1
|
Vila-Castelar C, Akinci M, Palpatzis E, Aguilar-Dominguez P, Operto G, Kollmorgen G, Quijano-Rubio C, Blennow K, Zetterberg H, Falcon C, Fauria K, Gispert JD, Grau-Rivera O, Suárez-Calvet M, Arenaza-Urquijo EM. Sex/gender effects of glial reactivity on preclinical Alzheimer's disease pathology. Mol Psychiatry 2025; 30:1430-1439. [PMID: 39384963 PMCID: PMC11919761 DOI: 10.1038/s41380-024-02753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Glial reactivity may contribute to sex/gender differences in Alzheimer's disease (AD) pathophysiology. Here, we investigated the differential effect of cerebrospinal fluid (CSF) glial markers on AD pathology and neurodegeneration by sex/gender among cognitively unimpaired older adults at increased risk of developing AD. We included 397 participants from the ALFA+ cohort with CSF Aβ42/40, p-tau181, sTREM2, YKL40, and GFAP, magnetic resonance imaging-based hippocampal volume (n = 299), and amyloid burden (centiloids) measured with [18F] flutemetamol positron emission tomography (n = 341). We ran multiple linear regression models to assess the association between glial markers, AD pathology and hippocampal volumes and their interaction with sex/gender, using False Discovery Rate to correct for multiple comparisons. Glial markers significantly contributed to explain amyloid burden, tau pathology, and hippocampal volumes, beyond age and/or primary AD pathology in a sex/gender-specific manner. Compared to men, women showed increased amyloid burden (centiloids) and CSF p-tau181 with increasing levels of sTREM2 and YKL40, and YKL40 and GFAP, respectively. Compared to women, men with greater tau burden showed lower hippocampal volumes as CSF YKL40 levels increased. Overall, our findings suggest that glial reactivity may contribute to sex/gender differences in AD progression, mostly, downstream amyloid. Further research identifying sex/gender-specific temporal dynamics in AD development is warranted to inform clinical trials.
Collapse
Affiliation(s)
- Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Muge Akinci
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Eleni Palpatzis
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Pablo Aguilar-Dominguez
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
| | | | - Clara Quijano-Rubio
- Roche Diagnostics International Ltd, Forrenstrasse 2, 6343, Rotkreuz, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
- UK Dementia Research Institute at UCL, Tottenham Ct Rd, W1T 7NF, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, J5/1 Mezzanine, Madison, WI, WI 53792, USA
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain.
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Ossenkoppele R, Salvadó G, Janelidze S, Pichet Binette A, Bali D, Karlsson L, Palmqvist S, Mattsson-Carlgren N, Stomrud E, Therriault J, Rahmouni N, Rosa-Neto P, Coomans EM, van de Giessen E, van der Flier WM, Teunissen CE, Jonaitis EM, Johnson SC, Villeneuve S, Benzinger TLS, Schindler SE, Bateman RJ, Doecke JD, Doré V, Feizpour A, Masters CL, Rowe C, Wiste HJ, Petersen RC, Jack CR, Hansson O. Plasma p-tau217 and tau-PET predict future cognitive decline among cognitively unimpaired individuals: implications for clinical trials. NATURE AGING 2025:10.1038/s43587-025-00835-z. [PMID: 40155777 DOI: 10.1038/s43587-025-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/12/2025] [Indexed: 04/01/2025]
Abstract
Plasma p-tau217 and tau positron emission tomography (PET) are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In a head-to-head comparison study including nine cohorts and 1,474 individuals, we show that plasma p-tau217 and medial temporal lobe tau-PET signal display similar associations with cognitive decline on a global cognitive composite test (R2PET = 0.34 versus R2plasma = 0.33, Pdifference = 0.653) and with progression to mild cognitive impairment (hazard ratio (HR)PET = 1.61 (1.48-1.76) versus HRplasma = 1.57 (1.43-1.72), Pdifference = 0.322). Combined plasma and PET models were superior to the single-biomarker models (R2 = 0.35, P < 0.01). Sequential selection using plasma phosphorylated tau at threonine 217 (p-tau217) and then tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 76% reduction when using plasma p-tau217 alone. Thus, plasma p-tau217 and tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use enhances screening efficiency for preclinical AD trials.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden.
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Linda Karlsson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - James D Doecke
- Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organization, Melbourne, Victoria, Australia
| | - Vincent Doré
- Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organization, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Azadeh Feizpour
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
3
|
Bellelli F, Angioni D, Arosio B, Vellas B, De Souto Barreto P. Hallmarks of aging and Alzheimer's Disease pathogenesis: Paving the route for new therapeutic targets. Ageing Res Rev 2025; 106:102699. [PMID: 39986483 DOI: 10.1016/j.arr.2025.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aging is the leading risk factor for Alzheimer's Disease (AD). Understanding the intricate interplay between biological aging and the AD pathophysiology may help to discover innovative treatments. The relationship between aging and core pathways of AD pathogenesis (amyloidopathy and tauopathy) have been extensively studied in preclinical models. However, the potential discordance between preclinical models and human pathology could represent a limitation in the identification of new therapeutic targets. This narrative review aims to gather the evidence currently available on the associations of β-Amyloid and Tau pathology with the hallmarks of aging in human studies. Briefly, our review suggests that while several hallmarks exhibit a robust association with AD pathogenesis (e.g., epigenetic alterations, chronic inflammation, dysbiosis), others (e.g., telomere attrition, cellular senescence, stem cell exhaustion) demonstrate either no relationship or weak associations. This is often due to limitations such as small sample sizes and study designs, being either cross-sectional or with short follow-up intervals, limiting the generalizability of the findings. Distinct hallmarks play varying roles in different stages of AD pathology, emphasizing the need for longitudinal studies with longer follow-up periods. Considering the intricate interconnections across the hallmarks of aging, future research on AD pathology should focus on multiple hallmarks simultaneously.
Collapse
Affiliation(s)
- Federico Bellelli
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Fellowship in Geriatric and Gerontology, University of Milan, Milan, Italy.
| | - Davide Angioni
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | | | - Bruno Vellas
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| |
Collapse
|
4
|
Cacciaglia R, Shekari M, Salvadó G, Milà-Alomà M, Falcon C, Sánchez-Benavides G, Minguillón C, Fauria K, Grau-Rivera O, Molinuevo JL, Blennow K, Zetterberg H, Quevenco FC, Suárez-Calvet M, Gispert JD. The CSF p-tau/β-amyloid 42 ratio correlates with brain structure and fibrillary β-amyloid deposition in cognitively unimpaired individuals at the earliest stages of pre-clinical Alzheimer's disease. Brain Commun 2024; 7:fcae451. [PMID: 39723106 PMCID: PMC11668178 DOI: 10.1093/braincomms/fcae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
CSF concentrations of β-amyloid 42 (Aβ42) and phosphorylated tau (p-tau) are well-established biomarkers of Alzheimer's disease and have been studied in relation to several neuropathological features both in patients and in cognitively unimpaired individuals. The CSF p-tau/Aβ42 ratio, a biomarker combining information from both pathophysiological processes, has emerged as a promising tool for monitoring disease progression, even at pre-clinical stages. Here, we studied the association between the CSF p-tau/Aβ42 ratio with downstream markers of pre-clinical Alzheimer's disease progression including brain structure, glucose metabolism, fibrillary Aβ deposition and cognitive performance in 234 cognitively unimpaired individuals, who underwent cognitive testing, a lumbar puncture, MRI, 18F-fluorodeoxyglucose and 18F-flutemetamol PET scanning. We evaluated both main effects and interactions with Alzheimer's disease risk factors, such as older age, female sex and the apoliporoptein E (APOE)-ɛ4 allele, in a priori defined regions of interest and further examined the associations on the whole-brain using voxel-wise regressions. In addition, as the association between CSF Alzheimer's disease biomarkers and brain structure and function may be non-linear, we tested the interaction between the CSF p-tau/Aβ42 ratio and stages of pre-clinical Alzheimer's disease defined using the amyloid (A) and tau (T) classification. We found significantly positive associations between CSF p-tau/Aβ42 and both cortical Aβ deposition and regional grey matter volume while no effect was observed for brain metabolism. A significant interaction with age indicated that, for the same level of CSF p-tau/Aβ42, older individuals displayed both increased Aβ deposition and lower grey matter volume, in widespread cortical areas. In addition, we found that women compared with men had a greater Aβ fibrillary accumulation in midline cortical areas and inferior temporal regions, for the same level of the CSF biomarker. The impact of CSF p-tau/Aβ42 on grey matter volume was modulated by AT stages, with A+T+ individuals displaying significantly less positive associations in areas of early atrophy in the Alzheimer's continuum. Finally, we found that sex and APOE-ɛ4 modulated the association between the CSF biomarker and episodic memory as well as abstract reasoning, respectively. Our data indicate that the CSF p-tau/Aβ42 ratio is strongly associated with multiple downstream neuropathological events in cognitively unimpaired individuals and may thus serve as a potent biomarker to investigate the earliest changes in pre-clinical Alzheimer's disease. Given that its impact on both Aβ deposition and grey matter volume is modulated by specific risk factors, our results highlight the need to take into account such predisposing variables in both clinical practice and prevention trials.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Box 117, SE-221 00 Lund, Sweden
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid 28089, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
- Servei de Neurologia, Hospital del Mar, 08005 Barcelona, Spain
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI 53705-2281, USA
| | | | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28089, Spain
- Servei de Neurologia, Hospital del Mar, 08005 Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona 08005, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona 08005, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid 28089, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08002, Spain
| |
Collapse
|
5
|
Prosser L, Sudre CH, Oxtoby NP, Young AL, Malone IB, Manning EN, Pemberton H, Walsh P, Barkhof F, Biessels GJ, Cash DM, Barnes J. Biomarker pathway heterogeneity of amyloid-positive individuals. Alzheimers Dement 2024; 20:8503-8515. [PMID: 39417393 DOI: 10.1002/alz.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION In amyloid-positive individuals, disease-related biomarker heterogeneity is understudied. METHODS We used Subtype and Stage Inference (SuStaIn) to identify data-driven subtypes among cerebrospinal fluid (CSF) amyloid beta (1-42)-positive individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNIGO/2 [n = 376]). Variables included: CSF phosphorylated tau (p-tau181), hippocampal and whole-brain volume, logical memory (LM), composite Trail Making Test score, and white matter hyperintensity (WMH) volumes. CSF amyloid-negative, apolipoprotein E ε4 non-carrier cognitively unimpaired controls (n = 86) were used to calculate z scores. RESULTS One subtype (n = 145) had early LM changes, with later p-tau and WMH changes. A second subtype (n = 88) had early WMH changes, were older, and more hypertensive. A third subtype (n = 100) had early p-tau changes, and reflected typical Alzheimer's disease. Some amyloid positive (n = 43) individuals were similar to the amyloid-negative group. DISCUSSION This work identified heterogeneity in individuals who are conventionally considered homogeneous, which is likely driven by co-pathologies including cerebrovascular disease. HIGHLIGHTS Data-driven modeling identified marker heterogeneity in amyloid-positive individuals. Heterogeneity reflected Alzheimer's disease-like, vascular-like, and mixed pathology presentations. Some amyloid-positive individuals were more similar to amyloid-negative controls. Vascular pathology plays a key role in understanding heterogeneity in those on the amyloid pathway.
Collapse
Affiliation(s)
- Lloyd Prosser
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Carole H Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Centre for Medical Image Computing, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Sciences and Experimental Medicine, University College London, London, UK
| | - Neil P Oxtoby
- Centre for Medical Image Computing, University College London, London, UK
| | - Alexandra L Young
- Centre for Medical Image Computing, University College London, London, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Emily N Manning
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Hugh Pemberton
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Phoebe Walsh
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Frederik Barkhof
- Centre for Medical Image Computing, University College London, London, UK
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
6
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
7
|
Warmenhoven N, Sánchez‐Benavides G, González‐Escalante A, Milà‐Alomà M, Shekari M, López‐Martos D, Ortiz‐Romero P, Kollmorgen G, Quijano‐Rubio C, Minguillón C, Gispert JD, Vilor‐Tejedor N, Arenaza‐Urquijo E, Palpatzis E, Ashton NJ, Zetterberg H, Blennow K, Suárez‐Calvet M, Grau‐Rivera O. CSF glial biomarkers are associated with cognition in individuals at risk of Alzheimer's disease. Alzheimers Dement 2024; 20:5819-5832. [PMID: 39032119 PMCID: PMC11497712 DOI: 10.1002/alz.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION We examined whether baseline glial markers soluble triggering receptor expressed on myeloid cell 2 (sTREM2), chitinase 3-like protein 1 (YKL-40), and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF), and plasma GFAP are associated with cognitive change in cognitively unimpaired (CU) individuals at risk of Alzheimer's disease (AD). METHODS A total of 353 CU (mean age 60.9 years) participants were included (mean follow-up time 3.28 years). Linear regression models with cognition as outcome were used. We also tested whether amyloid beta (Aβ) status modified these associations. RESULTS Higher baseline CSF sTREM2 was associated with a positive global cognition (Preclinical Alzheimer's Cognitive Composite) rate of change, and better memory and executive outcomes, independently of AD pathology. Higher baseline plasma GFAP was associated with a decline on attention rate of change. Stratified analyses by Aβ status showed that CSF sTREM2 and YKL-40 were positively associated with executive functioning in amyloid negative (Aβ-) individuals. DISCUSSION Our results suggest that a TREM2-mediated microglial response may be associated with better longitudinal cognitive performance. HIGHLIGHTS Higher cerebrospinal fluid (CSF) soluble triggering receptor expressed on myeloid cell 2 (sTREM2) relates to better longitudinal cognitive performance. The association between CSF sTREM2 and cognition is independent of Alzheimer's disease (AD) pathology. Targeting microglial reactivity may be a therapeutic strategy for AD prevention.
Collapse
Affiliation(s)
- Noëlle Warmenhoven
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Gonzalo Sánchez‐Benavides
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Armand González‐Escalante
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Marta Milà‐Alomà
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of RadiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - David López‐Martos
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Paula Ortiz‐Romero
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | | | | | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadridSpain
| | - Natalia Vilor‐Tejedor
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centre for Genomic Regulation (CRG)Barcelona Institute for Science and TechnologyBarcelonaSpain
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamNetherlands
| | - Eider Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- ISGlobal, Barcelona Institute of Global HealthBarcelonaSpain
| | - Eleni Palpatzis
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
- ISGlobal, Barcelona Institute of Global HealthBarcelonaSpain
| | - Nicholas J Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaSouth London and Maudsley NHS Foundation, Michael Rutter CentreLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | | |
Collapse
|
8
|
Falcon C, Montesinos P, Václavů L, Kassinopoulos M, Minguillon C, Fauria K, Cascales‐Lahoz D, Contador J, Fernández‐Lebrero A, Navalpotro I, Puig‐Pijoan A, Grau‐Rivera O, Kollmorgen G, Quijano‐Rubio C, Molinuevo JL, Zetterberg H, Blennow K, Suárez‐Calvet M, Van Osch MJP, Sanchez‐Gonzalez J, Gispert JD. Time-encoded ASL reveals lower cerebral blood flow in the early AD continuum. Alzheimers Dement 2024; 20:5183-5197. [PMID: 38958557 PMCID: PMC11350027 DOI: 10.1002/alz.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Cerebral blood flow (CBF) is reduced in cognitively impaired (CI) Alzheimer's disease (AD) patients. We checked the sensitivity of time-encoded arterial spin labeling (te-ASL) in measuring CBF alterations in individuals with positive AD biomarkers and associations with relevant biomarkers in cognitively unimpaired (CU) individuals. METHODS We compared te-ASL with single-postlabel delay (PLD) ASL in measuring CBF in 59 adults across the AD continuum, classified as CU amyloid beta (Aβ) negative (-), CU Aβ positive (+), and CI Aβ+. We sought associations of CBF with biomarkers of AD, cerebrovascular disease, synaptic dysfunction, neurodegeneration, and cognition in CU participants. RESULTS te-ASL was more sensitive at detecting CBF reduction in the CU Aβ+ and CI Aβ+ groups. In CU participants, lower CBF was associated with altered biomarkers of Aβ, tau, synaptic dysfunction, and neurodegeneration. DISCUSSION CBF reduction occurs early in the AD continuum. te-ASL is more sensitive than single-PLD ASL at detecting CBF changes in AD. HIGHLIGHTS Lower CBF can be detected in CU subjects in the early AD continuum. te-ASL is more sensitive than single-PLD ASL at detecting CBF alterations in AD. CBF is linked to biomarkers of AD, synaptic dysfunction, and neurodegeneration.
Collapse
Affiliation(s)
- Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadridSpain
- Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento SaludableHospital del Mar Research InstituteBarcelonaSpain
| | | | - Lena Václavů
- Department of Radiology, C. J. Gorter MRI CenterLeiden University Medical CenterLeidenNetherlands
| | | | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento SaludableHospital del Mar Research InstituteBarcelonaSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento SaludableHospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
| | - Diego Cascales‐Lahoz
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Servei de NeurologiaHospital del MarPg. Marítim de la BarcelonetaBarcelonaSpain
| | - José Contador
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Servei de NeurologiaHospital del MarPg. Marítim de la BarcelonetaBarcelonaSpain
| | - Aida Fernández‐Lebrero
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Servei de NeurologiaHospital del MarPg. Marítim de la BarcelonetaBarcelonaSpain
| | - Irene Navalpotro
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Servei de NeurologiaHospital del MarPg. Marítim de la BarcelonetaBarcelonaSpain
| | - Albert Puig‐Pijoan
- Servei de NeurologiaHospital del MarPg. Marítim de la BarcelonetaBarcelonaSpain
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento SaludableHospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Servei de NeurologiaHospital del MarPg. Marítim de la BarcelonetaBarcelonaSpain
| | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of GothenburgMölndalSweden
- UK Dementia Research Institute at University College London (UCL)LondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento SaludableHospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Servei de NeurologiaHospital del MarPg. Marítim de la BarcelonetaBarcelonaSpain
| | - Matthias J. P. Van Osch
- Department of Radiology, C. J. Gorter MRI CenterLeiden University Medical CenterLeidenNetherlands
| | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadridSpain
- Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento SaludableHospital del Mar Research InstituteBarcelonaSpain
| |
Collapse
|
9
|
Ossenkoppele R, Salvadó G, Janelidze S, Binette AP, Bali D, Karlsson L, Palmqvist S, Mattsson-Carlgren N, Stomrud E, Therriault J, Rahmouni N, Rosa-Neto P, Coomans EM, van de Giessen E, van der Flier WM, Teunissen CE, Jonaitis EM, Johnson SC, Villeneuve S, Benzinger TL, Schindler SE, Bateman RJ, Doecke JD, Doré V, Feizpour A, Masters CL, Rowe C, Wiste HJ, Petersen RC, Jack CR, Hansson O. Prediction of future cognitive decline among cognitively unimpaired individuals using measures of soluble phosphorylated tau or tau tangle pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.12.24308824. [PMID: 38947004 PMCID: PMC11213114 DOI: 10.1101/2024.06.12.24308824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Linda Karlsson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emma M. Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Erin M. Jonaitis
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | | | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tammie L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E. Schindler
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Randall J. Bateman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, United States
| | - James D. Doecke
- Australian eHealth Research Centre, CSIRO, Melbourne, Victoria, Australia
| | - Vincent Doré
- Australian eHealth Research Centre, CSIRO, Melbourne, Victoria, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Azadeh Feizpour
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather J. Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Pelkmans W, Shekari M, Brugulat‐Serrat A, Sánchez‐Benavides G, Minguillón C, Fauria K, Molinuevo JL, Grau‐Rivera O, González Escalante A, Kollmorgen G, Carboni M, Ashton NJ, Zetterberg H, Blennow K, Suarez‐Calvet M, Gispert JD. Astrocyte biomarkers GFAP and YKL-40 mediate early Alzheimer's disease progression. Alzheimers Dement 2024; 20:483-493. [PMID: 37690071 PMCID: PMC10917053 DOI: 10.1002/alz.13450] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION We studied how biomarkers of reactive astrogliosis mediate the pathogenic cascade in the earliest Alzheimer's disease (AD) stages. METHODS We performed path analysis on data from 384 cognitively unimpaired individuals from the ALzheimer and FAmilies (ALFA)+ study using structural equation modeling to quantify the relationships between biomarkers of reactive astrogliosis and the AD pathological cascade. RESULTS Cerebrospinal fluid (CSF) amyloid beta (Aβ)42/40 was associated with Aβ aggregation on positron emission tomography (PET) and with CSF p-tau181 , which was in turn directly associated with CSF neurofilament light (NfL). Plasma glial fibrillary acidic protein (GFAP) mediated the relationship between CSF Aβ42/40 and Aβ-PET, and CSF YKL-40 partly explained the association between Aβ-PET, p-tau181 , and NfL. DISCUSSION Our results suggest that reactive astrogliosis, as indicated by different fluid biomarkers, influences the pathogenic cascade during the preclinical stage of AD. While plasma GFAP mediates the early association between soluble and insoluble Aβ, CSF YKL-40 mediates the latter association between Aβ and downstream Aβ-induced tau pathology and tau-induced neuronal injury. HIGHLIGHTS Lower CSF Aβ42/40 was directly linked to higher plasma GFAP concentrations. Plasma GFAP partially explained the relationship between soluble Aβ and insoluble Aβ. CSF YKL-40 mediated Aβ-induced tau phosphorylation and tau-induced neuronal injury.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Anna Brugulat‐Serrat
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Gonzalo Sánchez‐Benavides
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Jose Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Lundbeck A/SCopenhagenDenmark
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Armand González Escalante
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | | | | | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- NIHR Biomedical Research Centre for Mental HealthBiomedical Research Unit for Dementia at South LondonMaudsley NHS FoundationLondonUK
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Institute of PsychiatryPsychology & NeuroscienceKing's College LondonLondonUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Marc Suarez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Lundbeck A/SCopenhagenDenmark
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Lundbeck A/SCopenhagenDenmark
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
| | | |
Collapse
|
11
|
Zhang W, Wang HF, Kuo K, Wang L, Li Y, Yu J, Feng J, Cheng W. Contribution of Alzheimer's disease pathology to biological and clinical progression: A longitudinal study across two cohorts. Alzheimers Dement 2023; 19:3602-3612. [PMID: 36840615 DOI: 10.1002/alz.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) deposition, tau accumulation, and brain atrophy occurr in sequence, but the contribution of Alzheimer's disease (AD) pathology to biological and clinical progression remains unclear. METHODS We included 290 and 70 participants with longitudinal assessment on Aβ-positron emission tomography (PET), tau-PET, magnetic resonance imaging, and cognitive function from the Harvard Aging Brain Study (HABS) and Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets, respectively. Partial least squares structural equation modeling (PLS-SEM) was used to determine the contribution of AD pathology to the biological and clinical longitudinal changes. RESULTS Imaging biomarkers and cognitive function were significantly associated in cross-sectional and longitudinal analyses. At the final time point, the percentage of variance explained by PLS-SEM was 27% for Aβ, 30% for tau (Aβ accounted for 61%), 29% for brain atrophy (tau accounted for 37%), and 37% for cognitive decline (brain atrophy accounted for 35%). DISCUSSION This study highlights distinctive contributing proportions of AD pathology to biological and clinical progression. Treatments targeting Aβ and tau may partially block AD progression.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Hui-Fu Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kevin Kuo
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Yuzhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Jintai Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
- School of Data Science, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Du Y, Guo J, Zhou Y, Yan S, Xu B, Wang Y, Lu D, Ma Z, Chen Q, Tang Q, Zhang W, Zhu J, Huang Y, Yang C. Revealing the Mechanisms of Byu dMar 25 in the Treatment of Alzheimer's Disease through Network Pharmacology, Molecular Docking, and In Vivo Experiment. ACS OMEGA 2023; 8:25066-25080. [PMID: 37483184 PMCID: PMC10357573 DOI: 10.1021/acsomega.3c01683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease, severely reducing the cognitive level and life quality of patients. Byu dMar 25 (BM25) has been proved to have a therapeutic effect on AD. However, the pharmacological mechanism is still unclear. Therefore, this study aims to reveal the potential mechanism of BM25 affecting AD from the perspective of network pharmacology and experimental validation. METHODS The potential active ingredients of BM25 were obtained from the TCMSP database and literature. Possible targets were predicted using SwissTargetPrediction tools. AD-related genes were identified by using GeneCards, OMIM, DisGeNET, and Drugbank databases. The candidate genes were obtained by extraction of the intersection network. Additionally, the "drug-target-disease" network was constructed by Cytoscape 3.7.2 for visualization. The PPI network was constructed by the STRING database, and the core network modules were filtered by Cytoscape 3.7.2. Enrichment analysis of GO and KEGG was carried out in the Metascape platform. Ledock software was used to dock the critical components with the core target. Furthermore, protein levels were evaluated by immunohistochemistry. RESULTS In this study, 112 active components, 1112 disease candidate genes, 3084 GO functions, and 277 KEGG pathways were obtained. Molecular docking showed that the effective components of BM25 in treating AD were β-asarone and hydroxysafflor yellow A. The most important targets were APP, PIK3R1, and PIK3CA. Enrichment analysis indicated that the Golgi genetic regulation, peroxidase activity regulation, phosphatidylinositol 3-kinase complex IA, 5-hydroxytryptamine receptor complexes, cancer pathways, and neuroactive ligand-receptor interactions played vital roles against AD. The rat experiment verified that BM25 affected PI3K-Akt pathway activation in AD. CONCLUSIONS This study reveals the mechanism of BM25 in treating AD with network pharmacology, which provides a foundation for further study on the molecular mechanism of AD treatment.
Collapse
Affiliation(s)
- Yikuan Du
- Central
Laboratory, The Tenth Affiliated Hospital
of Southern Medical University, Dongguan 523059, China
| | - Jinyan Guo
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Yuqi Zhou
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Simin Yan
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Bijun Xu
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Yuni Wang
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Duoduo Lu
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Zhendong Ma
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Qianwen Chen
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Qibin Tang
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Weichui Zhang
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jinfeng Zhu
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Yixing Huang
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| | - Chun Yang
- Dongguan
Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
- Dongguan
Key Laboratory of stem cell and regenerative tissue engineering, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
13
|
Salvadó G, Larsson V, Cody KA, Cullen NC, Jonaitis EM, Stomrud E, Kollmorgen G, Wild N, Palmqvist S, Janelidze S, Mattsson-Carlgren N, Zetterberg H, Blennow K, Johnson SC, Ossenkoppele R, Hansson O. Optimal combinations of CSF biomarkers for predicting cognitive decline and clinical conversion in cognitively unimpaired participants and mild cognitive impairment patients: A multi-cohort study. Alzheimers Dement 2023; 19:2943-2955. [PMID: 36648169 PMCID: PMC10350470 DOI: 10.1002/alz.12907] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Our objective was determining the optimal combinations of cerebrospinal fluid (CSF) biomarkers for predicting disease progression in Alzheimer's disease (AD) and other neurodegenerative diseases. METHODS We included 1,983 participants from three different cohorts with longitudinal cognitive and clinical data, and baseline CSF levels of Aβ42, Aβ40, phosphorylated tau at threonine-181 (p-tau), neurofilament light (NfL), neurogranin, α-synuclein, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), glial fibrillary acidic protein (GFAP), YKL-40, S100b, and interleukin 6 (IL-6) (Elecsys NeuroToolKit). RESULTS Change of modified Preclinical Alzheimer's Cognitive Composite (mPACC) in cognitively unimpaired (CU) was best predicted by p-tau/Aβ42 alone (R2 ≥ 0.31) or together with NfL (R2 = 0.25), while p-tau/Aβ42 (R2 ≥ 0.19) was sufficient to accurately predict change of the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) patients. P-tau/Aβ42 (AUC ≥ 0.87) and p-tau/Aβ42 together with NfL (AUC ≥ 0.75) were the best predictors of conversion to AD and all-cause dementia, respectively. DISCUSSION P-tau/Aβ42 is sufficient for predicting progression in AD, with very high accuracy. Adding NfL improves the prediction of all-cause dementia conversion and cognitive decline.
Collapse
Affiliation(s)
- Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Victoria Larsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Karly A Cody
- Wisconsin Alzheimer’s Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin, Madison, Wisconsin, USA
| | - Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erin M Jonaitis
- Wisconsin Alzheimer’s Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | | | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Geriatric Research, Education and Clinical Center at the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
15
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Sun Y, Hu HY, Hu H, Huang LY, Tan L, Yu JT. Cerebral Small Vessel Disease Burden Predicts Neurodegeneration and Clinical Progression in Prodromal Alzheimer's Disease. J Alzheimers Dis 2023; 93:283-294. [PMID: 36970905 DOI: 10.3233/jad-221207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) has been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). OBJECTIVE This study aimed to comprehensively investigated the associations of CSVD burden with cognition and AD pathologies. METHODS A total of 546 non-demented participants (mean age, 72.1 years, range, 55-89; 47.4% female) were included. The longitudinal neuropathological and clinical correlates of CSVD burden were assessed using linear mixed-effects and Cox proportional-hazard models. Partial least squares structural equation model (PLS-SEM) was used to assess the direct and indirect effects of CSVD burden on cognition. RESULTS We found that higher CSVD burden was associated with worse cognition (MMSE, β= -0.239, p = 0.006; MoCA, β= -0.493, p = 0.013), lower cerebrospinal fluid (CSF) Aβ level (β= -0.276, p < 0.001) and increased amyloid burden (β= 0.048, p = 0.002). In longitudinal, CSVD burden contributed to accelerated rates of hippocampus atrophy, cognitive decline, and higher risk of AD dementia. Furthermore, as the results of PLS-SEM, we observed both significant direct and indirect impact of advanced age (direct, β= -0.206, p < 0.001; indirect, β= -0.002, p = 0.043) and CSVD burden (direct, β= -0.096, p = 0.018; indirect, β= -0.005, p = 0.040) on cognition by Aβ-p-tau-tau pathway. CONCLUSION CSVD burden could be a prodromal predictor for clinical and pathological progression. Simultaneously, we found that the effects were mediated by the one-direction-only sequence of pathological biomarker changes starting with Aβ, through abnormal p-tau, and neurodegeneration.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|
18
|
Zhong S, Zhao B, Ma YH, Sun Y, Zhao YL, Liu WH, Ou YN, Dong Q, Tan L, Yu JT. Associations of Physical Activity with Alzheimer’s Disease Pathologies and Cognition: The CABLE Study. J Alzheimers Dis 2022; 89:483-492. [PMID: 35871345 DOI: 10.3233/jad-220389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The associations of physical activity with Alzheimer’s disease (AD) pathologies remain controversial. Objective: To quantitatively assess the association between the frequency of physical activity with cerebrospinal fluid (CSF) biomarkers in AD and further explore the mechanism by which AD pathologies regulate the correlation between physical activity and cognition. Methods: A total of 918 participants without dementia from Chinese Alzheimer’s Biomarker and Lifestyle (CABLE) were examined in this population-based cross-sectional study. Multiple linear models were used to evaluate the associations of physical activity with CSF biomarkers and cognition. Moreover, mediation analyses were conducted to investigate the potential relationships between physical activity, AD pathologies, and cognitive function. Results: Regular physical activity was positively associated with CSF Aβ 42 (p < 0.001) and Aβ 42/40 (p < 0.001), while it was negatively associated with p-tau/Aβ 42 (p < 0.001) and t-tau/Aβ 42 (p < 0.001). Of all participants, regular physical activity was associated with increased cognitive function (p < 0.001). The interaction effect indicated that age moderated the association between physical activity frequency and CSF Aβ 42 (p = 0.014) and p-tau/Aβ 42 (p = 0.041). The impact of physical activity on cognition was mediated in part by amyloid pathologies, accounting for 4.87% to 21.56% of the total effect (p < 0.05). Conclusion: This study showed the beneficial impact of physical activity on AD pathologies and cognition in participants without dementia.
Collapse
Affiliation(s)
- Shuang Zhong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wen-Hui Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Salvadó G, Milà-Alomà M, Shekari M, Ashton NJ, Operto G, Falcon C, Cacciaglia R, Minguillon C, Fauria K, Niñerola-Baizán A, Perissinotti A, Benedet AL, Kollmorgen G, Suridjan I, Wild N, Molinuevo JL, Zetterberg H, Blennow K, Suárez-Calvet M, Gispert JD. Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum. Eur J Nucl Med Mol Imaging 2022; 49:4567-4579. [PMID: 35849149 DOI: 10.1007/s00259-022-05897-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([18F]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. METHODS We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-β (Aβ) positive. Associations between GFAP markers and [18F]FDG uptake were studied. We also investigated whether these associations were modified by Aβ and tau status (AT stages). RESULTS Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [18F]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of Aβ pathology but became negative in Aβ-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. CONCLUSIONS Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Institute of Psychiatry, King's College London, Maurice Wohl Clinical Neuroscience Institute, Psychology & Neuroscience, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | | | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,H. Lundbeck A/S, Copenhagen, Denmark
| | - Henrik Zetterberg
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. .,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.
| | | |
Collapse
|
20
|
Salvadó G, Shekari M, Falcon C, Operto G, Milà-Alomà M, Sánchez-Benavides G, Cacciaglia R, Arenaza-Urquijo E, Niñerola-Baizán A, Perissinotti A, Minguillon C, Fauria K, Kollmorgen G, Suridjan I, Molinuevo JL, Zetterberg H, Blennow K, Suárez-Calvet M, Gispert JD. Brain alterations in the early Alzheimer's continuum with amyloid-β, tau, glial and neurodegeneration CSF markers. Brain Commun 2022; 4:fcac134. [PMID: 35702732 PMCID: PMC9185381 DOI: 10.1093/braincomms/fcac134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/03/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
Higher grey matter volumes/cortical thickness and fluorodeoxyglucose uptake have been consistently found in cognitively unimpaired individuals with abnormal Alzheimer’s disease biomarkers compared with those with normal biomarkers. It has been hypothesized that such transient increases may be associated with neuroinflammatory mechanisms triggered in response to early Alzheimer’s pathology. Here, we evaluated, in the earliest stages of the Alzheimer’s continuum, associations between grey matter volume and fluorodeoxyglucose uptake with CSF biomarkers of several pathophysiological mechanisms known to be altered in preclinical Alzheimer’s disease stages. We included 319 cognitively unimpaired participants from the ALFA+ cohort with available structural MRI, fluorodeoxyglucose PET and CSF biomarkers of amyloid-β and tau pathology (phosphorylated tau and total tau), synaptic dysfunction (neurogranin), neuronal and axonal injury (neurofilament light), glial activation (soluble triggering receptor on myeloid cells 2, YKL40, GFAP, interleukin-6 and S100b) and α-synuclein using the Roche NeuroToolKit. We first used the amyloid-β/tau framework to investigate differences in the neuroimaging biomarkers between preclinical Alzheimer’s disease stages. Then, we looked for associations between the neuroimaging markers and all the CSF markers. Given the non-negative nature of the concentrations of CSF biomarkers and their high collinearity, we clustered them using non-negative matrix factorization approach (components) and sought associations with the imaging markers. By groups, higher grey matter volumes were found in the amyloid-β-positive tau-negative participants with respect to the reference amyloid-β-negative tau-negative group. Both amyloid-β and tau-positive participants showed higher fluorodeoxyglucose uptake than tau-negative individuals. Using the obtained components, we observed that tau pathology accompanied by YKL-40 (astrocytic marker) was associated with higher grey matter volumes and fluorodeoxyglucose uptake in extensive brain areas. Higher grey matter volumes in key Alzheimer-related regions were also found in association with two other components characterized by a higher expression of amyloid-β in combination with different glial markers: one with higher GFAP and S100b levels (astrocytic markers) and the other one with interleukin-6 (pro-inflammatory). Notably, these components’ expression had different behaviours across amyloid-β/tau stages. Taken together, our results show that CSF amyloid-β and phosphorylated tau, in combination with different aspects of glial response, have distinctive associations with higher grey matter volumes and increased glucose metabolism in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and fluorodeoxyglucose uptake at the earliest stages of the Alzheimer’s continuum, which may revert later on the course of the disease when neurodegeneration drives structural and metabolic cerebral changes.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Barcelona, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eider Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Barcelona, Spain
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Barcelona, Spain
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del MarMedical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Barcelona, Spain
| | | |
Collapse
|
21
|
Xie Q, Ni M, Gao F, Dai LB, Lv XY, Zhang YF, Shi Q, Zhu XX, Xie JK, Shen Y, Wang SC. Correlation between Cerebrospinal Fluid Core Alzheimer's Disease Biomarkers and β-Amyloid PET in Chinese Dementia Population. ACS Chem Neurosci 2022; 13:1558-1565. [PMID: 35476397 DOI: 10.1021/acschemneuro.2c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The current diagnoses of Alzheimer's disease (AD) mainly rely on such measures as amyloid-β (Aβ) and tau neuropathology biomarkers in vivo via cerebrospinal fluid (CSF) and positron emission tomography (PET) imaging, which had been systematically studied in Caucasian individuals, whereas diagnostic performances of these approaches in Chinese dementia population still remain unclear. This study investigated the associations between the levels of CSF core AD biomarkers, including phosphorylated tau (p-Tau181), total tau (t-Tau), Aβ42, and Aβ40 measured by the single-molecule array (Simoa) and cerebral Aβ deposition status assessed by 18F-Florbetapir PET (Aβ PET), and evaluated the predictive values of CSF core AD biomarkers in discriminating Aβ PET status in a clinical dementia cohort of the Chinese population, which consisted of patients with mild cognitive impairment (MCI), AD dementia, and non-Alzheimer's dementia disease (Non-ADD). Global standard uptake value ratios (SUVRs) were calculated by Aβ PET, which was divided into positive (Aβ+) and negative (Aβ-) through visual analysis. CSF p-Tau181 and p-Tau181/t-Tau ratio were positively correlated with the global SUVR, while CSF Aβ42 and Aβ42/Aβ40 ratio were negatively correlated with the global SUVR. CSF Aβ40 has the highest predictive value in discriminating the MCI group from the AD group, while CSF p-Tau181 was applied to discriminate the AD group from the non-ADD group. CSF Aβ42/Aβ40 ratio, as the optimal predictive factor, was combined with APOE ε4 status rather than age and education, which could improve the predictive ability in differentiating the Aβ+ group from the Aβ- group. The results reveal the universal applicability of CSF core AD biomarkers and Aβ PET imaging in Chinese dementia population, which is helpful in clinical practice and drug trials in China.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Lin-Bin Dai
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xin-Yi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yi-Fan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qin Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xing-Xing Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ji-Kui Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230001, China
| | - Shi-Cun Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
22
|
Salvadó G, Milà‐Alomà M, Shekari M, Minguillon C, Fauria K, Niñerola‐Baizán A, Perissinotti A, Kollmorgen G, Buckley C, Farrar G, Zetterberg H, Blennow K, Suárez‐Calvet M, Molinuevo JL, Gispert JD. Cerebral amyloid-β load is associated with neurodegeneration and gliosis: Mediation by p-tau and interactions with risk factors early in the Alzheimer's continuum. Alzheimers Dement 2021; 17:788-800. [PMID: 33663013 PMCID: PMC8252618 DOI: 10.1002/alz.12245] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The association between cerebral amyloid-β accumulation and downstream CSF biomarkers is not fully understood, particularly in asymptomatic stages. METHODS In 318 cognitively unimpaired participants, we assessed the association between amyloid-β PET (Centiloid), and cerebrospinal fluid (CSF) biomarkers of several pathophysiological pathways. Interactions by Alzheimer's disease risk factors (age, sex and APOE-ε4), and the mediation effect of tau and neurodegeneration were also investigated. RESULTS Centiloids were positively associated with CSF biomarkers of tau pathology (p-tau), neurodegeneration (t-tau, NfL), synaptic dysfunction (neurogranin) and neuroinflammation (YKL-40, GFAP, sTREM2), presenting interactions with age (p-tau, t-tau, neurogranin) and sex (sTREM2, NfL). Most of these associations were mediated by p-tau, except for NfL. The interaction between sex and amyloid-β on sTREM2 and NfL was also tau-independent. DISCUSSION Early amyloid-β accumulation has a tau-independent effect on neurodegeneration and a tau-dependent effect on neuroinflammation. Besides, sex has a modifier effect on these associations independent of tau.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Marta Milà‐Alomà
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Aida Niñerola‐Baizán
- Nuclear Medicine DepartmentHospital Clínic BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER‐BBN)BarcelonaSpain
| | - Andrés Perissinotti
- Nuclear Medicine DepartmentHospital Clínic BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER‐BBN)BarcelonaSpain
| | | | | | | | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER‐BBN)BarcelonaSpain
| | | |
Collapse
|