1
|
Perez DC, Hernandez JJ, Wulfekuhle G, Gratton C. Variation in brain aging: A review and perspective on the utility of individualized approaches to the study of functional networks in aging. Neurobiol Aging 2025; 147:68-87. [PMID: 39709668 PMCID: PMC11793866 DOI: 10.1016/j.neurobiolaging.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Healthy aging is associated with cognitive decline across multiple domains, including executive function, memory, and attention. These cognitive changes can often influence an individual's ability to function and quality of life. However, the degree to which individuals experience cognitive decline, as well as the trajectory of these changes, exhibits wide variability across people. These cognitive abilities are thought to depend on the coordinated activity of large-scale networks. Like behavioral effects, large variation can be seen in brain structure and function with aging, including in large-scale functional networks. However, tracking this variation requires methods that reliably measure individual brain networks and their changes over time. Here, we review the literature on age-related cognitive decline and on age-related differences in brain structure and function. We focus particularly on functional networks and the individual variation that exists in these measures. We propose that novel individual-centered fMRI approaches can shed new light on patterns of inter- and intra-individual variability in aging. These approaches may be instrumental in understanding the neural bases of cognitive decline.
Collapse
Affiliation(s)
- Diana C Perez
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Joanna J Hernandez
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Gretchen Wulfekuhle
- Department of Psychology, Florida State University, Tallahassee, FL, USA; University of North Carolina, Chapel Hill, NC, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Psychology, Florida State University, Tallahassee, FL, USA; University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
2
|
Maity R, Raja Sankari VM, Snekhalatha U, Velu S, Alahmadi TJ, Alhababi ZA, Alkahtani HK. Early detection of Alzheimer's disease in structural and functional MRI. Front Med (Lausanne) 2024; 11:1520878. [PMID: 39726682 PMCID: PMC11669652 DOI: 10.3389/fmed.2024.1520878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives To implement state-of-the-art deep learning architectures such as Deep-Residual-U-Net and DeepLabV3+ for precise segmentation of hippocampus and ventricles, in functional magnetic resonance imaging (fMRI). Integrate VGG-16 with Random Forest (VGG-16-RF) and VGG-16 with Support Vector Machine (VGG-16-SVM) to enhance the binary classification accuracy of Alzheimer's disease, comparing their performance against traditional classifiers. Method OpenNeuro and Harvard's Data verse provides Alzheimer's coronal functional MRI data. Ventricles and hippocampus are segmented using a Deep-Residual-UNet and Deep labV3+ system. The functional features were extracted from each segmented component and classified using SVM, Adaboost, Logistic regression, and VGG 16, DenseNet-169, VGG-16-RF, and VGG-16-SVM classifier. Results This research proposes a precise and efficient deep-learning architecture like DeepLab V3+ and Deep Residual U-NET for hippocampus and ventricle segmentation in detection of AD. DeepLab V3+ has produced a good segmentation accuracy of 94.62% with Jaccard co-efficient of 85.5% and dice co-efficient of 84.75%. Among the three ML classifiers used, SVM has provided a good accuracy of 93%. Among some DL techniques, VGG-16-RF classifier has given better accuracy of 96.87%. Conclusion The novelty of this work lies in the seamless integration of advanced segmentation techniques with hybrid classifiers, offering a robust and scalable framework for early AD detection. The proposed study demonstrates a significant advancement in the early detection of Alzheimer's disease by integrating state-of-the-art deep learning models and comprehensive functional connectivity analysis. This early detection capability is crucial for timely intervention and better management of the disease in neurodegenerative disorder diagnostics.
Collapse
Affiliation(s)
- Rudrani Maity
- Department of Biomedical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Vellupillai Mariappan Raja Sankari
- Department of Biomedical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Umapathy Snekhalatha
- Department of Biomedical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
- College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines
| | - Shubashini Velu
- MIS Department, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Tahani Jaser Alahmadi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zaid Ali Alhababi
- Riyadh First Health Cluster, Ministry of Health, Riyadh, Saudi Arabia
| | - Hend Khalid Alkahtani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Yang Q, Yu T. Study on the age-period-cohort effects of cognitive abilities among older Chinese adults based on the cognitive reserve hypothesis. BMC Geriatr 2024; 24:992. [PMID: 39633278 PMCID: PMC11616311 DOI: 10.1186/s12877-024-05576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Cognitive abilities serves as a critical indicator of healthy aging. As China progresses into a stage of advanced population aging, there has been a significant increase in the number of elderly individuals experiencing age-related cognitive decline. Despite this demographic shift, there is a paucity of longitudinal research examining cognitive abilities among older Chinese adults over extended time periods. This study aims to investigate changes in cognitive abilities and explore group differences among older Chinese adults aged 65 to 110 years, employing a multidimensional temporal approach that encompasses age, period, and birth cohort effects. METHODS This study utilizes data from eight waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), spanning from 1998 to 2018. The dataset comprises 94,116 observations from 36,157 unique participants. Cognitive abilities are assessed using Mini-Mental State Examination (MMSE) scores as a proxy measure. To address the issue of perfect collinearity in the temporal dimension, the study employs the Hierarchical Age-Period-Cohort Cross-Classified Random Effects Model (HAPC-CCREM). This model allows for the examination of age effects, period effects, and cohort effects on cognitive abilities among older Chinese adults. In the model specification, age is treated as a fixed effect, while period and birth cohort are incorporated as random effects. Drawing upon the cognitive reserve hypothesis, the study investigates significant factors influencing cognitive abilities in this population. RESULTS At the fixed-effect level, demographic factors, health behaviors, self-rated health, subjective well-being, and childhood adversity significantly influence cognitive abilities among older Chinese adults. The age effects are significant, with cognitive abilities exhibiting an inverted U-shaped curve across the lifespan. At the random-effect level, period effects are significant, revealing a gradual annual increase in overall cognitive levels among older Chinese adults since 2008. Cohort effects are also significant, demonstrating an increasing trend in overall cognitive levels for the earlier-born cohorts in the first six groups. Conversely, later-born cohorts in the latter five groups show a declining trend in overall cognitive levels. Notably, period effects significantly enhance cohort effects. CONCLUSIONS The cognitive reserve hypothesis supports the significance of the majority of identified influencing factors. Cognitive abilities demonstrate an accelerating decline with increasing age, following an evolutionary trajectory consistent with physiological principles among older Chinese adults. Since 2008, cognitive abilities have shown a monotonic increasing trend annually, further validating the Flynn effect in this population. The cognitive abilities of the six earlier-born cohorts exhibit an increasing trend, supporting the compression of morbidity hypothesis. Conversely, the cognitive abilities of the five later-born cohorts show a declining trend, supporting the expansion of morbidity hypothesis. These findings collectively contribute to our understanding of cognitive aging patterns and their underlying mechanisms among older Chinese adults.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, NO.2 Zheshan West Road,Jinghu District, Wuhu, Anhui, 241001, China
| | - Tong Yu
- School of Humanities and Management, Wannan Medical College, NO.22 Wenchang West Road,Yijiang District, Wuhu, Anhui, 241002, China.
| |
Collapse
|
4
|
Lv T, Chen Y, Hou X, Qin R, Yang Z, Hu Z, Bai F. Anterior-temporal hippocampal network mechanisms of left angular gyrus-navigated rTMS for memory improvement in aMCI: A sham-controlled study. Behav Brain Res 2024; 471:115117. [PMID: 38908485 DOI: 10.1016/j.bbr.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) of the left angular gyrus has been broadly investigated for the treatment of amnestic mild cognitive impairment (aMCI). Although abnormalities in two hippocampal networks, the anterior-temporal (AT) and posterior-medial (PM) networks, are consistent with aMCI and are potential therapeutic targets for rTMS, the underlying mechanisms of the therapeutic effects of rTMS on hippocampal network connections remain unknown. Here, we assessed the impact of left angular gyrus rTMS on activity in these networks and explored whether the treatment response was due to the distance between the clinically applied target (the group average optimal site) and the personalized target in patients with aMCI. METHODS Sixty subjects clinically diagnosed with aMCI participated in this study after 20 sessions of sham-controlled rTMS targeting the left angular gyrus. Resting-state functional magnetic resonance imaging and neuropsychological assessments were performed before and after rTMS. Functional connectivity alterations in the PM and AT networks were assessed using seed-based functional connectivity analysis and two-factor repeated measures analysis of variance (ANOVA). We then computed the correlations between the functional connectivity changes and clinical rating scales. Finally, we examined whether the Euclidean distance between the clinically applied and personalized targets predicted the subsequent treatment response. RESULTS Compared with the sham group, the active rTMS group showed rTMS-induced deactivation of functional connectivity within the medial temporal lobe-AT network, with a negative correlation with episodic memory score changes. Moreover, the active rTMS lowers the interdependency of changes in the PM and AT networks. Finally, the Euclidean distance between the clinically applied and personalized target distances could predict subsequent network lever responses in the active rTMS group. CONCLUSIONS Neuro-navigated rTMS selectively modulates widespread functional connectivity abnormalities in the PM and AT hippocampal networks in aMCI patients, and the modulation of hippocampal-AT network connectivity can efficiently reverse memory deficits. The results also highlight the necessity of personalized targets for fMRI.
Collapse
Affiliation(s)
- Tingyu Lv
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210046, China; Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing 210046, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Feng Bai
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210046, China; Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing 210046, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Lohman T, Kapoor A, Engstrom AC, Shenasa F, Alitin JPM, Gaubert A, Rodgers KE, Bradford D, Mather M, Han SD, Head E, Sordo L, Thayer JF, Nation DA. Central autonomic network dysfunction and plasma Alzheimer's disease biomarkers in older adults. Alzheimers Res Ther 2024; 16:124. [PMID: 38851772 PMCID: PMC11162037 DOI: 10.1186/s13195-024-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Higher order regulation of autonomic function is maintained by the coordinated activity of specific cortical and subcortical brain regions, collectively referred to as the central autonomic network (CAN). Autonomic changes are frequently observed in Alzheimer's disease (AD) and dementia, but no studies to date have investigated whether plasma AD biomarkers are associated with CAN functional connectivity changes in at risk older adults. METHODS Independently living older adults (N = 122) without major neurological or psychiatric disorder were recruited from the community. Participants underwent resting-state brain fMRI and a CAN network derived from a voxel-based meta-analysis was applied for overall, sympathetic, and parasympathetic CAN connectivity using the CONN Functional Toolbox. Sensorimotor network connectivity was studied as a negative control. Plasma levels of amyloid (Aβ42, Aβ40), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) were assessed using digital immunoassay. The relationship between plasma AD biomarkers and within-network functional connectivity was studied using multiple linear regression adjusted for demographic covariates and Apolipoprotein E (APOE) genotype. Interactive effects with APOE4 carrier status were also assessed. RESULTS All autonomic networks were positively associated with Aβ42/40 ratio and remained so after adjustment for age, sex, and APOE4 carrier status. Overall and parasympathetic networks were negatively associated with GFAP. The relationship between the parasympathetic CAN and GFAP was moderated by APOE4 carrier status, wherein APOE4 carriers with low parasympathetic CAN connectivity displayed the highest plasma GFAP concentrations (B = 910.00, P = .004). Sensorimotor connectivity was not associated with any plasma AD biomarkers, as expected. CONCLUSION The present study findings suggest that CAN function is associated with plasma AD biomarker levels. Specifically, lower CAN functional connectivity is associated with decreased plasma Aβ42/40, indicative of cerebral amyloidosis, and increased plasma GFAP in APOE4 carriers at risk for AD. These findings could suggest higher order autonomic and parasympathetic dysfunction in very early-stage AD, which may have clinical implications.
Collapse
Affiliation(s)
- Trevor Lohman
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Aimee Gaubert
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Kathleen E Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - David Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Mara Mather
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - S Duke Han
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Daniel A Nation
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Morais-Ribeiro R, Almeida FC, Coelho A, Oliveira TG. Differential atrophy along the longitudinal hippocampal axis in Alzheimer's disease. Eur J Neurosci 2024; 59:3376-3388. [PMID: 38654447 DOI: 10.1111/ejn.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the hippocampus. Since hippocampal studies have highlighted a differential subregional regulation along its longitudinal axis, a more detailed analysis addressing subregional changes along the longitudinal hippocampal axis has the potential to provide new relevant biomarkers. This study included structural brain MRI data of 583 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cognitively normal (CN) subjects, mild cognitively impaired (MCI) subjects and AD patients were conveniently selected considering the age and sex match between clinical groups. Structural MRI acquisitions were pre-processed and analysed with a new longitudinal axis segmentation method, dividing the hippocampus in three subdivisions (anterior, intermediate, and posterior). When normalizing the volume of hippocampal sub-divisions to total hippocampus, the posterior hippocampus negatively correlates with age only in CN subjects (r = -.31). The longitudinal ratio of hippocampal atrophy (anterior sub-division divided by the posterior one) shows a significant increase with age only in CN (r = .25). Overall, in AD, the posterior hippocampus is predominantly atrophied early on. Consequently, the anterior/posterior hippocampal ratio is an AD differentiating metric at early disease stages with potential for diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisco C Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Division of Neuroradiology, Hospital de Braga, Braga, Portugal
| |
Collapse
|
7
|
Chen TY, Zhu JD, Tsai SJ, Yang AC. Exploring morphological similarity and randomness in Alzheimer's disease using adjacent grey matter voxel-based structural analysis. Alzheimers Res Ther 2024; 16:88. [PMID: 38654366 PMCID: PMC11036786 DOI: 10.1186/s13195-024-01448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Alzheimer's disease is characterized by large-scale structural changes in a specific pattern. Recent studies developed morphological similarity networks constructed by brain regions similar in structural features to represent brain structural organization. However, few studies have used local morphological properties to explore inter-regional structural similarity in Alzheimer's disease. METHODS Here, we sourced T1-weighted MRI images of 342 cognitively normal participants and 276 individuals with Alzheimer's disease from the Alzheimer's Disease Neuroimaging Initiative database. The relationships of grey matter intensity between adjacent voxels were defined and converted to the structural pattern indices. We conducted the information-based similarity method to evaluate the structural similarity of structural pattern organization between brain regions. Besides, we examined the structural randomness on brain regions. Finally, the relationship between the structural randomness and cognitive performance of individuals with Alzheimer's disease was assessed by stepwise regression. RESULTS Compared to cognitively normal participants, individuals with Alzheimer's disease showed significant structural pattern changes in the bilateral posterior cingulate gyrus, hippocampus, and olfactory cortex. Additionally, individuals with Alzheimer's disease showed that the bilateral insula had decreased inter-regional structural similarity with frontal regions, while the bilateral hippocampus had increased inter-regional structural similarity with temporal and subcortical regions. For the structural randomness, we found significant decreases in the temporal and subcortical areas and significant increases in the occipital and frontal regions. The regression analysis showed that the structural randomness of five brain regions was correlated with the Mini-Mental State Examination scores of individuals with Alzheimer's disease. CONCLUSIONS Our study suggested that individuals with Alzheimer's disease alter micro-structural patterns and morphological similarity with the insula and hippocampus. Structural randomness of individuals with Alzheimer's disease changed in temporal, frontal, and occipital brain regions. Morphological similarity and randomness provide valuable insight into brain structural organization in Alzheimer's disease.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Ding Zhu
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Drenth N, van Dijk SE, Foster-Dingley JC, Bertens AS, Rius Ottenheim N, van der Mast RC, Rombouts SARB, van Rooden S, van der Grond J. Distinct functional subnetworks of cognitive domains in older adults with minor cognitive deficits. Brain Commun 2024; 6:fcae048. [PMID: 38419735 PMCID: PMC10901264 DOI: 10.1093/braincomms/fcae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Although past research has established a relationship between functional connectivity and cognitive function, less is known about which cognitive domains are associated with which specific functional networks. This study investigated associations between functional connectivity and global cognitive function and performance in the domains of memory, executive function and psychomotor speed in 166 older adults aged 75-91 years (mean = 80.3 ± 3.8) with minor cognitive deficits (Mini-Mental State Examination scores between 21 and 27). Functional connectivity was assessed within 10 standard large-scale resting-state networks and on a finer spatial resolution between 300 nodes in a functional connectivity matrix. No domain-specific associations with mean functional connectivity within large-scale resting-state networks were found. Node-level analysis revealed that associations between functional connectivity and cognitive performance differed across cognitive functions in strength, location and direction. Specific subnetworks of functional connections were found for each cognitive domain in which higher connectivity between some nodes but lower connectivity between other nodes were related to better cognitive performance. Our findings add to a growing body of literature showing differential sensitivity of functional connections to specific cognitive functions and may be a valuable resource for hypothesis generation of future studies aiming to investigate specific cognitive dysfunction with resting-state functional connectivity in people with beginning cognitive deficits.
Collapse
Affiliation(s)
- Nadieh Drenth
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Suzanne E van Dijk
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jessica C Foster-Dingley
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Anne Suzanne Bertens
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Nathaly Rius Ottenheim
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Roos C van der Mast
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI)-University of Antwerp, Antwerp, Belgium
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Institute of Psychology, Leiden University, P.O. Box 9555, 2300 RB Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
9
|
Zhang S, Guo Z, Xu Y, Mi J, Liu J, Li Z, Xie X, Xu G. Transcranial magneto-acoustic stimulation improves spatial memory and modulates hippocampal neural oscillations in a mouse model of Alzheimer's disease. Front Neurosci 2024; 18:1313639. [PMID: 38384480 PMCID: PMC10879395 DOI: 10.3389/fnins.2024.1313639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction In our study, we applied transcranial magneto-acoustic stimulation (TMAS), a technique based on focused ultrasound stimulation within a static magnetic field, in the APP/PS1 mouse model of Alzheimer's disease (AD) to explore the feasibility of TMAS on improving AD related spatial memory deficits and abnormal neural oscillations. Methods The mice treated with TMAS once daily for 21 days. We recorded local field potential signals in the hippocampal CA1 region of the mice after TMAS treatment with in-vivo electrophysiology and evaluated the neural rehabilitative effect of TMAS with sharp-wave ripple (SWR), gamma oscillations during SWRs, and phase-amplitude coupling (PAC). The spatial memory function of the mice was examined by the Morris water maze (MWM) task. Results We found that TMAS improved the performance of MWM related spatial cognitive functions compared with AD group. Furthermore, our results implied that TMAS alleviated abnormalities in hippocampal SWRs, increased slow gamma power during SWRs, and promoted theta-slow gamma phase-amplitude coupling. These findings suggest that TMAS could have a positive influence on spatial memory through the modulation of neural oscillations. Discussion This work emphasizes the potential of TMAS to serve as a non-invasive method for Alzheimer's disease rehabilitation and promote the application of TMAS for the treatment of more neurological and brain aging diseases in the future.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Zhongsheng Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Yihao Xu
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Jinrui Mi
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Jun Liu
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Zichun Li
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Xiaofeng Xie
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| |
Collapse
|
10
|
Caminiti SP, De Francesco S, Tondo G, Galli A, Redolfi A, Perani D. FDG-PET markers of heterogeneity and different risk of progression in amnestic MCI. Alzheimers Dement 2024; 20:159-172. [PMID: 37505996 PMCID: PMC10962797 DOI: 10.1002/alz.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Amnestic mild cognitive impairment (aMCI) is emerging as a heterogeneous condition. METHODS We looked at a cohort of N = 207 aMCI subjects, with baseline fluorodeoxyglucose positron emission tomography (FDG-PET), T1 magnetic resonance imaging, cerebrospinal fluid (CSF), apolipoprotein E (APOE), and neuropsychological assessment. An algorithm based on FDG-PET hypometabolism classified each subject into subtypes, then compared biomarker measures and clinical progression. RESULTS Three subtypes emerged: hippocampal sparing-cortical hypometabolism, associated with younger age and the highest level of Alzheimer's disease (AD)-CSF pathology; hippocampal/cortical hypometabolism, associated with a high percentage of APOE ε3/ε4 or ε4/ε4 carriers; medial-temporal hypometabolism, characterized by older age, the lowest AD-CSF pathology, the most severe hippocampal atrophy, and a benign course. Within the whole cohort, the severity of temporo-parietal hypometabolism, correlated with AD-CSF pathology and marked the rate of progression of cognitive decline. DISCUSSION FDG-PET can distinguish clinically comparable aMCI at single-subject level with different risk of progression to AD dementia or stability. The obtained results can be useful for the optimization of pharmacological trials and automated-classification models. HIGHLIGHTS Algorithm based on FDG-PET hypometabolism demonstrates distinct subtypes across aMCI; Three different subtypes show heterogeneous biological profiles and risk of progression; The cortical hypometabolism is associated with AD pathology and cognitive decline; MTL hypometabolism is associated with the lowest conversion rate and CSF-AD pathology.
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Silvia De Francesco
- Laboratory of NeuroinformaticsIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Giacomo Tondo
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alice Galli
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alberto Redolfi
- Laboratory of NeuroinformaticsIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Daniela Perani
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | | |
Collapse
|
11
|
Nataraj A, Kala A, Proskauer Pena SL, Jezek K, Blahna K. Impaired Dynamics of Positional and Contextual Neural Coding in an Alzheimer's Disease Rat Model. J Alzheimers Dis 2024; 101:259-276. [PMID: 39177594 PMCID: PMC11612983 DOI: 10.3233/jad-231386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 08/24/2024]
Abstract
Background The hippocampal representation of space, formed by the collective activity of populations of place cells, is considered as a substrate of spatial memory. Alzheimer's disease (AD), a widespread severe neurodegenerative condition of multifactorial origin, typically exhibits spatial memory deficits among its early clinical signs before more severe cognitive impacts develop. Objective To investigate mechanisms of spatial memory impairment in a double transgenic rat model of AD. Methods In this study, we utilized 9-12-month-old double-transgenic TgF344-AD rats and age-matched controls to analyze the spatial coding properties of CA1 place cells. We characterized the spatial memory representation, assessed cells' spatial information content and direction-specific activity, and compared their population coding in familiar and novel conditions. Results Our findings revealed that TgF344-AD animals exhibited lower precision in coding, as evidenced by reduced spatial information and larger receptive zones. This impairment was evident in maps representing novel environments. While controls instantly encoded directional context during their initial exposure to a novel environment, transgenics struggled to incorporate this information into the newly developed hippocampal spatial representation. This resulted in impairment in orthogonalization of stored activity patterns, an important feature directly related to episodic memory encoding capacity. Conclusions Overall, the results shed light on the nature of impairment at both the single-cell and population levels in the transgenic AD model. In addition to the observed spatial coding inaccuracy, the findings reveal a significantly impaired ability to adaptively modify and refine newly stored hippocampal memory patterns.
Collapse
Affiliation(s)
- Athira Nataraj
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | - Annu Kala
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | | | - Karel Jezek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | - Karel Blahna
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| |
Collapse
|
12
|
曾 安, 罗 百, 潘 丹, 容 华, 曹 剑, 张 小, 林 靖, 杨 洋, 刘 军. [Alzheimer's disease classification based on nonlinear high-order features and hypergraph convolutional neural network]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:852-858. [PMID: 37879913 PMCID: PMC10600413 DOI: 10.7507/1001-5515.202305060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Indexed: 10/27/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.
Collapse
Affiliation(s)
- 安 曾
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 百荣 罗
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 丹 潘
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 华斌 容
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 剑锋 曹
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 小波 张
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 靖 林
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 洋 杨
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 军 刘
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Cui L, Zhang Z, Huang YL, Xie F, Guan YH, Lo CYZ, Guo YH, Jiang JH, Guo QH. Brain amyloid-β deposition associated functional connectivity changes of ultra-large structural scale in mild cognitive impairment. Brain Imaging Behav 2023; 17:494-506. [PMID: 37188840 DOI: 10.1007/s11682-023-00780-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
In preclinical Alzheimer's disease, neuro-functional changes due to amyloid-β (Aβ) deposition are not synchronized in different brain lobes and subcortical nuclei. This study aimed to explore the correlation between brain Aβ burden, connectivity changes in an ultra-large structural scale, and cognitive function in mild cognitive impairment. Participants with mild cognitive impairment were recruited and underwent florbetapir (F18-AV45) PET, resting-state functional MRI, and multidomain neuropsychological tests. AV-45 standardized uptake value ratio (SUVR) and functional connectivity of all participants were calculated. Of the total 144 participants, 72 were put in the low Aβ burden group and 72 in the high Aβ burden group. In the low Aβ burden group, all connectivities between lobes and nuclei had no correlation with SUVR. In the high Aβ burden group, SUVR showed negative correlations with the Subcortical-Occipital connectivity (r=-0.36, P = 0.02) and Subcortical-Parietal connectivity (r=-0.26, P = 0.026). Meanwhile, in the high Aβ burden group, SUVR showed positive correlations with the Temporal-Prefrontal connectivity (r = 0.27, P = 0.023), Temporal-Occipital connectivity (r = 0.24, P = 0.038), and Temporal-Parietal connectivity (r = 0.32, P = 0.006). Subcortical to Occipital and Parietal connectivities had positive correlations with general cognition, language, memory, and executive function. Temporal to Prefrontal, Occipital, and Parietal connectivities had negative correlations with memory function, executive function, and visuospatial function, and a positive correlation with language function. In conclusion, Individuals with mild cognitive impairment with high Aβ burden have Aβ-related bidirectional functional connectivity changes between lobes and subcortical nuclei that are associated with cognitive decline in multiple domains. These connectivity changes reflect neurological impairment and failed compensation.
Collapse
Affiliation(s)
- Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yan-Lu Huang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Yi-Hui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yi-Han Guo
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jie-Hui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Qi-Hao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
14
|
Dichio V, De Vico Fallani F. Statistical models of complex brain networks: a maximum entropy approach. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:102601. [PMID: 37437559 DOI: 10.1088/1361-6633/ace6bc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
The brain is a highly complex system. Most of such complexity stems from the intermingled connections between its parts, which give rise to rich dynamics and to the emergence of high-level cognitive functions. Disentangling the underlying network structure is crucial to understand the brain functioning under both healthy and pathological conditions. Yet, analyzing brain networks is challenging, in part because their structure represents only one possible realization of a generative stochastic process which is in general unknown. Having a formal way to cope with such intrinsic variability is therefore central for the characterization of brain network properties. Addressing this issue entails the development of appropriate tools mostly adapted from network science and statistics. Here, we focus on a particular class of maximum entropy models for networks, i.e. exponential random graph models, as a parsimonious approach to identify the local connection mechanisms behind observed global network structure. Efforts are reviewed on the quest for basic organizational properties of human brain networks, as well as on the identification of predictive biomarkers of neurological diseases such as stroke. We conclude with a discussion on how emerging results and tools from statistical graph modeling, associated with forthcoming improvements in experimental data acquisition, could lead to a finer probabilistic description of complex systems in network neuroscience.
Collapse
Affiliation(s)
- Vito Dichio
- Sorbonne Universite, Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitie Salpêtriere, F-75013 Paris, France
| | - Fabrizio De Vico Fallani
- Sorbonne Universite, Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitie Salpêtriere, F-75013 Paris, France
| |
Collapse
|
15
|
Liu Z, Shu K, Geng Y, Cai C, Kang H. Deep brain stimulation of fornix in Alzheimer's disease: From basic research to clinical practice. Eur J Clin Invest 2023; 53:e13995. [PMID: 37004153 DOI: 10.1111/eci.13995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases associated with the degradation of memory and cognitive ability. Current pharmacotherapies show little therapeutic effect in AD treatment and still cannot prevent the pathological progression of AD. Deep brain stimulation (DBS) has shown to enhance memory in morbid obese, epilepsy and traumatic brain injury patients, and cognition in Parkinson's disease (PD) patients deteriorates during DBS off. Some relevant animal studies and clinical trials have been carried out to discuss the DBS treatment for AD. Reviewing the fornix trials, no unified conclusion has been reached about the clinical benefits of DBS in AD, and the dementia ratings scale has not been effectively improved in the long term. However, some patients have presented promising results, such as improved glucose metabolism, increased connectivity in cognition-related brain regions and even elevated cognitive function rating scale scores. The fornix plays an important regulatory role in memory, attention, and emotion through its complex fibre projection to cognition-related structures, making it a promising target for DBS for AD treatment. Moreover, the current stereotaxic technique and various evaluation methods have provided references for the operator to select accurate stimulation points. Related adverse events and relatively higher costs in DBS have been emphasized. In this article, we summarize and update the research progression on fornix DBS in AD and seek to provide a reliable reference for subsequent experimental studies on DBS treatment of AD.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yumei Geng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Cai
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, Hubei Province, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Liu Y, Liu S, Tang C, Tang K, Liu D, Chen M, Mao Z, Xia X. Transcranial alternating current stimulation combined with sound stimulation improves cognitive function in patients with Alzheimer's disease: Study protocol for a randomized controlled trial. Front Aging Neurosci 2023; 14:1068175. [PMID: 36698862 PMCID: PMC9869764 DOI: 10.3389/fnagi.2022.1068175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background The number of patients with Alzheimer's disease (AD) worldwide is increasing yearly, but the existing treatment methods have poor efficacy. Transcranial alternating current stimulation (tACS) is a new treatment for AD, but the offline effect of tACS is insufficient. To prolong the offline effect, we designed to combine tACS with sound stimulation to maintain the long-term post-effect. Materials and methods To explore the safety and effectiveness of tACS combined with sound stimulation and its impact on the cognition of AD patients. This trial will recruit 87 patients with mild to moderate AD. All patients were randomly divided into three groups. The change in Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog) scores from the day before treatment to the end of treatment and 3 months after treatment was used as the main evaluation index. We will also explore the changes in the brain structural network, functional network, and metabolic network of AD patients in each group after treatment. Discussion We hope to conclude that tACS combined with sound stimulation is safe and tolerable in 87 patients with mild to moderate AD under three standardized treatment regimens. Compared with tACS alone or sound alone, the combination group had a significant long-term effect on cognitive improvement. To screen out a better treatment plan for AD patients. tACS combined with sound stimulation is a previously unexplored, non-invasive joint intervention to improve patients' cognitive status. This study may also identify the potential mechanism of tACS combined with sound stimulation in treating mild to moderate AD patients. Clinical Trial Registration Clinicaltrials.gov, NCT05251649. Registered on February 22, 2022.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | | | - Can Tang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Keke Tang
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Di Liu
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Meilian Chen
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
17
|
Zhang S, Liu L, Zhang L, Ma L, Wu H, He X, Cao M, Li R. Evaluating the treatment outcomes of repetitive transcranial magnetic stimulation in patients with moderate-to-severe Alzheimer's disease. Front Aging Neurosci 2023; 14:1070535. [PMID: 36688172 PMCID: PMC9853407 DOI: 10.3389/fnagi.2022.1070535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
The repetitive transcranial magnetic stimulation (rTMS) shows great potential in the treatment of Alzheimer's disease (AD). However, its treatment efficacy for AD patients in moderate to severe stage is relatively evaluated. Here, we proposed a randomized, sham-controlled, clinical trial of rTMS among 35 moderate-to-severe AD patients. A high frequency (10 Hz) stimulation of the left dorsal lateral prefrontal cortex (DLPFC), 60-session long treatment lasting for 3 months procedure was adopted in the trial. Each participant completed a battery of neuropsychological tests at baseline and post-treatment for evaluation of the rTMS therapeutic effect. Twelve of them completed baseline resting-state functional magnetic resonance imaging (fMRI) for exploration of the underlying neural contribution to individual difference in treatment outcomes. The result showed that the rTMS treatment significantly improved cognitive performance on the severe impairment battery (SIB), reduced psychiatric symptoms on the neuropsychiatric inventory (NPI), and improved the clinician's global impression of change (CIBIC-Plus). Furthermore, the result preliminarily proposed resting-state multivariate functional connectivity in the (para) hippocampal region as well as two clusters in the frontal and occipital cortices as a pre-treatment neuroimaging marker for predicting individual differences in treatment outcomes. The finding could brought some enlightenment and reference for the rTMS treatment of moderate and severe AD patients.
Collapse
Affiliation(s)
- Shouzi Zhang
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China,*Correspondence: Shouzi Zhang, ✉
| | - Lixin Liu
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Li Zhang
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Li Ma
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Haiyan Wu
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Xuelin He
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Meng Cao
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Rui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Rui Li, ✉
| |
Collapse
|
18
|
Huang P, Zhang M. Magnetic Resonance Imaging Studies of Neurodegenerative Disease: From Methods to Translational Research. Neurosci Bull 2023; 39:99-112. [PMID: 35771383 PMCID: PMC9849544 DOI: 10.1007/s12264-022-00905-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/07/2022] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases (NDs) have become a significant threat to an aging human society. Numerous studies have been conducted in the past decades to clarify their pathologic mechanisms and search for reliable biomarkers. Magnetic resonance imaging (MRI) is a powerful tool for investigating structural and functional brain alterations in NDs. With the advantages of being non-invasive and non-radioactive, it has been frequently used in both animal research and large-scale clinical investigations. MRI may serve as a bridge connecting micro- and macro-level analysis and promoting bench-to-bed translational research. Nevertheless, due to the abundance and complexity of MRI techniques, exploiting their potential is not always straightforward. This review aims to briefly introduce research progress in clinical imaging studies and discuss possible strategies for applying MRI in translational ND research.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| |
Collapse
|
19
|
Zhang H, Chen L, Johnston KG, Crapser J, Green KN, Ha NML, Tenner AJ, Holmes TC, Nitz DA, Xu X. Degenerate mapping of environmental location presages deficits in object-location encoding and memory in the 5xFAD mouse model for Alzheimer's disease. Neurobiol Dis 2023; 176:105939. [PMID: 36462718 PMCID: PMC10187684 DOI: 10.1016/j.nbd.2022.105939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
A key challenge in developing diagnosis and treatments for Alzheimer's disease (AD) is to detect abnormal network activity at as early a stage as possible. To date, behavioral and neurophysiological investigations in AD model mice have yet to conduct a longitudinal assessment of cellular pathology, memory deficits, and neurophysiological correlates of neuronal activity. We therefore examined the temporal relationships between pathology, neuronal activities and spatial representation of environments, as well as object location memory deficits across multiple stages of development in the 5xFAD mice model and compared these results to those observed in wild-type mice. We performed longitudinal in vivo calcium imaging with miniscope on hippocampal CA1 neurons in behaving mice. We find that 5xFAD mice show amyloid plaque accumulation, depressed neuronal calcium activity during immobile states, and degenerate and unreliable hippocampal neuron spatial tuning to environmental location at early stages by 4 months of age while their object location memory (OLM) is comparable to WT mice. By 8 months of age, 5xFAD mice show deficits of OLM, which are accompanied by progressive degradation of spatial encoding and, eventually, impaired CA1 neural tuning to object-location pairings. Furthermore, depressed neuronal activity and unreliable spatial encoding at early stage are correlated with impaired performance in OLM at 8-month-old. Our results indicate the close connection between impaired hippocampal tuning to object-location and the presence of OLM deficits. The results also highlight that depressed baseline firing rates in hippocampal neurons during immobile states and unreliable spatial representation precede object memory deficits and predict memory deficits at older age, suggesting potential early opportunities for AD detecting.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Lujia Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | - Kevin G Johnston
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
| | - Joshua Crapser
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697, United States of America
| | - Kim N Green
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America
| | - Nicole My-Linh Ha
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, United States of America
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
20
|
Jiang Y, Yuan TS, Chen YC, Guo P, Lian TH, Liu YY, Liu W, Bai YT, Zhang Q, Zhang W, Zhang JG. Deep brain stimulation of the nucleus basalis of Meynert modulates hippocampal-frontoparietal networks in patients with advanced Alzheimer's disease. Transl Neurodegener 2022; 11:51. [PMID: 36471370 PMCID: PMC9721033 DOI: 10.1186/s40035-022-00327-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has shown potential for the treatment of mild-to-moderate Alzheimer's disease (AD). However, there is little evidence of whether NBM-DBS can improve cognitive functioning in patients with advanced AD. In addition, the mechanisms underlying the modulation of brain networks remain unclear. This study was aimed to assess the cognitive function and the resting-state connectivity following NBM-DBS in patients with advanced AD. METHODS Eight patients with advanced AD underwent bilateral NBM-DBS and were followed up for 12 months. Clinical outcomes were assessed by neuropsychological examinations using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale. Resting-state functional magnetic resonance imaging and positron emission tomography data were also collected. RESULTS The cognitive functioning of AD patients did not change from baseline to the 12-month follow-up. Interestingly, the MMSE score indicated clinical efficacy at 1 month of follow-up. At this time point, the connectivity between the hippocampal network and frontoparietal network tended to increase in the DBS-on state compared to the DBS-off state. Additionally, the increased functional connectivity between the parahippocampal gyrus (PHG) and the parietal cortex was associated with cognitive improvement. Further dynamic functional network analysis showed that NBM-DBS increased the proportion of the PHG-related connections, which was related to improved cognitive performance. CONCLUSION The results indicated that NBM-DBS improves short-term cognitive performance in patients with advanced AD, which may be related to the modulation of multi-network connectivity patterns, and the hippocampus plays an important role within these networks. TRIAL REGISTRATION ChiCTR, ChiCTR1900022324. Registered 5 April 2019-Prospective registration. https://www.chictr.org.cn/showproj.aspx?proj=37712.
Collapse
Affiliation(s)
- Yin Jiang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Tian-Shuo Yuan
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Ying-Chuan Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Peng Guo
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Teng-Hong Lian
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yu-Ye Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Wei Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yu-Tong Bai
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Quan Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Wei Zhang
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Jian-Guo Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China ,grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China ,grid.413259.80000 0004 0632 3337Beijing Key Laboratory of Neurostimulation, Beijing, 100070 China
| |
Collapse
|
21
|
Kazemi-Harikandei SZ, Shobeiri P, Salmani Jelodar MR, Tavangar SM. Effective connectivity in individuals with Alzheimer's disease and mild cognitive impairment: A systematic review. NEUROSCIENCE INFORMATICS 2022; 2:100104. [DOI: 10.1016/j.neuri.2022.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
|
22
|
Adams JN, Kim S, Rizvi B, Sathishkumar M, Taylor L, Harris AL, Mikhail A, Keator DB, McMillan L, Yassa MA. Entorhinal-Hippocampal Circuit Integrity Is Related to Mnemonic Discrimination and Amyloid-β Pathology in Older Adults. J Neurosci 2022; 42:8742-8753. [PMID: 36302636 PMCID: PMC9671577 DOI: 10.1523/jneurosci.1165-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
Mnemonic discrimination, a cognitive process that relies on hippocampal pattern separation, is one of the first memory domains to decline in aging and preclinical Alzheimer's disease. We tested whether functional connectivity (FC) within the entorhinal-hippocampal circuit, measured with high-resolution resting state fMRI, is associated with mnemonic discrimination and amyloid-β (Aβ) pathology in a sample of 64 cognitively normal human older adults (mean age, 71.3 ± 6.4 years; 67% female). FC was measured between entorhinal-hippocampal circuit nodes with known anatomical connectivity, as well as within cortical memory networks. Aβ pathology was measured with 18F-florbetapir-PET, and neurodegeneration was assessed with subregional volume from structural MRI. Participants performed both object and spatial versions of a mnemonic discrimination task outside of the scanner and were classified into low-performing and high-performing groups on each task using a median split. Low object mnemonic discrimination performance was specifically associated with increased FC between anterolateral entorhinal cortex (alEC) and dentate gyrus (DG)/CA3, supporting the importance of this connection to object memory. This hyperconnectivity between alEC and DG/CA3 was related to Aβ pathology and decreased entorhinal cortex volume. In contrast, spatial mnemonic discrimination was not associated with altered FC. Aβ was further associated with dysfunction within hippocampal subfields, particularly with decreased FC between CA1 and subiculum as well as reduced volume in these regions. Our findings suggest that Aβ may indirectly lead to memory impairment through entorhinal-hippocampal circuit dysfunction and neurodegeneration and provide a mechanism for increased vulnerability of object mnemonic discrimination.SIGNIFICANCE STATEMENT Mnemonic discrimination is a critical episodic memory process that is performed in the dentate gyrus (DG) and CA3 subfield of the hippocampus, relying on input from entorhinal cortex. Mnemonic discrimination is particularly vulnerable to decline in older adults; however, the mechanisms behind this vulnerability are still unknown. We demonstrate that object mnemonic discrimination impairment is related to hyperconnectivity between the anterolateral entorhinal cortex and DG/CA3. This hyperconnectivity was associated with amyloid-β pathology and neurodegeneration in entorhinal cortex, suggesting aberrantly increased network activity is a pathological process. Our findings provide a mechanistic explanation of the vulnerability of object compared to spatial mnemonic discrimination in older adults and has translational implications for choice of outcome measures in clinical trials for Alzheimer's disease.
Collapse
Affiliation(s)
- Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| | - Mithra Sathishkumar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| | - Lisa Taylor
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California 92697
| | - Alyssa L Harris
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| | - Abanoub Mikhail
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| | - David B Keator
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California 92697
| | - Liv McMillan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
23
|
Wang X, Wang D, Li X, Wang W, Gao P, Lou B, Pfeuffer J, Zhang X, Zhu J, Li C, Chen M. A diagnostic index based on pseudo-continuous arterial spin labeling and T1-mapping improves efficacy in discriminating Alzheimer’s disease from normal cognition. Front Neurosci 2022; 16:974651. [PMID: 35992919 PMCID: PMC9389211 DOI: 10.3389/fnins.2022.974651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pseudo-continuous arterial spin labeling (pCASL) is widely used to quantify cerebral blood flow (CBF) abnormalities in patients with Alzheimer’s disease (AD). T1-mapping techniques assess microstructural characteristics in various pathologic changes, but their application in AD remains in the exploratory stage. We hypothesized that combining quantitative CBF and T1 values would generate diagnostic results with higher accuracy than using either method alone in discriminating AD patients from cognitively normal control (NC) subjects. Materials and methods A total of 45 patients diagnosed with AD and 33 NC subjects were enrolled, and cognitive assessment was performed for each participant according to the Chinese version of the Mini-Mental State Examination (MMSE). T1-weighted magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) and pCASL sequence were scanned on a 3T MR scanner. A brain morphometric analysis was integrated into prototype sequence, providing tissue classification and morphometric segmentation results. Quantitative CBF and T1 values of each brain region were automatically generated inline after data acquisition. Independent samples t-test was used to compare regional CBF and T1 values controlled by false discovery rate correction (corrected p < 0.01). The model with combined CBF and T1 values was compared with the individual index by performing receiver operating characteristic curves analysis. The associations between the MMSE score and CBF and T1 values of the brain were investigated using partial correlations. Results Cerebral blood flow of the right caudate nucleus (RCc) and left hippocampus (LHc) was significantly lower in the AD group compared with the NC group, while the T1 values of the right caudate nucleus (RCt) and left hippocampus (LHt) increased in the AD group. Prediction accuracies of 73.1, 77.2, 75.9, and 81.3% were achieved for each of the above parameters, respectively. In distinguishing patients from controls using the corresponding optimized cut-off values, most combinations of parameters were elevated (area under curve = 0.775–0.894). The highest area under curve value was 0.944, by combining RCc, LHc, RCt, and LHt. Conclusion In this preliminary study, the combined model based on pCASL and T1-mapping improved the diagnostic performance of discriminating AD and NC groups. T1-mapping may become a competitive technique for quantitatively measuring pathologic changes in the brain.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Wang
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyang Li
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenqi Wang
- Department of Radiology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Gao
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Baohui Lou
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Josef Pfeuffer
- MR Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Jinxia Zhu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Chunmei Li
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Chunmei Li,
| | - Min Chen
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Min Chen,
| |
Collapse
|
24
|
Lin B, Zhang L, Yin X, Chen X, Ruan C, Wu T, Liu Z, Huang J. Modulation of entorhinal cortex–hippocampus connectivity and recognition memory following electroacupuncture on 3×Tg-AD model: Evidence from multimodal MRI and electrophysiological recordings. Front Neurosci 2022; 16:968767. [PMID: 35968386 PMCID: PMC9372370 DOI: 10.3389/fnins.2022.968767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Memory loss and aberrant neuronal network activity are part of the earliest hallmarks of Alzheimer’s disease (AD). Electroacupuncture (EA) has been recognized as a cognitive stimulation for its effects on memory disorder, but whether different brain regions or neural circuits contribute to memory recovery in AD remains unknown. Here, we found that memory deficit was ameliorated in 3×Tg-AD mice with EA-treatment, as shown by the increased number of exploring and time spent in the novel object. In addition, reduced locomotor activity was observed in 3×Tg-AD mice, but no significant alteration was seen in the EA-treated mice. Based on the functional magnetic resonance imaging, the regional spontaneous activity alterations of 3×Tg-AD were mainly concentrated in the accumbens nucleus, auditory cortex, caudate putamen, entorhinal cortex (EC), hippocampus, insular cortex, subiculum, temporal cortex, visual cortex, and so on. While EA-treatment prevented the chaos of brain activity in parts of the above regions, such as the auditory cortex, EC, hippocampus, subiculum, and temporal cortex. And then we used the whole-cell voltage-clamp recording to reveal the neurotransmission in the hippocampus, and found that EA-treatment reversed the synaptic spontaneous release. Since the hippocampus receives most of the projections of the EC, the hippocampus-EC circuit is one of the neural circuits related to memory impairment. We further applied diffusion tensor imaging (DTI) tracking and functional connectivity, and found that hypo-connected between the hippocampus and EC with EA-treatment. These data indicate that the hippocampus–EC connectivity is responsible for the recognition memory deficit in the AD mice with EA-treatment, and provide novel insight into potential therapies for memory loss in AD.
Collapse
Affiliation(s)
- Bingbing Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lanlan Zhang
- TCM Rehabilitation Research Center of State Administration of Traditional Chinese Medicine (SATCM), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Yin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaocheng Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chendong Ruan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tiecheng Wu
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education, Fuzhou, China
| | - Zhizhen Liu
- TCM Rehabilitation Research Center of State Administration of Traditional Chinese Medicine (SATCM), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Jia Huang,
| |
Collapse
|
25
|
Zhan Y, Fu Q, Pei J, Fan M, Yu Q, Guo M, Zhou H, Wang T, Wang L, Chen Y. Modulation of Brain Activity and Functional Connectivity by Acupuncture Combined With Donepezil on Mild-to-Moderate Alzheimer's Disease: A Neuroimaging Pilot Study. Front Neurol 2022; 13:912923. [PMID: 35899271 PMCID: PMC9309357 DOI: 10.3389/fneur.2022.912923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background Functional brain imaging changes have been proven as potential pathophysiological targets in early-stage AD. Current longitudinal neuroimaging studies of AD treated by acupuncture, which is one of the growingly acknowledged non-pharmacological interventions, have neither adopted comprehensive acupuncture protocols, nor explored the changes after a complete treatment duration. Thus, the mechanisms of acupuncture effects remain not fully investigated. Objective This study aimed to investigate the changes in spontaneous brain activity and functional connectivity and provide evidence for central mechanism of a 12-week acupuncture program on mild-to-moderate AD. Methods A total of forty-four patients with mild-to-moderate AD and twenty-two age- and education-level-matched healthy subjects were enrolled in this study. The forty-four patients with AD received a 12-week intervention of either acupuncture combined with Donepezil (the treatment group) or Donepezil alone (the control group). The two groups received two functional magnetic resonance imaging (fMRI) scans before and after treatment. The healthy subject group underwent no intervention, and only one fMRI scan was performed after enrollment. The fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) were applied to analyze the imaging data. The correlations between the imaging indicators and the changed score of Alzheimer's Disease Assessment Scale-Cognitive Section (ADAS-cog) were also explored. Results After the 12-week intervention, compared to those in the control group, patients with AD in the treatment group scored significantly lower on ADAS-cog value. Moreover, compared to healthy subjects, the areas where the fALFF value decreased in patients with AD were mainly located in the right inferior temporal gyrus, middle/inferior frontal gyrus, middle occipital gyrus, left precuneus, and bilateral superior temporal gyrus. Compared with the control group, the right precuneus demonstrated the greatest changed value of fALFF after the intervention in the treatment group. The difference in ADAS-cog after interventions was positively correlated with the difference in fALFF value in the left temporal lobe. Right precuneus-based FC analysis showed that the altered FC by the treatment group compared to the control group was mainly located in the bilateral middle temporal gyrus. Conclusion The study revealed the key role of precuneus in the effect of the combination of acupuncture and Donepezil on mild-to-moderate AD for cognitive function, as well as its connection with middle temporal gyrus, which provided a potential treating target for AD. Trial Registration Number: NCT03810794 (http://www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Yijun Zhan
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhui Fu
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jian Pei
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Qiurong Yu
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Miao Guo
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Houguang Zhou
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Wang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liaoyao Wang
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaoxin Chen
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Chételat G. How to use neuroimaging biomarkers in the diagnosis framework of neurodegenerative diseases? Rev Neurol (Paris) 2022; 178:490-497. [DOI: 10.1016/j.neurol.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
|
27
|
Xing J, Jia J, Wu X, Kuang L. A Spatiotemporal Brain Network Analysis of Alzheimer's Disease Based on Persistent Homology. Front Aging Neurosci 2022; 14:788571. [PMID: 35221988 PMCID: PMC8864674 DOI: 10.3389/fnagi.2022.788571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Current brain network studies based on persistent homology mainly focus on the spatial evolution over multiple spatial scales, and there is little research on the evolution of a spatiotemporal brain network of Alzheimer's disease (AD). This paper proposed a persistent homology-based method by combining multiple temporal windows and spatial scales to study the spatiotemporal evolution of brain functional networks. Specifically, a time-sliding window method was performed to establish a spatiotemporal network, and the persistent homology-based features of such a network were obtained. We evaluated our proposed method using the resting-state functional MRI (rs-fMRI) data set from Alzheimer's Disease Neuroimaging Initiative (ADNI) with 31 patients with AD and 37 normal controls (NCs). In the statistical analysis experiment, most network properties showed a better statistical power in spatiotemporal networks than in spatial networks. Moreover, compared to the standard graph theory properties in spatiotemporal networks, the persistent homology-based features detected more significant differences between the groups. In the clustering experiment, the brain networks on the sliding windows of all subjects were clustered into two highly structured connection states. Compared to the NC group, the AD group showed a longer residence time and a higher window ratio in a weak connection state, which may be because patients with AD have not established a firm connection. In summary, we constructed a spatiotemporal brain network containing more detailed information, and the dynamic spatiotemporal brain network analysis method based on persistent homology provides stronger adaptability and robustness in revealing the abnormalities of the functional organization of patients with AD.
Collapse
Affiliation(s)
- Jiacheng Xing
- School of Data Science and Technology, North University of China, Taiyuan, China
- Department of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Jiaying Jia
- School of Data Science and Technology, North University of China, Taiyuan, China
| | - Xin Wu
- Department of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Liqun Kuang
- School of Data Science and Technology, North University of China, Taiyuan, China
| |
Collapse
|
28
|
Genon S, Bernhardt BC, La Joie R, Amunts K, Eickhoff SB. The many dimensions of human hippocampal organization and (dys)function. Trends Neurosci 2021; 44:977-989. [PMID: 34756460 DOI: 10.1016/j.tins.2021.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022]
Abstract
The internal organization of hippocampal formation has been studied for more than a century. Although early accounts emphasized its subfields along the medial-lateral axis, findings in recent decades have highlighted also the anterior-to-posterior (i.e., longitudinal) axis as a key contributor to this brain region's functional organization. Hence, understanding of hippocampal function likely demands characterizing both medial-to-lateral and anterior-to-posterior axes, an approach that has been concretized by recent advances in in vivo parcellation and gradient mapping techniques. Following a short historical overview, we review the evidence provided by these approaches in brain-mapping studies, as well as the perspectives they open for addressing the behavioral relevance of the interacting organizational axes in healthy and clinical populations.
Collapse
Affiliation(s)
- Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | | | - Renaud La Joie
- Memory and Aging Center, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|