1
|
Hong D, Zhang Z, Sun Y, Wang X, Yang P, Jiang T, Yu B. Optimized efficient screening for Duchenne muscular dystrophy carriers using proto-oncogene tyrosine-protein kinase receptor Ret. Lab Med 2025:lmae127. [PMID: 40244132 DOI: 10.1093/labmed/lmae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a severe genetic disorder affecting 5% to 19% of carriers. Creatine kinase (CK) is a traditional biomarker for DMD, but its screening accuracy is limited. This study evaluated the potential of combining the proto-oncogene tyrosine-protein kinase receptor Ret (RET) with CK-MM to enhance screening efficacy. METHODS Creatine kinase-MM and RET levels were analyzed in 14 adult and 5 newborn carriers of DMD, along with noncarrier control individuals. The CK-MM/RET ratio was calculated, and a receiver operating characteristic curve analysis evaluated biomarker screening efficiency. Methods for extracting RET from dried blood spots (DBSs) were compared with correlations between DBSs and serum RET levels and stability under varying storage conditions. RESULTS Carriers of DMD exhibited elevated CK-MM and CK-MM/RET ratios with reduced RET. The CK-MM/RET ratio had the highest screening efficiency. Extraction of RET was optimal using Diluent C at 4 °C overnight, showing a strong DBS-serum correlation; RET remained stable, except under high humidity and temperature conditions. DISCUSSION Combining RET with CK-MM enhances DMD carrier screening, offering a more efficient DBS-based method for early detection.
Collapse
Affiliation(s)
- Dongyang Hong
- Department of Genetic Medicine Center, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Zhilei Zhang
- Department of Genetic Medicine Center, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Yun Sun
- Department of Genetic Medicine Center, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Xin Wang
- Department of Genetic Medicine Center, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Peiying Yang
- Department of Genetic Medicine Center, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Tao Jiang
- Department of Genetic Medicine Center, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center of Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
Pauper M, Hentschel A, Tiburcy M, Beltran S, Ruck T, Schara-Schmidt U, Roos A. Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future. Biomolecules 2025; 15:130. [PMID: 39858524 PMCID: PMC11763865 DOI: 10.3390/biom15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes. The steady development may allow to overcome existing limitations including a quenched dynamic range and quantification of different protein isoforms. Future directions may include targeted proteomics in diagnostic settings using not only muscle biopsies but also liquid biopsies to address the need for minimally invasive procedures.
Collapse
Affiliation(s)
- Marc Pauper
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany;
- ZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
3
|
Hong X, Jiang F, Wang L. Adult late-onset limb-girdle muscular dystrophy R1/2A complicated by parathyroid adenoma and sick sinus syndrome: a case report and literature review. BMC Musculoskelet Disord 2024; 25:961. [PMID: 39593010 PMCID: PMC11590460 DOI: 10.1186/s12891-024-08067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy (LGMD) is a group of hereditary myopathies. This group of diseases is highly heterogeneous in terms of genetic mode, age at onset, and disease progression; therefore, they are easily misdiagnosed and missed in clinical practice. CASE PRESENTATION We describe a case of adult late-onset LGMD R1/2A in a 56-year-old female patient. The patient experienced elevated creatine kinase levels lasting 5 years, muscle soreness of the limbs lasting 4 years, and exacerbation of limb fatigue lasting 1 month. Early in the course of the disease, the patient experienced severe bradycardia and was later diagnosed with sick sinus syndrome. In addition to cardiac involvement, our patient also had primary hyperparathyroidism during the disease course, which was confirmed pathologically as a parathyroid adenoma. A biopsy of the left biceps showed pathological manifestations of mild myogenic damage. All-exon gene sequencing confirmed the diagnosis of LGMD R1/2A, and she was treated with vitamin E, vitamin B2, and coenzyme Q. Due to atrial fibrillation secondary to sick sinus syndrome, a pacemaker was implanted. CONCLUSION The patient in this case study had adult late-onset LGMD R1/2A with cardiac involvement and functional parathyroid adenoma, which is rare and clinically significant. Therefore, early clinical identification, diagnosis, as well as targeted and active treatments can improve the prognosis of such patients.
Collapse
Affiliation(s)
- Xuelian Hong
- Department of Rheumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jin Hua, 321000, China
| | - Fengfeng Jiang
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jin Hua, 321000, China
| | - Liuqing Wang
- Department of Rheumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jin Hua, 321000, China.
| |
Collapse
|
4
|
Silva AMS, Rodrigo P, Moreno CAM, Mendonça RDH, Estephan EDP, Camelo CG, Campos ED, Dias AT, Nascimento AM, Kulikowski LD, Oliveira ASB, Reed UC, Goldfarb LG, Olivé M, Zanoteli E. The Location of Disease-Causing DES Variants Determines the Severity of Phenotype and the Morphology of Sarcoplasmic Aggregates. J Neuropathol Exp Neurol 2022; 81:746-757. [PMID: 35898174 DOI: 10.1093/jnen/nlac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Desmin (DES) is the main intermediate muscle filament that connects myofibrils individually and with the nucleus, sarcolemma, and organelles. Pathogenic variants of DES cause desminopathy, a disorder affecting the heart and skeletal muscles. We aimed to analyze the clinical features, morphology, and distribution of desmin aggregates in skeletal muscle biopsies of patients with desminopathy and to correlate these findings with the type and location of disease-causing DES variants. This retrospective study included 30 patients from 20 families with molecularly confirmed desminopathy from 2 neuromuscular referral centers. We identified 2 distinct patterns of desmin aggregates: well-demarcated subsarcolemmal aggregates and diffuse aggregates with poorly delimited borders. Pathogenic variants located in the 1B segment and the tail domain of the desmin molecule are more likely to present with early-onset cardiomyopathy compared to patients with variants in other segments. All patients with mutations in the 1B segment had well-demarcated subsarcolemmal aggregates, but none of the patients with variants in other desmin segments showed such histological features. We suggest that variants located in the 1B segment lead to well-shaped subsarcolemmal desmin aggregation and cause disease with more frequent cardiac manifestations. These findings will facilitate early identification of patients with potentially severe cardiac syndromes.
Collapse
Affiliation(s)
| | - Patricia Rodrigo
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | | - Eduardo de Paula Estephan
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Eliene Dutra Campos
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Alexandre Torchio Dias
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Amom Mendes Nascimento
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Umbertina Conti Reed
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lev G Goldfarb
- Department of Pathology and Molecular Medicine, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - Montse Olivé
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
5
|
Liewluck T. A Window Into the Myofibrillar Myopathy Proteome. Neurol Genet 2021; 7:e587. [PMID: 34084941 PMCID: PMC8170776 DOI: 10.1212/nxg.0000000000000587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Teerin Liewluck
- Division of Neuromuscular Medicine and Muscle Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Kley RA, Leber Y, Schrank B, Zhuge H, Orfanos Z, Kostan J, Onipe A, Sellung D, Güttsches AK, Eggers B, Jacobsen F, Kress W, Marcus K, Djinovic-Carugo K, van der Ven PFM, Fürst DO, Vorgerd M. FLNC-Associated Myofibrillar Myopathy: New Clinical, Functional, and Proteomic Data. NEUROLOGY-GENETICS 2021; 7:e590. [PMID: 34235269 PMCID: PMC8237399 DOI: 10.1212/nxg.0000000000000590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/28/2020] [Indexed: 11/15/2022]
Abstract
Objective To determine whether a new indel mutation in the dimerization domain of filamin C (FLNc) causes a hereditary myopathy with protein aggregation in muscle fibers, we clinically and molecularly studied a German family with autosomal dominant myofibrillar myopathy (MFM). Methods We performed mutational analysis in 3 generations, muscle histopathology, and proteomic studies of IM protein aggregates. Functional consequences of the FLNC mutation were investigated with interaction and transfection studies and biophysics molecular analysis. Results Eight patients revealed clinical features of slowly progressive proximal weakness associated with a heterozygous c.8025_8030delCAAGACinsA (p.K2676Pfs*3) mutation in FLNC. Two patients exhibited a mild cardiomyopathy. MRI of skeletal muscle revealed lipomatous changes typical for MFM with FLNC mutations. Muscle biopsies showed characteristic MFM findings with protein aggregation and lesion formation. The proteomic profile of aggregates was specific for MFM-filaminopathy and indicated activation of the ubiquitin-proteasome system (UPS) and autophagic pathways. Functional studies revealed that mutant FLNc is misfolded, unstable, and incapable of forming homodimers and heterodimers with wild-type FLNc. Conclusions This new MFM-filaminopathy family confirms that expression of mutant FLNC leads to an adult-onset muscle phenotype with intracellular protein accumulation. Mutant FLNc protein is biochemically compromised and leads to dysregulation of protein quality control mechanisms. Proteomic analysis of MFM protein aggregates is a potent method to identify disease-relevant proteins, differentiate MFM subtypes, evaluate the relevance of gene variants, and identify novel MFM candidate genes.
Collapse
Affiliation(s)
- Rudolf Andre Kley
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Yvonne Leber
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Bertold Schrank
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Heidi Zhuge
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Zacharias Orfanos
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Julius Kostan
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Adekunle Onipe
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dominik Sellung
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Anne Katrin Güttsches
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Britta Eggers
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Frank Jacobsen
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Wolfram Kress
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Katrin Marcus
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Djinovic-Carugo
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter F M van der Ven
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dieter O Fürst
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Vorgerd
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Skeletal and Cardiac Muscle Disorders Caused by Mutations in Genes Encoding Intermediate Filament Proteins. Int J Mol Sci 2021; 22:ijms22084256. [PMID: 33923914 PMCID: PMC8073371 DOI: 10.3390/ijms22084256] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
Intermediate filaments are major components of the cytoskeleton. Desmin and synemin, cytoplasmic intermediate filament proteins and A-type lamins, nuclear intermediate filament proteins, play key roles in skeletal and cardiac muscle. Desmin, encoded by the DES gene (OMIM *125660) and A-type lamins by the LMNA gene (OMIM *150330), have been involved in striated muscle disorders. Diseases include desmin-related myopathy and cardiomyopathy (desminopathy), which can be manifested with dilated, restrictive, hypertrophic, arrhythmogenic, or even left ventricular non-compaction cardiomyopathy, Emery–Dreifuss Muscular Dystrophy (EDMD2 and EDMD3, due to LMNA mutations), LMNA-related congenital Muscular Dystrophy (L-CMD) and LMNA-linked dilated cardiomyopathy with conduction system defects (CMD1A). Recently, mutations in synemin (SYNM gene, OMIM *606087) have been linked to cardiomyopathy. This review will summarize clinical and molecular aspects of desmin-, lamin- and synemin-related striated muscle disorders with focus on LMNA and DES-associated clinical entities and will suggest pathogenetic hypotheses based on the interplay of desmin and lamin A/C. In healthy muscle, such interplay is responsible for the involvement of this network in mechanosignaling, nuclear positioning and mitochondrial homeostasis, while in disease it is disturbed, leading to myocyte death and activation of inflammation and the associated secretome alterations.
Collapse
|
8
|
|
9
|
Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: A review. J Cell Physiol 2018; 234:7874-7884. [PMID: 30536378 DOI: 10.1002/jcp.27907] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a highly heterogeneous group of neuromuscular disorders that are associated with weakness and wasting of muscles in legs and arms. Signs and symptoms may begin at any age and usually worsen by time. LGMDs are autosomal disorders with different types and their prevalence is not the same in different areas. New technologies such as next-generation sequencing can accelerate their diagnosis. Several important pathological mechanisms that are involved in the pathology of the LGMD include abnormalities in dystrophin-glycoprotein complex, the sarcomere, glycosylation of dystroglycan, vesicle and molecular trafficking, signal transduction pathways, and nuclear functions. Here, we provide a comprehensive review that integrates LGMD clinical manifestations, prevalence, and some pathological mechanisms involved in LGMDs.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculity of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Science, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
10
|
Affiliation(s)
- Domenico Corrado
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Cristina Basso
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Daniel P. Judge
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| |
Collapse
|
11
|
Güttsches AK, Brady S, Krause K, Maerkens A, Uszkoreit J, Eisenacher M, Schreiner A, Galozzi S, Mertens-Rill J, Tegenthoff M, Holton JL, Harms MB, Lloyd TE, Vorgerd M, Weihl CC, Marcus K, Kley RA. Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann Neurol 2017; 81:227-239. [PMID: 28009083 DOI: 10.1002/ana.24847] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/22/2016] [Accepted: 12/11/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Sporadic inclusion body myositis (sIBM) pathogenesis is unknown; however, rimmed vacuoles (RVs) are a constant feature. We propose to identify proteins that accumulate within RVs. METHODS RVs and intact myofibers were laser microdissected from skeletal muscle of 18 sIBM patients and analyzed by a sensitive mass spectrometry approach using label-free spectral count-based relative protein quantification. Whole exome sequencing was performed on 62 sIBM patients. Immunofluorescence was performed on patient and mouse skeletal muscle. RESULTS A total of 213 proteins were enriched by >1.5 -fold in RVs compared to controls and included proteins previously reported to accumulate in sIBM tissue or when mutated cause myopathies with RVs. Proteins associated with protein folding and autophagy were the largest group represented. One autophagic adaptor protein not previously identified in sIBM was FYCO1. Rare missense coding FYCO1 variants were present in 11.3% of sIBM patients compared with 2.6% of controls (p = 0.003). FYCO1 colocalized at RVs with autophagic proteins such as MAP1LC3 and SQSTM1 in sIBM and other RV myopathies. One FYCO1 variant protein had reduced colocalization with MAP1LC3 when expressed in mouse muscle. INTERPRETATION This study used an unbiased proteomic approach to identify RV proteins in sIBM that included a novel protein involved in sIBM pathogenesis. FYCO1 accumulates at RVs, and rare missense variants in FYCO1 are overrepresented in sIBM patients. These FYCO1 variants may impair autophagic function, leading to RV formation in sIBM patient muscle. FYCO1 functionally connects autophagic and endocytic pathways, supporting the hypothesis that impaired endolysosomal degradation underlies the pathogenesis of sIBM. Ann Neurol 2017;81:227-239.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Stefen Brady
- Department of Neurology, Southmead Hospital, Bristol, United Kingdom
| | - Kathryn Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Alexandra Maerkens
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Julian Uszkoreit
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Sara Galozzi
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Janine Mertens-Rill
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom.,Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, United Kingdom
| | | | - Thomas E Lloyd
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Conrad C Weihl
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf A Kley
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Inashkina I, Jankevics E, Stavusis J, Vasiljeva I, Viksne K, Micule I, Strautmanis J, Naudina MS, Cimbalistiene L, Kucinskas V, Krumina A, Utkus A, Burnyte B, Matuleviciene A, Lace B. Robust genotyping tool for autosomal recessive type of limb-girdle muscular dystrophies. BMC Musculoskelet Disord 2016; 17:200. [PMID: 27142102 PMCID: PMC4855345 DOI: 10.1186/s12891-016-1058-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/28/2016] [Indexed: 11/29/2022] Open
Abstract
Background Limb-girdle muscular dystrophies are characterized by predominant involvement of the shoulder and pelvic girdle and trunk muscle groups. Currently, there are 31 genes implicated in the different forms of limb-girdle muscular dystrophies, which exhibit similar phenotypes and clinical overlap; therefore, advanced molecular techniques are required to achieve differential diagnosis. Methods We investigated 26 patients from Latvia and 34 patients from Lithuania with clinical symptoms of limb-girdle muscular dystrophies, along with 565 healthy unrelated controls from general and ethnic populations using our developed test kit based on the Illumina VeraCode GoldenGate genotyping platform, Ion AmpliSeq Inherited Disease Panel and direct sequencing of mutations in calpain 3 (CAPN3), anoctamin 5 (ANO5) and fukutin related protein (FKRP) genes. Results Analysis revealed a homozygous CAPN3 c.550delA mutation in eight patients and three heterozygous variants in controls: dysferlin (DYSF) c.5028delG, CAPN3 c.2288A > G, and FKRP c.135C > T. Additionally, three mutations within FKRP gene were found: homozygous c.826C > A, and two compound – c.826C > A/c.404_405insT and c.826C > A/c.204_206delCTC mutations, and one mutation within CLCN1 gene – c.2680C > T p.Arg894Ter. ANO5 c.191dupA was not present. Conclusions Genetic diagnosis was possible in 12 of 60 patients (20 %). The allele frequency of CAPN3 gene mutation c.550delA in Latvia is 0.0016 and in Lithuania - 0.0029. The allele frequencies of CAPN3 gene mutation c.2288A > G and DYSF gene mutation c.4872delG are 0.003. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1058-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inna Inashkina
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia.
| | - Eriks Jankevics
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Janis Stavusis
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Inta Vasiljeva
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Kristine Viksne
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Ieva Micule
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Jurgis Strautmanis
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Maruta S Naudina
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Loreta Cimbalistiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Centre for Medical Genetics, Vilnius University Hospital Santariškių Klinikos, Santariškių str. 2, LT-08661, Vilnius, Lithuania
| | - Vaidutis Kucinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Astrida Krumina
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Centre for Medical Genetics, Vilnius University Hospital Santariškių Klinikos, Santariškių str. 2, LT-08661, Vilnius, Lithuania
| | - Birute Burnyte
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Centre for Medical Genetics, Vilnius University Hospital Santariškių Klinikos, Santariškių str. 2, LT-08661, Vilnius, Lithuania
| | - Ausra Matuleviciene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Centre for Medical Genetics, Vilnius University Hospital Santariškių Klinikos, Santariškių str. 2, LT-08661, Vilnius, Lithuania
| | - Baiba Lace
- Biomedical Research and Study Centre, Ratsupites str. 1, k-1, LV-1067, Riga, Latvia.,Laval University, Quebec, Canada.,Centre hospitalier universitaire de Québec, 2705, boulevard Laurier, Québec, Québec, G1V 4G2, Canada
| |
Collapse
|
13
|
Thompson R, Straub V. Limb-girdle muscular dystrophies - international collaborations for translational research. Nat Rev Neurol 2016; 12:294-309. [PMID: 27033376 DOI: 10.1038/nrneurol.2016.35] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a diverse group of genetic neuromuscular conditions that usually manifest in the proximal muscles of the hip and shoulder girdles. Since the identification of the first gene associated with the phenotype in 1994, an extensive body of research has identified the genetic defects responsible for over 30 LGMD subtypes, revealed an increasingly varied phenotypic spectrum, and exposed the need to move towards a systems-based understanding of the molecular pathways affected. New sequencing technologies, including whole-exome and whole-genome sequencing, are continuing to expand the range of genes and phenotypes associated with the LGMDs, and new computational approaches are helping clinicians to adapt to this new genomic medicine paradigm. However, 60 years on from the first description of LGMD, no curative therapies exist, and systematic exploration of the natural history is still lacking. To enable rapid translation of basic research to the clinic, well-phenotyped and genetically characterized patient cohorts are a necessity, and appropriate outcome measures and biomarkers must be developed through natural history studies. Here, we review the international collaborations that are addressing these translational research issues, and the lessons learned from large-scale LGMD sequencing programmes.
Collapse
Affiliation(s)
- Rachel Thompson
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
14
|
Suratanee A, Plaimas K. DDA: A Novel Network-Based Scoring Method to Identify Disease-Disease Associations. Bioinform Biol Insights 2015; 9:175-86. [PMID: 26673408 PMCID: PMC4674013 DOI: 10.4137/bbi.s35237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Categorizing human diseases provides higher efficiency and accuracy for disease diagnosis, prognosis, and treatment. Disease–disease association (DDA) is a precious information that indicates the large-scale structure of complex relationships of diseases. However, the number of known and reliable associations is very small. Therefore, identification of DDAs is a challenging task in systems biology and medicine. Here, we developed a novel network-based scoring algorithm called DDA to identify the relationships between diseases in a large-scale study. Our method is developed based on a random walk prioritization in a protein–protein interaction network. This approach considers not only whether two diseases directly share associated genes but also the statistical relationships between two different diseases using known disease-related genes. Predicted associations were validated by known DDAs from a database and literature supports. The method yielded a good performance with an area under the curve of 71% and outperformed other standard association indices. Furthermore, novel DDAs and relationships among diseases from the clusters analysis were reported. This method is efficient to identify disease–disease relationships on an interaction network and can also be generalized to other association studies to further enhance knowledge in medical studies.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Integrative Bioinformatics and System Biology Group, Advanced Virtual and Intelligent Computing (AVIC) Research Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Bengoechea R, Pittman SK, Tuck EP, True HL, Weihl CC. Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D. Hum Mol Genet 2015; 24:6588-602. [PMID: 26362252 PMCID: PMC4634370 DOI: 10.1093/hmg/ddv363] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Limb-girdle muscular dystrophy type 1D (LGMD1D) is caused by dominantly inherited missense mutations in DNAJB6, an Hsp40 co-chaperone. LGMD1D muscle has rimmed vacuoles and inclusion bodies containing DNAJB6, Z-disc proteins and TDP-43. DNAJB6 is expressed as two isoforms; DNAJB6a and DNAJB6b. Both isoforms contain LGMD1D mutant residues and are expressed in human muscle. To identify which mutant isoform confers disease pathogenesis and generate a mouse model of LGMD1D, we evaluated DNAJB6 expression and localization in skeletal muscle as well as generating DNAJB6 isoform specific expressing transgenic mice. DNAJB6a localized to myonuclei while DNAJB6b was sarcoplasmic. LGMD1D mutations in DNAJB6a or DNAJB6b did not alter this localization in mouse muscle. Transgenic mice expressing the LGMD1D mutant, F93L, in DNAJB6b under a muscle-specific promoter became weak, had early lethality and developed muscle pathology consistent with myopathy after 2 months; whereas mice expressing the same F93L mutation in DNAJB6a or overexpressing DNAJB6a or DNAJB6b wild-type transgenes remained unaffected after 1 year. DNAJB6b localized to the Z-disc and DNAJB6b-F93L expressing mouse muscle had myofibrillar disorganization and desmin inclusions. Consistent with DNAJB6 dysfunction, keratin 8/18, a DNAJB6 client also accumulated in DNAJB6b-F93L expressing mouse muscle. The RNA-binding proteins hnRNPA1 and hnRNPA2/B1 accumulated and co-localized with DNAJB6 at sarcoplasmic stress granules suggesting that these proteins maybe novel DNAJB6b clients. Similarly, hnRNPA1 and hnRNPA2/B1 formed sarcoplasmic aggregates in patients with LGMD1D. Our data support that LGMD1D mutations in DNAJB6 disrupt its sarcoplasmic function suggesting a role for DNAJB6b in Z-disc organization and stress granule kinetics.
Collapse
Affiliation(s)
| | | | | | - Heather L True
- Department of Cell Biology and Physiology and and The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Conrad C Weihl
- Department of Neurology, The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
16
|
Murphy AP, Straub V. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies. J Neuromuscul Dis 2015; 2:S7-S19. [PMID: 27858764 PMCID: PMC5271430 DOI: 10.3233/jnd-150105] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over sixty years ago John Walton and Frederick Nattrass defined limb girdle muscular dystrophy (LGMD) as a separate entity from the X-linked dystrophinopathies such as Duchenne and Becker muscular dystrophies. LGMD is a highly heterogeneous group of very rare neuromuscular disorders whose common factor is their autosomal inheritance. Sixty years later, with the development of increasingly advanced molecular genetic investigations, a more precise classification and understanding of the pathogenesis is possible.To date, over 30 distinct subtypes of LGMD have been identified, most of them inherited in an autosomal recessive fashion. There are significant differences in the frequency of subtypes of LGMD between different ethnic populations, providing evidence of founder mutations. Clinically there is phenotypic heterogeneity between subtypes of LGMD with varying severity and age of onset of symptoms. The first natural history studies into subtypes of LGMD are in process, but large scale longitudinal data have been lacking due to the rare nature of these diseases. Following natural history data collection, the next challenge is to develop more effective, disease specific treatments. Current management is focussed on symptomatic and supportive treatments. Advances in the application of new omics technologies and the generation of large-scale biomedical data will help to better understand disease mechanisms in LGMD and should ultimately help to accelerate the development of novel and more effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Volker Straub
- Correspondence to: Volker Straub, The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, The International Centre for Life, Newcastle University, Central Parkway, Newcastle Upon Tyne, United Kingdom. NE1 3BZ. Tel.: +44 1912 418652; Fax: +44 1912 418770;
| |
Collapse
|
17
|
Abstract
Muscle fibres are very specialised cells with a complex structure that requires a high level of organisation of the constituent proteins. For muscle contraction to function properly, there is a need for not only sarcomeres, the contractile structures of the muscle fibre, but also costameres. These are supramolecular structures associated with the sarcolemma that allow muscle adhesion to the extracellular matrix. They are composed of protein complexes that interact and whose functions include maintaining cell structure and signal transduction mediated by their constituent proteins. It is important to improve our understanding of these structures, as mutations in various genes that code for costamere proteins cause many types of muscular dystrophy. In this review, we provide a description of costameres detailing each of their constituent proteins, such as dystrophin, dystrobrevin, syntrophin, sarcoglycans, dystroglycans, vinculin, talin, integrins, desmin, plectin, etc. We describe as well the diseases associated with deficiency thereof, providing a general overview of their importance.
Collapse
|
18
|
Narayanaswami P, Weiss M, Selcen D, David W, Raynor E, Carter G, Wicklund M, Barohn RJ, Ensrud E, Griggs RC, Gronseth G, Amato AA. Evidence-based guideline summary: diagnosis and treatment of limb-girdle and distal dystrophies: report of the guideline development subcommittee of the American Academy of Neurology and the practice issues review panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 2014; 83:1453-63. [PMID: 25313375 DOI: 10.1212/wnl.0000000000000892] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To review the current evidence and make practice recommendations regarding the diagnosis and treatment of limb-girdle muscular dystrophies (LGMDs). METHODS Systematic review and practice recommendation development using the American Academy of Neurology guideline development process. RESULTS Most LGMDs are rare, with estimated prevalences ranging from 0.07 per 100,000 to 0.43 per 100,000. The frequency of some muscular dystrophies varies based on the ethnic background of the population studied. Some LGMD subtypes have distinguishing features, including pattern of muscle involvement, cardiac abnormalities, extramuscular involvement, and muscle biopsy findings. The few published therapeutic trials were not designed to establish clinical efficacy of any treatment. PRINCIPAL RECOMMENDATIONS For patients with suspected muscular dystrophy, clinicians should use a clinical approach to guide genetic diagnosis based on clinical phenotype, inheritance pattern, and associated manifestations (Level B). Clinicians should refer newly diagnosed patients with an LGMD subtype and high risk of cardiac complications for cardiology evaluation even if they are asymptomatic from a cardiac standpoint (Level B). In patients with LGMD with a known high risk of respiratory failure, clinicians should obtain periodic pulmonary function testing (Level B). Clinicians should refer patients with muscular dystrophy to a clinic that has access to multiple specialties designed specifically to care for patients with neuromuscular disorders (Level B). Clinicians should not offer patients with LGMD gene therapy, myoblast transplantation, neutralizing antibody to myostatin, or growth hormone outside of a research study designed to determine efficacy and safety of the treatment (Level R). Detailed results and recommendations are available on the Neurology® Web site at Neurology.org.
Collapse
Affiliation(s)
- Pushpa Narayanaswami
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Michael Weiss
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Duygu Selcen
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - William David
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Elizabeth Raynor
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Gregory Carter
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Matthew Wicklund
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Richard J Barohn
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Erik Ensrud
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Robert C Griggs
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Gary Gronseth
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Anthony A Amato
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
19
|
Abstract
In this article, distal myopathy syndromes are discussed. A discussion of the more traditional distal myopathies is followed by discussion of the myofibrillar myopathies. Other clinically and genetically distinctive distal myopathy syndromes usually based on single or smaller family cohorts are reviewed. Other neuromuscular disorders that are important to recognize are also considered, because they show prominent distal limb weakness.
Collapse
Affiliation(s)
- Mazen M Dimachkie
- Neuromuscular Section, Neurophysiology Division, Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Myofibrillar myopathies (MFMs) are a heterogeneous group of skeletal and cardiac muscle diseases. In this review, we highlight recent discoveries of new genes and disease mechanisms involved in this group of disorders. RECENT FINDINGS The advent of next-generation sequencing technology, laser microdissection and mass spectrometry-based proteomics has facilitated the discovery of new MFM causative genes and pathomechanisms. New mutations have also been discovered in 'older' genes, helping to find a classification niche for MFM-linked disorders showing variant phenotypes. Cell transfection experiments using primary cultured myoblasts and newer animal models provide insights into the pathogenesis of MFMs. SUMMARY An increasing number of genes are involved in the causation of variant subtypes of MFM. The application of modern technologies in combination with classical histopathological and ultrastructural studies is helping to establish the molecular diagnosis and reach a better understanding of the pathogenic mechanisms of each MFM subtype, thus putting an emphasis on the development of specific means for prevention and therapy of these incapacitating and frequently fatal diseases.
Collapse
|
21
|
Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep 2014; 9:1515-32. [PMID: 24626787 PMCID: PMC4020495 DOI: 10.3892/mmr.2014.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of disorders, which has led to certain investigators disputing its rationality. The mutual feature of LGMD is limb-girdle affection. Magnetic resonance imaging (MRI), perioral skin biopsies, blood-based assays, reverse-protein arrays, proteomic analyses, gene chips and next generation sequencing are the leading diagnostic techniques for LGMD and gene, cell and pharmaceutical treatments are the mainstay therapies for these genetic disorders. Recently, more highlights have been shed on disease biomarkers to follow up disease progression and to monitor therapeutic responsiveness in future trials. In this study, we review LGMD from a variety of aspects, paying specific attention to newly evolving research, with the purpose of bringing this information into the clinical setting to aid the development of novel therapeutic strategies for this hereditary disease. In conclusion, substantial progress in our ability to diagnose and treat LGMD has been made in recent decades, however enhancing our understanding of the detailed pathophysiology of LGMD may enhance our ability to improve disease outcome in subsequent years.
Collapse
Affiliation(s)
- Omar A Mahmood
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Mei Jiang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Suarez-Cedeno G, Winder T, Milone M. DNAJB6 myopathy: a vacuolar myopathy with childhood onset. Muscle Nerve 2014; 49:607-10. [PMID: 24170373 DOI: 10.1002/mus.24106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 01/25/2023]
Abstract
INTRODUCTION DNAJB6 mutations cause an autosomal dominant myopathy that can manifest as limb-girdle muscular dystrophy (LGMD1D/1E) or distal-predominant myopathy. In the majority of patients this myopathy manifests in adulthood and shows vacuolar changes on muscle biopsy. METHODS Clinical, electrophysiological, pathological, and molecular findings are reported. RESULTS We report a 56-year-old woman, who, like 3 other family members, became symptomatic in childhood with slowly progressive limb-girdle muscle weakness, normal serum creatine kinase (CK) values, and myopathic electromyographic findings. Muscle biopsy showed vacuolar changes and congophilic inclusions, and molecular analysis revealed a pathogenic mutation in the DNAJB6 gene. Differences and similarities with previously described cases are assessed. CONCLUSIONS Childhood-onset of DNAJB6 myopathy is more frequent than previously believed; congophilic inclusions may be present in the muscle of these patients.
Collapse
Affiliation(s)
- Gerson Suarez-Cedeno
- Medical School, Department of Neurology, Mayo Clinic Foundation, 200 First Street SW, Rochester, Minnesota, 55905, USA; Universidad de Antioquia, Medellin, Colombia
| | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW With transition to the genetic era, the number of muscular dystrophies has grown significantly, but so too has our understanding of their pathogenic underpinnings. Clinical features associated with each muscular dystrophy still guide us to the diagnosis. However, improved diagnostic abilities refine and expand phenotypic and genotypic correlates. This article discusses the epidemiology, clinical features, and diagnosis of these disorders. RECENT FINDINGS Some important recent advancements include (1) a much greater understanding of the pathogenetic pathways underlying facioscapulohumeral muscular dystrophy and myotonic dystrophy type 1; (2) the publication of diagnostic and treatment guidelines for Duchenne muscular dystrophy; and (3) further clarification of the many genetic muscle disorders presenting a limb-girdle pattern of weakness. SUMMARY Muscular dystrophies are genetic, progressive, degenerative disorders with the primary symptom of muscle weakness. Duchenne, Becker, facioscapulohumeral, and myotonic muscular dystrophies are most prevalent and tend to have distinctive features helpful in diagnosis. The limb-girdle, Emery-Dreifuss, and oculopharyngeal muscular dystrophies are less common but often may also be diagnosed on the basis of phenotype. Researchers hope to help patients with future discoveries effective in slowing or halting disease progression, reversing or preventing underlying mechanisms, and repairing previously damaged muscle.
Collapse
|
24
|
Dupuytren's Contracture Cosegregation with Limb-Girdle Muscle Dystrophy. Case Rep Neurol Med 2013; 2013:254950. [PMID: 24024053 PMCID: PMC3760302 DOI: 10.1155/2013/254950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) is a heterogeneous group of muscular
dystrophies that mostly affect the pelvic and shoulder girdle muscle groups. We report
here a case of neuromuscular disease associated with Dupuytren's contracture, which
has never been described before as cosegregating with an autosomal dominant type
of inheritance. Dupuytren's contracture is a common disease, especially in Northern
Europe. Comorbid conditions associated with Dupuytren's contracture are repetitive
trauma to the hands, diabetes, and seizures, but it has never before been associated
with neuromuscular disease. We hypothesize that patients may harbor mutations in
genes with functions related to neuromuscular disease and Dupuytren's contracture
development.
Collapse
|
25
|
Gamez J. No need for more muscle biopsies in members of the Spanish LGMD1F family. The gene has been identified at last. Neuropathology 2013; 34:217-8. [PMID: 23981253 DOI: 10.1111/neup.12059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Josep Gamez
- Neurology Department, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, VHIR., Barcelona, Spain
| |
Collapse
|
26
|
Ohlendieck K. Proteomic identification of biomarkers of skeletal muscle disorders. Biomark Med 2013; 7:169-86. [PMID: 23387498 DOI: 10.2217/bmm.12.96] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disease-specific biomarkers play a central diagnostic and therapeutic role in muscle pathology. Serum levels of a variety of muscle-derived enzymes are routinely used for the detection of muscle damage in diagnostic procedures, as well as for the monitoring of physical training status in sports medicine. Over the last few years, the systematic application of mass spectrometry-based proteomics for studying skeletal muscle degeneration has greatly expanded the range of muscle biomarkers, including new fiber-associated proteins involved in muscle transformation, muscular atrophy, muscular dystrophy, motor neuron disease, inclusion body myositis, myotonia, hypoxia, diabetes, obesity and sarcopenia of old age. These mass spectrometric studies have clearly established skeletal muscle proteomics as a reliable method for the identification of novel indicators of neuromuscular diseases.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
27
|
Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. ACTA ACUST UNITED AC 2013; 201:499-510. [PMID: 23671309 PMCID: PMC3653356 DOI: 10.1083/jcb.201212142] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes.
Collapse
Affiliation(s)
- Fedik Rahimov
- Program in Genomics, Division of Genetics, Boston Children's Hospital, and 2 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
28
|
Larman HB, Salajegheh M, Nazareno R, Lam T, Sauld J, Steen H, Kong SW, Pinkus JL, Amato AA, Elledge SJ, Greenberg SA. Cytosolic 5'-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013; 73:408-18. [PMID: 23596012 DOI: 10.1002/ana.23840] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We previously identified a circulating autoantibody against a 43 kDa muscle autoantigen in sporadic inclusion body myositis (IBM) and demonstrated the feasibility of an IBM diagnostic blood test. Here, we sought to identify the molecular target of this IBM autoantibody, understand the relationship between IBM autoimmunity and muscle degeneration, and develop an IBM blood test with high diagnostic accuracy. METHODS IBM blood samples were screened using mass spectrometry and a synthetic human peptidome. Plasma and serum samples (N=200 patients) underwent immunoblotting assays, and results were correlated to clinical features. Muscle biopsy samples (n=30) were examined by immunohistochemistry and immunoblotting. Exome or whole genome sequencing was performed on DNA from 19 patients. RESULTS Both mass spectrometry and screening of a 413,611 human peptide library spanning the entire human proteome identified cytosolic 5'-nucleotidase 1A (cN1A; NT5C1A) as the likely 43 kDa IBM autoantigen, which was then confirmed in dot blot and Western blot assays using recombinant cN1A protein. Moderate reactivity of anti-cN1A autoantibodies was 70% sensitive and 92% specific, and high reactivity was 34% sensitive and 98% specific for the diagnosis of IBM. One to 3 major cN1A immunodominant epitopes were identified. cN1A reactivity by immunohistochemistry accumulated in perinuclear regions and rimmed vacuoles in IBM muscle, localizing to areas of myonuclear degeneration. INTERPRETATION Autoantibodies against cN1A are common in and highly specific to IBM among muscle diseases, and may provide a link between IBM's dual processes of autoimmunity and myodegeneration. Blood diagnostic testing is feasible and should improve early and reliable diagnosis of IBM.
Collapse
Affiliation(s)
- H Benjamin Larman
- Department of Genetics, Harvard University Medical School, Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cetin N, Balci-Hayta B, Gundesli H, Korkusuz P, Purali N, Talim B, Tan E, Selcen D, Erdem-Ozdamar S, Dincer P. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 2013; 50:437-43. [DOI: 10.1136/jmedgenet-2012-101487] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Santoro M, Masciullo M, Bonvissuto D, Bianchi MLE, Michetti F, Silvestri G. Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2. Mol Cell Biochem 2013; 380:259-65. [PMID: 23666741 DOI: 10.1007/s11010-013-1681-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
INSR, one of those genes aberrantly expressed in myotonic dystrophy type 1 (DM1) and type 2 (DM2) due to a toxic RNA effect, encodes for the insulin receptor (IR). Its expression is regulated by alternative splicing generating two isoforms: IR-A, which predominates in embryonic tissue, and IR-B, which is highly expressed in adult, insulin-responsive tissues (skeletal muscle, liver, and adipose tissue). The aberrant INSR expression detected in DM1 and DM2 muscles tissues, characterized by a relative increase of IR-A versus IR-B, was pathogenically related to the insulin resistance occurring in DM patients. To assess if differences in the aberrant splicing of INSR could underlie the distinct fiber type involvement observed in DM1 and DM2 muscle tissues, we have used laser capture microdissection (LCM) and RT-PCR, comparing the alternative splicing of INSR in type I and type II muscle fibers isolated from muscle biopsies of DM1, DM2 patients and controls. In the controls, the relative amounts of IR-A and IR-B showed no obvious differences between type I and type II fibers, as in the whole muscle tissue. In DM1 and DM2 patients, both fiber types showed a similar, relative increase of IR-A versus IR-B, as also evident in the whole muscle tissue. Our data suggest that the distinct fiber type involvement in DM1 and DM2 muscle tissues would not be related to qualitative differences in the expression of INSR. LCM can represent a powerful tool to give a better understanding of the pathogenesis of myotonic dystrophies, as well as other myopathies.
Collapse
|
31
|
Feldkirchner S, Walter MC, Müller S, Kubny C, Krause S, Kress W, Hanisch FG, Schoser B, Schessl J. Proteomic characterization of aggregate components in an intrafamilial variable FHL1-associated myopathy. Neuromuscul Disord 2013; 23:418-26. [DOI: 10.1016/j.nmd.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/09/2013] [Indexed: 11/28/2022]
|
32
|
Arnold WD, Flanigan KM. A practical approach to molecular diagnostic testing in neuromuscular diseases. Phys Med Rehabil Clin N Am 2013; 23:589-608. [PMID: 22938877 DOI: 10.1016/j.pmr.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular diagnosis is an important aspect in the care of patients with neuromuscular disorders. Because of the rapidly evolving nature of the field, the approach to obtaining a molecular diagnosis may be challenging. This article provides a general approach to molecular diagnostic testing while reviewing the principles of genetics and genetic disorders and the indications and limitations of testing methods in common hereditary neuromuscular disorders.
Collapse
Affiliation(s)
- W David Arnold
- Division of Neuromuscular Disorders, Department of Neurology, Wexner Medical Center at the Ohio State University, The Ohio State University, 395 W. 12th Avenue, 7th Floor, Columbus, OH 43210, USA.
| | | |
Collapse
|
33
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
34
|
Diagnostic strategy for limb-girdle muscular dystrophies. Rev Neurol (Paris) 2012; 168:919-26. [DOI: 10.1016/j.neurol.2012.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 02/29/2012] [Accepted: 03/20/2012] [Indexed: 01/02/2023]
|
35
|
Abstract
Limb girdle muscular dystrophy (LGMD) is a heterogeneous group of genetic disorders characterized by progressive muscle weakness with dystrophic muscle pathology caused by autosomal dominant or recessive gene mutations. Recently, several novel causative gene mutations have been associated with LGMD, due in part to recent scientific advances such as next generation sequencing. Interestingly, some of these novel forms of LGMD are allelic with other muscle diseases such as the dystroglycanopathy subtype of congenital muscular dystrophy. For the clinical diagnosis of LGMD, a comprehensive approach is typically needed, which may include a thorough evaluation by an experienced clinician, serum creatine kinase measurements, genetic testing, and muscle biopsy. On a research basis, the continued discovery of novel LGMD genes will be expedited with the increasing use of next generation sequencing technologies in combination with traditional approaches such as linkage analysis.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- Program in Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression. Mol Cell Biochem 2012. [PMID: 23196635 DOI: 10.1007/s11010-012-1538-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Skeletal muscle contains various myofiber types closely associated with satellite stem cells, vasculature, and neurons, thus making it difficult to perform genetic or proteomic expression analysis with sufficient cellular specificity to resolve differences at the individual cell or myofiber type level. Here, we describe the combination of a simple histochemical method capable of simultaneously identifying Type I, IIA, IIB, and IIC myofibers followed by laser capture micro-dissection (LCM) to compare the expression profiles of individual fiber types, myonuclear domains, and satellite cells in frozen muscle sections of control and atrophied muscle. Quantitative RT-PCR (qPCR) was used to verify the integrity of the cell-specific RNAs harvested after histologic staining, while qPCR for specific genes of interest was used to quantify atrophy-associated changes in mRNA. Our data demonstrate that the differential myofiber atrophy previously described by histologic means is related to differential expression of atrophy-related genes, such as MuRF1 and MAFbx (a.k.a. Atrogin-1), within different myofiber type populations. This spatially resolved molecular pathology (SRMP) technique allowed quantitation of atrophy-related gene products within individual fiber types that could not be resolved by expression analysis of the whole muscle. The present study demonstrates the importance of fiber type specific expression profiling in understanding skeletal muscle biology especially during muscle atrophy and provides a practical method of performing such research.
Collapse
|
37
|
McDonald KK, Stajich J, Blach C, Ashley-Koch AE, Hauser MA. Exome analysis of two limb-girdle muscular dystrophy families: mutations identified and challenges encountered. PLoS One 2012; 7:e48864. [PMID: 23155419 PMCID: PMC3498247 DOI: 10.1371/journal.pone.0048864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
The molecular diagnosis of muscle disorders is challenging: genetic heterogeneity (>100 causal genes for skeletal and cardiac muscle disease) precludes exhaustive clinical testing, prioritizing sequencing of specific genes is difficult due to the similarity of clinical presentation, and the number of variants returned through exome sequencing can make the identification of the disease-causing variant difficult. We have filtered variants found through exome sequencing by prioritizing variants in genes known to be involved in muscle disease while examining the quality and depth of coverage of those genes. We ascertained two families with autosomal dominant limb-girdle muscular dystrophy of unknown etiology. To identify the causal mutations in these families, we performed exome sequencing on five affected individuals using the Agilent SureSelect Human All Exon 50 Mb kit and the Illumina HiSeq 2000 (2×100 bp). We identified causative mutations in desmin (IVS3+3A>G) and filamin C (p.W2710X), and augmented the phenotype data for individuals with muscular dystrophy due to these mutations. We also discuss challenges encountered due to depth of coverage variability at specific sites and the annotation of a functionally proven splice site variant as an intronic variant.
Collapse
Affiliation(s)
- Kristin K. McDonald
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Jeffrey Stajich
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Colette Blach
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Allison E. Ashley-Koch
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Michael A. Hauser
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- * E-mail:
| |
Collapse
|