Morphol. 160:223-240), we are unable to estimate the actual amount of working-side muscle force relative to balancing-side muscle force (i.e., the W/B muscle force ratio) in these species because we have no reliable estimate of magnitude, direction, and precise location of the bite force during mastication. A comparison of the mastication data with the earlier data recorded during isometric molar biting, however, supports the hypothesis that the two anthropoids have a small W/B jaw-adductor muscle force ratio in comparison to thick-tailed galagos. These data also support the hypothesis that increased recruitment of balancing-side jaw-adductor muscle force in anthropoids is functionally linked to the evolution of symphyseal fusion or strengthening. Moreover, these data refute the hypothesis that the recruitment pattern differences between macaques and thick-tailed galagos are due to allometric factors. Finally, although the evolution of symphyseal fusion in primates may be linked to increased stress associated with increased balancing-side muscle force, it is currently unclear as to whether the increased force is predominately vertically directed, transversely directed, or is a near equal combination of these two force components (cf. Ravosa and Hylander [1994] In Fleagle and Kay [eds.]: Anthropoid Origins. New York: Plenum, pp. 447-468).
Collapse
Affiliation(s)
- W L Hylander
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
28
|
McCollum MA. Palatal thickening and facial form in Paranthropus: examination of alternative developmental models. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1997; 103:375-92. [PMID: 9261500 DOI: 10.1002/(sici)1096-8644(199707)103:3<375::aid-ajpa7>3.0.co;2-p] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Paranthropus is distinctive among hominoids in its possession of a greatly thickened hard palate. Although traditionally considered a structural adaptation to counter high-magnitude masticatory stress, alternative developmental models are equally viable. Three models of palatal thickening were evaluated in this study. A mechanical model interprets palatal thickening as a compensatory response to increased instability of the midpalatal suture effected by an anterior placement of the masseteric muscle mass. This model predicts that palatal thickness is correlated with the length of the palate posterior to the masseteric tubercle. Two non-mechanical models consider the thickness of the hard palate to be structurally related to and therefore correlated with either 1) the degree to which the premaxilla overlaps the hard palate in the subnasal region or 2) the height of the posterior facial skeleton. The correlation of craniofacial variables was assessed intraspecifically in ontogenetic series of great ape and human crania. Tests of correlation were performed for each comparison using both residuals calculated from reduced major axis regression of the variable of interest against a measure of cranial size and shape ratios. A significant correlation of palatal thickness with posterior facial height in Pan suggests that the unusually thick hard palate of Paranthropus is directly related to the increased posterior facial height characteristic of this taxon. Further evaluation suggests that extreme palatal thickening in these specimens occurred by virtue of their possession of a nasal septum morphology in which the vomer extends onto the superior and nasal surface of the premaxilla. Such a morphology would have constrained the palatal nasal lamina to maintain the approximate level of the premaxillary nasal lamina throughout the growth process thereby promoting palatal thickening.
Collapse
Affiliation(s)
- M A McCollum
- Department of Anatomy, Case Western Reserve University, Cleveland, Ohio 44106-4930, USA.
| |
Collapse
|
29
|
Abstract
Previous experimental and comparative studies among a wide variety of primate and nonprimate mammals provide a unique source of information for investigating the functional and phylogenetic significance of variation in the masticatory apparatus of Eocene primates. To provide a quantitative study of mandibular form and function in Eocene primates, the scaling of jaw dimensions and the development of symphyseal fusion was considered in a broad sample of North American and European Adapidae and Omomyidae. Statistical analyses indicate a significant size-related pattern of symphyseal fusion across Eocene primates, with larger taxa often having a greater degree of fusion than smaller species; this trend is also evident at the family level. As adapids are mostly larger than omomyids and these taxa show allometry of symphyseal fusion, this may explain why no omomyids evince complete fusion. Controlling for jaw size, species with greater symphyseal fusion tend to have more robust jaws than those with a lesser amount of fusion. Upon further examination, a primary reason why adapids have more robust mandibles than omomyids is associated with the presence of taxa with fused symphyses, and thus more robust jaws, in the adapid sample, whereas no omomyids have fused symphyses. In addition, there is little indication of a dietary effect, as measured by molar shear-crest development, on symphyseal fusion. Moreover, as there is no correlation between molar shear-crest development and skull size, this also points to the absence of a size-related pattern of dietary preference underlying the allometry of symphyseal fusion. Based on the interspecific and ontogenetic allometry of symphyseal ossification in Eocene primates, jaw-scaling patterns are used to further examine the functional determinants of fusion in this group. This study indicates that greater dorsoventral shear during mastication is a more likely factor than lateral transverse bending ("wishboning") in the evolution of symphyseal fusion among "late-fusing" mammals like adapids and omomyids. Given that wishboning is an important functional determinant of symphyseal form in recent anthropoids, apparently the evolutionary development of marked wishboning occurs only in taxa that shift the timing of fusion to a growth stage preceding the onset of weaning (before adult masticatory patterns are fully developed) and perhaps first ossified the symphysis to counter elevated dorsoventral shear stress. As early anthropoids probably consisted of members varying interspecifically and ontogenetically in the degree of ossification, it is especially informative to analyze the adaptive setting in which anthropoid symphyseal fusion evolved from a similar primitive "prosimian" perspective. Finally, since taxa with fused symphyses are widely distributed across mammals, a similar analytical framework could be directed profitably at unraveling the functional and evolutionary significance of symphyseal fusion in other mammalian clades.
Collapse
Affiliation(s)
- M J Ravosa
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA
| |
Collapse
|
30
|
Simons EL, Rasmussen DT. Skull of Catopithecus browni, an early tertiary catarrhine. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1996; 100:261-92. [PMID: 8771315 DOI: 10.1002/(sici)1096-8644(199606)100:2<261::aid-ajpa7>3.0.co;2-#] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fossil crania from quarry L-41, Fayum, Egypt, representing Catopithecus browni, a primate similar in size to callitrichids but with a catarrhine dental formula, provide the geologically earliest record of an anthropoidean skull. Catopithecus had postorbital closure developed to the stage seen in extant anthropoideans, with direct contact between zygomatic plate and maxillary tuber, isolating an anterior orbital fissure from the inferior orbital fissure. The auditory region also resembles that of later anthropoideans: The posterior carotid foramen is placed adjacent to the jugular fossa; a large promontory canal crosses the promontorium; and the annular ectotympanic is fused ventrally to the bulla. The incisors and canines show an assemblage of features found only among modern anthropoideans and adapoids. The face is characterized by a relatively deep maxilla, broad ascending wing of the premaxilla, and long nasal bones, yielding a moderate muzzle similar to that of Aegyptopithecus. The small braincase bears an anteriorly broad frontal trigon and a posteriorly developed sagittal crest. The mandibular symphysis is unfused even in mature adults. The encephalization quotient (EQ) probably falls within the range of Eocene prosimians, much lower than the EQs of Neogene anthropoideans.
Collapse
Affiliation(s)
- E L Simons
- Department of Biological Anthropology and Anatomy, Duke University, Durham, North Carolina 27705, USA
| | | |
Collapse
|