1
|
Li M, Wu X, Jiang L, Liu M, Yanju G, Li X, Tian F, Ye F, Wang J, Wang S, Qin C, Zhang L. Exploring the co-morbid relationship between Alzheimer's disease and lung cancer in the 5xFAD transgenic mouse model. Animal Model Exp Med 2025; 8:784-797. [PMID: 39930922 DOI: 10.1002/ame2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and lung cancer are leading causes of mortality among the older population. Epidemiological evidence suggests an antagonistic relationship between them, whereby patients with AD exhibit a reduced risk of developing cancer and vice versa. However, the precise mechanism by which AD antagonizes lung cancer progression warrants further elucidation. METHODS To this end, we established a co-morbidity model using 5xFAD transgenic mice induced with the carcinogen urethane. We visualized and quantified surface lung tumor colonies, assessed pathological parameters associated with lung cancer and AD using histopathological analysis, and employed single-cell sequencing and molecular pathological analyses to explore the mechanisms by which AD confers resistance to lung cancer. RESULTS Our findings revealed a significant reduction in lung tumor incidence in the AD group compared with that in the wild-type (WT) group. The results indicated a close association between AD-induced inhibition of lung tumor progression and iron homeostasis imbalance and increased oxidative stress. Moreover, greater CD8+ T cytotoxic lymphocyte and effector natural killer cell infiltration in the lung tumor tissues of AD mice and enhanced CD8+ T cytotoxic lymphocyte-mediated killing of target cells may be the primary factors contributing to the inhibition of lung tumor growth in the presence of AD. CONCLUSION This study identified essential mechanisms through which AD suppresses lung tumorigenesis, thereby providing targets for potential therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Mingfeng Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xinghan Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Lin Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Min Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Gong Yanju
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xiaomeng Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fan Tian
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fan Ye
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Jinlong Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Siyuan Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Changping National Laboratory (CPNL), Beijing, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
2
|
Rodriguez-Rodriguez P, Wang W, Tsagkogianni C, Feng I, Morello-Megias A, Jain K, Alanko V, Kahvecioglu HA, Mohammadi E, Li X, Flajolet M, Sandebring-Matton A, Maioli S, Vidal N, Milosevic A, Roussarie JP. Cell-type specific profiling of human entorhinal cortex at the onset of Alzheimer's disease neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630881. [PMID: 39803521 PMCID: PMC11722323 DOI: 10.1101/2024.12.31.630881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Neurons located in layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that curb the disease before symptom onset. Here we performed cell-type specific profiling of human EC at the onset of AD neuropathology. We identify an early response to amyloid pathology by microglia and oligodendrocytes. Importantly, we provide the first insight into neuronal alterations that coincide with incipient tau pathology: the signaling pathway for Reelin, recently shown to be a major AD resilience gene is dysregulated in ECII neurons, while the secreted synaptic organizer molecules NPTX2 and CBLN4, emerging AD biomarkers, are downregulated in surrounding neurons. By uncovering the complex multicellular landscape of EC at these early AD stages, this study paves the way for detailed characterization of the mechanisms governing NFT formation and opens long-needed novel therapeutic avenues.
Collapse
Affiliation(s)
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University. New York, NY, USA
| | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Irena Feng
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Ana Morello-Megias
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Kaahini Jain
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Vilma Alanko
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | | | - Elyas Mohammadi
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | | | - Anna Sandebring-Matton
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Noemi Vidal
- Pathology department. Biobank HUB-ICO-IDIBELL, University Hospital of Bellvitge. Barcelona, Spain
| | - Ana Milosevic
- Laboratory of Developmental Genetics, The Rockefeller University. New York, NY, USA
| | | |
Collapse
|
3
|
Bai H, Feng XF. Searching for new drugs to treat Alzheimer’s disease dementia through multiple pathways. World J Clin Cases 2025; 13:100833. [DOI: 10.12998/wjcc.v13.i1.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important. This review focuses on introducing and commenting on some recent progress in exploring drugs to improve cognitive function, especially the new progress in drug treatment for AD. We mainly discuss the opportunities and challenges in finding and developing new therapeutic drugs from the aspects of acetylcholinesterase, N-methyl-D-aspartate glutamate receptor, amyloid protein, tau protein and chronic immune inflammation.
Collapse
Affiliation(s)
- Hua Bai
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun 558099, Guizhou Province, China
- Department of Neurology, Wulong Branch of the People's Hospital Affiliated to Chongqing University, Wulong 408500, Chongqing, China
| | - Xiao-Feng Feng
- Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
4
|
Wang Y, Ju R, Jiang J, Mao L, Li X, Deng M. Concomitant presence of a novel ARPP21 variant and CNVs in Chinese familial amyotrophic lateral sclerosis-frontotemporal dementia patients. Neurol Sci 2025; 46:195-205. [PMID: 39271636 DOI: 10.1007/s10072-024-07759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder marked by the degeneration of motor neurons and progressive muscle weakness. Heredity plays an important part in the pathogenesis of ALS. Recently, with the emergence of the oligogenic pathogenic mechanism in ALS and the ongoing discovery of new mutated genes and genomic variants, there is an emerging need for larger-scale and more comprehensive genetic screenings in higher resolution. In this study, we performed whole-genome sequencing (WGS) on 34 familial ALS probands lacking the most common disease-causing mutations to explore the genetic landscape of Chinese ALS patients further. Among them, we identified a novel ARPP21 c.1231G > A (p.Glu411Lys) variant and two copy number variations (CNVs) affecting the PFN1 and RBCK1 genes in a patient with ALS-frontotemporal dementia (FTD). This marks the first report of an ARPP21 variant in Chinese ALS-FTD patients, providing fresh evidence for the association between ARPP21 and ALS. Our findings also underscore the potential role of CNVs in ALS-FTD, suggesting that the cumulative effect of multiple rare variants may contribute to disease onset. Furthermore, compared to the averages in our cohort and the reported Chinese ALS population, this patient displayed a shorter survival time and more rapid disease progression, suggesting the possibility of an oligogenic mechanism in disease pathogenesis. Further research will contribute to a deeper understanding of the rare mutations and their interactions, thus advancing our understanding of the genetic mechanisms underlying ALS and ALS-FTD.
Collapse
Affiliation(s)
- Yiying Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Runqing Ju
- The Affiliated High School of Peking University Dalton Academy, Beijing, 100190, China
| | - Jingsi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Le Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaogang Li
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
5
|
Cocoș R, Popescu BO. Scrutinizing neurodegenerative diseases: decoding the complex genetic architectures through a multi-omics lens. Hum Genomics 2024; 18:141. [PMID: 39736681 DOI: 10.1186/s40246-024-00704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models. We explore the roles of common and rare genetic variants, gene-gene and gene-environment interactions, and epigenetic influences in shaping disease phenotypes. Additionally, we emphasize the importance of multi-omics layers including genomic, transcriptomic, proteomic, epigenetic, and metabolomic data in elucidating the molecular mechanisms underlying neurodegeneration. Special attention is given to missing heritability and the contribution of rare variants, particularly in the context of pleiotropy and network pleiotropy. We examine the application of single-cell omics technologies, transcriptome-wide association studies, and epigenome-wide association studies as key approaches for dissecting disease mechanisms at tissue- and cell-type levels. Our review introduces the OmicPeak Disease Trajectory Model, a conceptual framework for understanding the genetic architecture of neurodegenerative disease progression, which integrates multi-omics data across biological layers and time points. This review highlights the critical importance of adopting a systems genetics approach to unravel the complex genetic architecture of neurodegenerative diseases. Finally, this emerging holistic understanding of multi-omics data and the exploration of the intricate genetic landscape aim to provide a foundation for establishing more refined genetic architectures of these diseases, enhancing diagnostic precision, predicting disease progression, elucidating pathogenic mechanisms, and refining therapeutic strategies for neurodegenerative conditions.
Collapse
Affiliation(s)
- Relu Cocoș
- Department of Medical Genetics, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
6
|
Si Y, Lu W, Holloway S, Wang H, Tucci AA, Brucker A, Cheng Y, Wang LS, Schellenberger G, Lee WP, Tzeng JY. CNV-Profile Regression: A New Approach for Copy Number Variant Association Analysis in Whole Genome Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624994. [PMID: 39651129 PMCID: PMC11623527 DOI: 10.1101/2024.11.23.624994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Copy number variants (CNVs) are DNA gains or losses involving >50 base pairs. Assessing CNV effects on disease risk requires consideration of several factors. First, there are no natural definitions for CNV loci. Second, CNV effects can depend on dosage and length. Third, CNV effects can be more accurately estimated when all CNV events in a genomic region are analyzed together to assess their joint effects. We propose a new framework for association analysis that directly models an individual's entire CNV profile within a genomic region. This framework represents an individual's CNVs using a CNV profile curve to capture variations in CNV length and dosage and to bypass the need to predefine CNV loci. CNV effects are estimated at each genome position, making the results comparable across different studies. To jointly estimate the effects of all CNVs, we use a Lasso penalty to select CNVs associated with the trait and integrate a weighted L2-fusion penalty to encourage similar effects of adjacent CNVs when supported by the data. Simulations show that the proposed model can more effectively identify causal CNVs while maintaining false positive rates comparable to baseline methods and yield more precise effect-size estimates across different settings. When applied to CNV derived from whole genome sequencing data of the Alzheimer's Disease Sequencing Project, the proposed methods identify additional CNVs associated with Alzheimer's Disease (AD). These identified CNVs overlap with several known AD-risk genes and are significantly enriched by biological processes related to neuron structures and functions crucial in AD development.
Collapse
|
7
|
Pérez-González AP, García-Kroepfly AL, Pérez-Fuentes KA, García-Reyes RI, Solis-Roldan FF, Alba-González JA, Hernández-Lemus E, de Anda-Jáuregui G. The ROSMAP project: aging and neurodegenerative diseases through omic sciences. Front Neuroinform 2024; 18:1443865. [PMID: 39351424 PMCID: PMC11439699 DOI: 10.3389/fninf.2024.1443865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
The Religious Order Study and Memory and Aging Project (ROSMAP) is an initiative that integrates two longitudinal cohort studies, which have been collecting clinicopathological and molecular data since the early 1990s. This extensive dataset includes a wide array of omic data, revealing the complex interactions between molecular levels in neurodegenerative diseases (ND) and aging. Neurodegenerative diseases (ND) are frequently associated with morbidity and cognitive decline in older adults. Omics research, in conjunction with clinical variables, is crucial for advancing our understanding of the diagnosis and treatment of neurodegenerative diseases. This summary reviews the extensive omics research-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and multiomics-conducted through the ROSMAP study. It highlights the significant advancements in understanding the mechanisms underlying neurodegenerative diseases, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Alejandra P Pérez-González
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomedicas, Unidad de Posgrado Edificio B Primer Piso, Ciudad Universitaria, Mexico City, Mexico
- Facultad de Estudios Superiores Iztacala UNAM, Mexico City, Mexico
| | | | | | | | | | | | - Enrique Hernández-Lemus
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Investigadoras e Investigadores por México Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| |
Collapse
|
8
|
Li X, Fernandes BS, Liu A, Chen J, Chen X, Zhao Z, Dai Y. GRPa-PRS: A risk stratification method to identify genetically-regulated pathways in polygenic diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.19.23291621. [PMID: 37425929 PMCID: PMC10327215 DOI: 10.1101/2023.06.19.23291621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Polygenic risk scores (PRS) are tools used to evaluate an individual's susceptibility to polygenic diseases based on their genetic profile. A considerable proportion of people carry a high genetic risk but evade the disease. On the other hand, some individuals with a low risk of eventually developing the disease. We hypothesized that unknown counterfactors might be involved in reversing the PRS prediction, which might provide new insights into the pathogenesis, prevention, and early intervention of diseases. Methods We built a novel computational framework to identify genetically-regulated pathways (GRPas) using PRS-based stratification for each cohort. We curated two AD cohorts with genotyping data; the discovery (disc) and the replication (rep) datasets include 2722 and 2854 individuals, respectively. First, we calculated the optimized PRS model based on the three recent AD GWAS summary statistics for each cohort. Then, we stratified the individuals by their PRS and clinical diagnosis into six biologically meaningful PRS strata, such as AD cases with low/high risk and cognitively normal (CN) with low/high risk. Lastly, we imputed individual genetically-regulated expression (GReX) and identified differential GReX and GRPas between risk strata using gene-set enrichment and variational analyses in two models, with and without APOE effects. An orthogonality test was further conducted to verify those GRPas are independent of PRS risk. To verify the generalizability of other polygenic diseases, we further applied a default model of GRPa-PRS for schizophrenia (SCZ). Results For each stratum, we conducted the same procedures in both the disc and rep datasets for comparison. In AD, we identified several well-known AD-related pathways, including amyloid-beta clearance, tau protein binding, and astrocyte response to oxidative stress. Additionally, we discovered resilience-related GRPs that are orthogonal to AD PRS, such as the calcium signaling pathway and divalent inorganic cation homeostasis. In SCZ, pathways related to mitochondrial function and muscle development were highlighted. Finally, our GRPa-PRS method identified more consistent differential pathways compared to another variant-based pathway PRS method. Conclusions We developed a framework, GRPa-PRS, to systematically explore the differential GReX and GRPas among individuals stratified by their estimated PRS. The GReX-level comparison among those strata unveiled new insights into the pathways associated with disease risk and resilience. Our framework is extendable to other polygenic complex diseases.
Collapse
Affiliation(s)
- Xiaoyang Li
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brisa S. Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Xiangning Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Rubinstein T, Brickman AM, Cheng B, Burkett S, Park H, Annavajhala MK, Uhlemann A, Andrews H, Gutierrez J, Paster BJ, Noble JM, Papapanou PN. Periodontitis and brain magnetic resonance imaging markers of Alzheimer's disease and cognitive aging. Alzheimers Dement 2024; 20:2191-2208. [PMID: 38278517 PMCID: PMC10984451 DOI: 10.1002/alz.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION We examined the association of clinical, microbiological, and host response features of periodontitis with MRI markers of atrophy/cerebrovascular disease in the Washington Heights Inwood Columbia Aging Project (WHICAP) Ancillary Study of Oral Health. METHODS We analyzed 468 participants with clinical periodontal data, microbial plaque and serum samples, and brain MRIs. We tested the association of periodontitis features with MRI features, after adjusting for multiple risk factors for Alzheimer's disease/Alzheimer's disease-related dementia (AD/ADRD). RESULTS In fully adjusted models, having more teeth was associated with lower odds for infarcts, lower white matter hyperintensity (WMH) volume, higher entorhinal cortex volume, and higher cortical thickness. Higher extent of periodontitis was associated with lower entorhinal cortex volume and lower cortical thickness. Differential associations emerged between colonization by specific bacteria/serum antibacterial IgG responses and MRI outcomes. DISCUSSION In an elderly cohort, clinical, microbiological, and serological features of periodontitis were associated with MRI findings related to ADRD risk. Further investigation of causal associations is warranted.
Collapse
Affiliation(s)
- Tom Rubinstein
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Adam M. Brickman
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Bin Cheng
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Sandra Burkett
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Heekuk Park
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Medini K. Annavajhala
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Anne‐Catrin Uhlemann
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Howard Andrews
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Jose Gutierrez
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Bruce J. Paster
- The Forsyth InstituteCambridgeMassachusettsUSA
- Department of Oral Medicine, Infection and ImmunityHarvard School of Dental MedicineBostonMassachusettsUSA
| | - James M. Noble
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Panos N. Papapanou
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| |
Collapse
|
10
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
11
|
Hao Y, Li C, Wang H, Ming C. Effects of copy number variations on longevity in late-onset Alzheimer's disease patients: insights from a causality network analysis. Front Aging Neurosci 2023; 15:1241412. [PMID: 38020759 PMCID: PMC10652415 DOI: 10.3389/fnagi.2023.1241412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD), particularly late-onset Alzheimer's disease (LOAD), is a prevalent form of dementia that significantly affects patients' cognitive and behavioral capacities and longevity. Although approximately 70 genetic risk factors linked with AD have been identified, their influence on patient longevity remains unclear. Further, recent studies have associated copy number variations (CNVs) with the longevity of healthy individuals and immune-related pathways in AD patients. This study aims to investigate the role of CNVs on the longevity of AD patients by integrating the Whole Genome Sequencing (WGS) and transcriptomics data from the Religious Orders Study/Memory and Aging Project (ROSMAP) cohort through causality network inference. Our comprehensive analysis led to the construction of a CNV-Gene-Age of Death (AOD) causality network. We successfully identified three key CNVs (DEL5006, mCNV14192, and DUP42180) and seven AD-longevity causal genes (PLGRKT, TLR1, PLAU, CALB2, SYTL2, OTOF, and NT5DC1) impacting AD patient longevity, independent of disease severity. This outcome emphasizes the potential role of plasminogen activation and chemotaxis in longevity. We propose several hypotheses regarding the role of identified CNVs and the plasminogen system on patient longevity. However, experimental validation is required to further corroborate these findings and uncover precise mechanisms. Despite these limitations, our study offers promising insights into the genetic influence on AD patient longevity and contributes to paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Yanan Hao
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - Chuhao Li
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| |
Collapse
|
12
|
Litke R, Vicari J, Huang BT, Shapiro L, Roh KH, Silver A, Talreja P, Palacios N, Yoon Y, Kellner C, Kaniskan H, Vangeti S, Jin J, Ramos-Lopez I, Mobbs C. Novel small molecules inhibit proteotoxicity and inflammation: Mechanistic and therapeutic implications for Alzheimer's Disease, healthspan and lifespan- Aging as a consequence of glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544352. [PMID: 37398396 PMCID: PMC10312632 DOI: 10.1101/2023.06.12.544352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammation drives many age-related, especially neurological, diseases, and likely mediates age-related proteotoxicity. For example, dementia due to Alzheimer's Disease (AD), cerebral vascular disease, many other neurodegenerative conditions is increasingly among the most devastating burdens on the American (and world) health system and threatens to bankrupt the American health system as the population ages unless effective treatments are developed. Dementia due to either AD or cerebral vascular disease, and plausibly many other neurodegenerative and even psychiatric conditions, is driven by increased age-related inflammation, which in turn appears to mediate Abeta and related proteotoxic processes. The functional significance of inflammation during aging is also supported by the fact that Humira, which is simply an antibody to the pro-inflammatory cytokine TNF-a, is the best-selling drug in the world by revenue. These observations led us to develop parallel high-throughput screens to discover small molecules which inhibit age-related Abeta proteotoxicity in a C. elegans model of AD AND LPS-induced microglial TNF-a. In the initial screen of 2560 compounds (Microsource Spectrum library) to delay Abeta proteotoxicity, the most protective compounds were, in order, phenylbutyrate, methicillin, and quetiapine, which belong to drug classes (HDAC inhibitors, beta lactam antibiotics, and tricyclic antipsychotics, respectably) already robustly implicated as promising to protect in neurodegenerative diseases, especially AD. RNAi and chemical screens indicated that the protective effects of HDAC inhibitors to reduce Abeta proteotoxicity are mediated by inhibition of HDAC2, also implicated in human AD, dependent on the HAT Creb binding protein (Cbp), which is also required for the protective effects of both dietary restriction and the daf-2 mutation (inactivation of IGF-1 signaling) during aging. In addition to methicillin, several other beta lactam antibiotics also delayed Abeta proteotoxicity and reduced microglial TNF-a. In addition to quetiapine, several other tricyclic antipsychotic drugs also delayed age-related Abeta proteotoxicity and increased microglial TNF-a, leading to the synthesis of a novel congener, GM310, which delays Abeta as well as Huntingtin proteotoxicity, inhibits LPS-induced mouse and human microglial and monocyte TNF-a, is highly concentrated in brain after oral delivery with no apparent toxicity, increases lifespan, and produces molecular responses highly similar to those produced by dietary restriction, including induction of Cbp inhibition of inhibitors of Cbp, and genes promoting a shift away from glycolysis and toward metabolism of alternate (e.g., lipid) substrates. GM310, as well as FDA-approved tricyclic congeners, prevented functional impairments and associated increase in TNF-a in a mouse model of stroke. Robust reduction of glycolysis by GM310 was functionally corroborated by flux analysis, and the glycolytic inhibitor 2-DG inhibited microglial TNF-a and other markers of inflammation, delayed Abeta proteotoxicity, and increased lifespan. These results support the value of phenotypic screens to discover drugs to treat age-related, especially neurological and even psychiatric diseases, including AD and stroke, and to clarify novel mechanisms driving neurodegeneration (e.g., increased microglial glycolysis drives neuroinflammation and subsequent neurotoxicity) suggesting novel treatments (selective inhibitors of microglial glycolysis).
Collapse
|
13
|
Wang H, Makowski C, Zhang Y, Qi A, Kaufmann T, Smeland OB, Fiecas M, Yang J, Visscher PM, Chen CH. Chromosomal inversion polymorphisms shape human brain morphology. Cell Rep 2023; 42:112896. [PMID: 37505983 PMCID: PMC10508191 DOI: 10.1016/j.celrep.2023.112896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The impact of chromosomal inversions on human brain morphology remains underexplored. We studied 35 common inversions classified from genotypes of 33,018 adults with European ancestry. The inversions at 2p22.3, 16p11.2, and 17q21.31 reach genome-wide significance, followed by 8p23.1 and 6p21.33, in their association with cortical and subcortical morphology. The 17q21.31, 8p23.1, and 16p11.2 regions comprise the LRRC37, OR7E, and NPIP duplicated gene families. We find the 17q21.31 MAPT inversion region, known for harboring neurological risk, to be the most salient locus among common variants for shaping and patterning the cortex. Overall, we observe the inverted orientations decreasing brain size, with the exception that the 2p22.3 inversion is associated with increased subcortical volume and the 8p23.1 inversion is associated with increased motor cortex. These significant inversions are in the genomic hotspots of neuropsychiatric loci. Our findings are generalizable to 3,472 children and demonstrate inversions as essential genetic variation to understand human brain phenotypes.
Collapse
Affiliation(s)
- Hao Wang
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Anna Qi
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tobias Kaufmann
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Wang Z, Zhu X, Wen Y, Shang D. Bibliometric analysis of global research on the role of apolipoprotein E in Alzheimer's disease. Heliyon 2023; 9:e17987. [PMID: 37496906 PMCID: PMC10366397 DOI: 10.1016/j.heliyon.2023.e17987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Alzheimer's disease (AD) has attracted considerable attention from the public and scientific researchers, leading to a rapid growth in relevant research on this disorder in the last 10 years. The present study aimed to conduct a bibliometric analysis to elucidate the trends of global research on the role of apolipoprotein E in AD in the past decade. Three bibliometric software (CiteSpace, VOSviewer, and R Bibliometrix) were used to analyze the active journals, countries/regions, institutes, authors, co-cited references, and keywords in this field. The USA was the most influential country, and the University of California was the most productive institute. Zetterberg H contributed the highest number of publications, and Petersen RC was the most cited author in this field. On the basis of the co-cited reference analysis, knowledge base on biomarkers, risk factors, and mechanisms were updated in the past decade. Current research hotspots are shifting to tau-related mechanisms and identification of genetic risk factors. Our study provides insights into the developing knowledge base and trends related to research on apolipoprotein E in AD, which may provide new directions for further research in this field.
Collapse
Affiliation(s)
- Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
15
|
Mathioudakis L, Dimovasili C, Bourbouli M, Latsoudis H, Kokosali E, Gouna G, Vogiatzi E, Basta M, Kapetanaki S, Panagiotakis S, Kanterakis A, Boumpas D, Lionis C, Plaitakis A, Simos P, Vgontzas A, Kafetzopoulos D, Zaganas I. Study of Alzheimer's disease- and frontotemporal dementia-associated genes in the Cretan Aging Cohort. Neurobiol Aging 2023; 123:111-128. [PMID: 36117051 DOI: 10.1016/j.neurobiolaging.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
Using exome sequencing, we analyzed 196 participants of the Cretan Aging Cohort (CAC; 95 with Alzheimer's disease [AD], 20 with mild cognitive impairment [MCI], and 81 cognitively normal controls). The APOE ε4 allele was more common in AD patients (23.2%) than in controls (7.4%; p < 0.01) and the PSEN2 p.Arg29His and p.Cys391Arg variants were found in 3 AD and 1 MCI patient, respectively. Also, we found the frontotemporal dementia (FTD)-associated TARDBP gene p.Ile383Val variant in 2 elderly patients diagnosed with AD and in 2 patients, non CAC members, with the amyotrophic lateral sclerosis/FTD phenotype. Furthermore, the p.Ser498Ala variant in the positively selected GLUD2 gene was less frequent in AD patients (2.11%) than in controls (16%; p < 0.01), suggesting a possible protective effect. While the same trend was found in another local replication cohort (n = 406) and in section of the ADNI cohort (n = 808), this finding did not reach statistical significance and therefore it should be considered preliminary. Our results attest to the value of genetic testing to study aged adults with AD phenotype.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Christina Dimovasili
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Mara Bourbouli
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Evgenia Kokosali
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Garyfallia Gouna
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Emmanouella Vogiatzi
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Maria Basta
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Stefania Kapetanaki
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Simeon Panagiotakis
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Alexandros Kanterakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas (ICS-FORTH), Heraklion, Crete, Greece
| | - Dimitrios Boumpas
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Christos Lionis
- University of Crete, Medical School, Clinic of Social and Family Medicine, Heraklion, Crete, Greece
| | - Andreas Plaitakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Panagiotis Simos
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Dimitrios Kafetzopoulos
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Zaganas
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece.
| |
Collapse
|
16
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci 2022; 79:585. [PMID: 36348101 PMCID: PMC11803048 DOI: 10.1007/s00018-022-04614-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|