2
|
Popowski KD, Moatti A, Scull G, Silkstone D, Lutz H, López de Juan Abad B, George A, Belcher E, Zhu D, Mei X, Cheng X, Cislo M, Ghodsi A, Cai Y, Huang K, Li J, Brown AC, Greenbaum A, Dinh PUC, Cheng K. Inhalable dry powder mRNA vaccines based on extracellular vesicles. MATTER 2022; 5:2960-2974. [PMID: 35847197 PMCID: PMC9272513 DOI: 10.1016/j.matt.2022.06.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 05/10/2023]
Abstract
Respiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers. Compared with standard synthetic nanoparticle liposomes (Lipos), Lung-Exos exhibited superior distribution to the bronchioles and parenchyma and are deliverable to the lungs of rodents and nonhuman primates (NHPs) by dry powder inhalation. In a vaccine application, severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein encoding mRNA-loaded Lung-Exos (S-Exos) elicited greater immunoglobulin G (IgG) and secretory IgA (SIgA) responses than its loaded liposome (S-Lipo) counterpart. Importantly, S-Exos remained functional at room-temperature storage for one month. Our results suggest that extracellular vesicles can serve as an inhaled mRNA drug-delivery system that is superior to synthetic liposomes.
Collapse
Affiliation(s)
- Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Grant Scull
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Dylan Silkstone
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Arianna George
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth Belcher
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Xiao Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Megan Cislo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Asma Ghodsi
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Yuheng Cai
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Ashley C Brown
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Chang X, Zeltins A, Mohsen MO, Gharailoo Z, Zha L, Liu X, Walton S, Vogel M, Bachmann MF. A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain. Vaccines (Basel) 2021; 9:1287. [PMID: 34835218 PMCID: PMC8619050 DOI: 10.3390/vaccines9111287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022] Open
Abstract
COVID-19 has emerged, and has rapidly become a major health problem worldwide, causing millions of mortalities. Vaccination against COVID-19 is the most efficient way to stop the pandemic. The goal of vaccines is to induce neutralizing antibodies against SARS-CoV-2 virus. Here, we present a novel double mosaic virus-like particle (VLP) displaying two independent neutralizing epitopes, namely the receptor binding motif (RBM) located in S1 and the fusion peptide (AA 817-855) located in S2. CuMVTT virus-like particles were used as VLP scaffold and both domains were genetically fused in the middle of CuMVTT subunits, which co-assembled into double mosaic particles (CuMVTT-DF). A single fusion mosaic particle (CuMVTT-FP) containing the fusion peptide only was used for comparison. The vaccines were produced in E. coli, and electron microscopy and dynamic light scattering confirmed their integrity and homogeneity. In addition, the CuMVTT-DF vaccine was well recognized by ACE2 receptor, indicating that the RBM was in native conformation. Both CuMVTT-FP and CuMVTT-DF vaccines induced high levels of high avidity IgG antibodies as well as IgA recognizing spike and RBD in the case of CuMVTT-DF. Both vaccine candidates induced virus-neutralizing antibodies indicating that the fusion peptide can independently induce virus-neutralizing antibodies. In contrast, CuMVTT-DF containing both RBM and fusion peptide induced a higher level of neutralizing antibodies suggesting that the new double mosaic vaccine candidate CuMVTT-DF consisting of two antigens in one VLP maybe an attractive candidate for scale-up in a bacterial fermentation process for clinical development.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Rheumatology and Immunology, University Hospital Bern, 3010 Bern, Switzerland; (X.C.); (M.O.M.); (Z.G.); (X.L.); (M.V.)
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Andris Zeltins
- Latvian Biomedical Research & Study Center, Ratsupites 1, LV1067 Riga, Latvia;
| | - Mona O. Mohsen
- Department of Rheumatology and Immunology, University Hospital Bern, 3010 Bern, Switzerland; (X.C.); (M.O.M.); (Z.G.); (X.L.); (M.V.)
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Saiba GmbH, 8808 Pfäffikon, Switzerland;
| | - Zahra Gharailoo
- Department of Rheumatology and Immunology, University Hospital Bern, 3010 Bern, Switzerland; (X.C.); (M.O.M.); (Z.G.); (X.L.); (M.V.)
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Lisha Zha
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, China;
| | - Xuelan Liu
- Department of Rheumatology and Immunology, University Hospital Bern, 3010 Bern, Switzerland; (X.C.); (M.O.M.); (Z.G.); (X.L.); (M.V.)
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, China;
| | | | - Monique Vogel
- Department of Rheumatology and Immunology, University Hospital Bern, 3010 Bern, Switzerland; (X.C.); (M.O.M.); (Z.G.); (X.L.); (M.V.)
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology and Immunology, University Hospital Bern, 3010 Bern, Switzerland; (X.C.); (M.O.M.); (Z.G.); (X.L.); (M.V.)
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, China;
- Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
4
|
Yin Y, Su W, Zhang J, Huang W, Li X, Ma H, Tan M, Song H, Cao G, Yu S, Yu D, Jeong JH, Zhao X, Li H, Nie G, Wang H. Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19. ACS NANO 2021; 15:14347-14359. [PMID: 34472328 PMCID: PMC8425335 DOI: 10.1021/acsnano.1c03252] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/26/2021] [Indexed: 05/12/2023]
Abstract
The successful control of coronavirus disease 2019 (COVID-19) pandemic is not only relying on the development of vaccines, but also depending on the storage, transportation, and administration of vaccines. Ideally, nucleic acid vaccine should be directly delivered to proper immune cells or tissue (such as lymph nodes). However, current developed vaccines are normally treated through intramuscular injection, where immune cells do not normally reside. Meanwhile, current nucleic acid vaccines must be stored in a frozen state that may hinder their application in developing countries. Here, we report a separable microneedle (SMN) patch to deliver polymer encapsulated spike (or nucleocapsid) protein encoding DNA vaccines and immune adjuvant for efficient immunization. Compared with intramuscular injection, SMN patch can deliver nanovaccines into intradermal for inducing potent and durable adaptive immunity. IFN-γ+CD4/8+ and IL-2+CD4/8+ T cells or virus specific IgG are significantly increased after vaccination. Moreover, in vivo results show the SMN patches can be stored at room temperature for at least 30 days without decreases in immune responses. These features of nanovaccines-laden SMN patch are important for developing advanced COVID-19 vaccines with global accessibility.
Collapse
Affiliation(s)
- Yue Yin
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Xiaoyang Li
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
- Department of Orthopedics, National Cancer
Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing,
100021, China
| | - Haixia Ma
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Mixiao Tan
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Haohao Song
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Shengji Yu
- Department of Orthopedics, National Cancer
Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing,
100021, China
| | - Di Yu
- Department of Immunology, Genetics and Pathology,
Science for Life Laboratory, Uppsala University, Uppsala,
75185, Sweden
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Hui Li
- Dongfang Hospital, Beijing University of
Chinese Medicine, Beijing, 100078, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
- University of Chinese Academy of
Sciences, Beijing, 100049, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
- University of Chinese Academy of
Sciences, Beijing, 100049, China
| |
Collapse
|