1
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
2
|
Schipp CJ, Ma Y, Al‐Shameri A, D'Alessio F, Neubauer P, Contestabile R, Budisa N, di Salvo ML. An Engineered Escherichia coli Strain with Synthetic Metabolism for in-Cell Production of Translationally Active Methionine Derivatives. Chembiochem 2020; 21:3525-3538. [PMID: 32734669 PMCID: PMC7756864 DOI: 10.1002/cbic.202000257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Indexed: 01/26/2023]
Abstract
In the last decades, it has become clear that the canonical amino acid repertoire codified by the universal genetic code is not up to the needs of emerging biotechnologies. For this reason, extensive genetic code re-engineering is essential to expand the scope of ribosomal protein translation, leading to reprogrammed microbial cells equipped with an alternative biochemical alphabet to be exploited as potential factories for biotechnological purposes. The prerequisite for this to happen is a continuous intracellular supply of noncanonical amino acids through synthetic metabolism from simple and cheap precursors. We have engineered an Escherichia coli bacterial system that fulfills these requirements through reconfiguration of the methionine biosynthetic pathway and the introduction of an exogenous direct trans-sulfuration pathway. Our metabolic scheme operates in vivo, rescuing intermediates from core cell metabolism and combining them with small bio-orthogonal compounds. Our reprogrammed E. coli strain is capable of the in-cell production of l-azidohomoalanine, which is directly incorporated into proteins in response to methionine codons. We thereby constructed a prototype suitable for economic, versatile, green sustainable chemistry, pushing towards enzyme chemistry and biotechnology-based production.
Collapse
Affiliation(s)
- Christian Johannes Schipp
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität Berlin ACK 24Ackerstraße 7613355BerlinGermany
| | - Ying Ma
- Paraxel International GmbH, Berlin, Campus DRK Kliniken Berlin Westend Haus 18Spandauer Damm 13014050BerlinGermany
| | - Ammar Al‐Shameri
- Institut für ChemieTechnische Universität BerlinMüller-Breslau-Straße. 1010623BerlinGermany
| | - Federico D'Alessio
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität Berlin ACK 24Ackerstraße 7613355BerlinGermany
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität BerlinMüller-Breslau-Straße. 1010623BerlinGermany
- Department of ChemistryUniversity of ManitobaWinnipegMB, R3T 2N2Canada
| | - Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| |
Collapse
|
3
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
4
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
5
|
Hauf M, Richter F, Schneider T, Faidt T, Martins BM, Baumann T, Durkin P, Dobbek H, Jacobs K, Möglich A, Budisa N. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code. Chembiochem 2017. [DOI: 10.1002/cbic.201700327] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthias Hauf
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Florian Richter
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Schneider
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Thomas Faidt
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Berta M. Martins
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Baumann
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Patrick Durkin
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Karin Jacobs
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Andreas Möglich
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
- Lehrstuhl für Biochemie; Universität Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Nediljko Budisa
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
6
|
Biokatalyse mit nicht‐natürlichen Aminosäuren: Enzymologie trifft Xenobiologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Owens AE, Grasso KT, Ziegler CA, Fasan R. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. Chembiochem 2017; 18:1109-1116. [PMID: 28383180 PMCID: PMC5586079 DOI: 10.1002/cbic.201700039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 01/06/2023]
Abstract
Genetic code expansion through amber stop codon suppression provides a powerful tool for introducing non-proteinogenic functionalities into proteins for a broad range of applications. However, ribosomal incorporation of noncanonical amino acids (ncAAs) by means of engineered aminoacyl-tRNA synthetases (aaRSs) often proceeds with significantly reduced efficiency compared to sense codon translation. Here, we report the implementation of a versatile platform for the development of engineered aaRSs with enhanced efficiency in mediating ncAA incorporation by amber stop codon suppression. This system integrates a white/blue colony screen with a plate-based colorimetric assay, thereby combining high-throughput capabilities with reliable and quantitative measurement of aaRS-dependent ncAA incorporation efficiency. This two-tier functional screening system was successfully applied to obtain a pyrrolysyl-tRNA synthetase (PylRS) variant (CrtK-RS(4.1)) with significantly improved efficiency (+250-370 %) for mediating the incorporation of Nϵ -crotonyl-lysine and other lysine analogues of relevance for the study of protein post-translational modifications into a target protein. Interestingly, the beneficial mutations accumulated by CrtK-RS(4.1) were found to localize within the noncatalytic N-terminal domain of the enzyme and could be transferred to another PylRS variant, improving the ability of the variant to incorporate its corresponding ncAA substrate. This work introduces an efficient platform for the improvement of aaRSs that could be readily extended to other members of this enzyme family and/or other target ncAAs.
Collapse
Affiliation(s)
- Andrew E Owens
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| | - Katherine T Grasso
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| | - Christine A Ziegler
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| |
Collapse
|
8
|
Ausländer S, Ausländer D, Fussenegger M. Synthetische Biologie - die Synthese der Biologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - David Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
- Faculty of Science; Universität Basel; Mattenstrasse 26 4058 Basel Schweiz
| |
Collapse
|
9
|
Ausländer S, Ausländer D, Fussenegger M. Synthetic Biology-The Synthesis of Biology. Angew Chem Int Ed Engl 2017; 56:6396-6419. [PMID: 27943572 DOI: 10.1002/anie.201609229] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Indexed: 01/01/2023]
Abstract
Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
10
|
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems. Chembiochem 2015; 16:2420-31. [PMID: 26478227 PMCID: PMC4676933 DOI: 10.1002/cbic.201500340] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/07/2023]
Abstract
From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
11
|
Roderer D, Glockshuber R, Rubini M. Acceleration of the Rate-Limiting Step of Thioredoxin Folding by Replacement of its Conserved cis-Proline with (4 S)-Fluoroproline. Chembiochem 2015; 16:2162-6. [PMID: 26382254 DOI: 10.1002/cbic.201500342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/09/2022]
Abstract
The incorporation of the non-natural amino acids (4R)- and (4S)-fluoroproline (Flp) has been successfully used to improve protein stability, but little is known about their effect on protein folding kinetics. Here we analyzed the influence of (4R)- and (4S)-Flp on the rate-limiting trans-to-cis isomerization of the Ile75-Pro76 peptide bond in the folding of Escherichia coli thioredoxin (Trx). While (4R)-Flp at position 76 had essentially no effect on the isomerization rate in the context of the intact tertiary structure, (4S)-Flp accelerated the folding reaction ninefold. Similarly, tenfold faster trans-to-cis isomerization of Ile75-(4S)-Flp76 relative to Ile75-Pro76 was observed in the unfolded state of Trx. Our results show that the replacement of cis prolines by non-natural proline analogues can be used for modulating the folding rates of proteins with cis prolyl-peptide bonds in the native state.
Collapse
Affiliation(s)
- Daniel Roderer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.,Max-Planck-Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rudi Glockshuber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Marina Rubini
- Department of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|
12
|
Acevedo-Rocha CG, Schulze-Makuch D. How Many Biochemistries Are Available To Build a Cell? Chembiochem 2015; 16:2137-9. [DOI: 10.1002/cbic.201500379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Terrestrische Mikrobiologie; Small Prokaryotic RNA Biology Group; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- Landes-Offensive zur Entwicklung Wissenschafltich-Ökonomischer Exzellenz (LOEWE); Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Philipps-Universität Marburg; Hans-Meerwein-Strasse 6 35042 Marburg Germany
| | - Dirk Schulze-Makuch
- School of the Environment; Washington State University; Webster Hall 1148 Pullman WA 99163 USA
- Beyond Center; Arizona State University; P. O. Box 871504 Tempe AZ 85827 USA
- Center for Astronomy and Astrophysics; Technical University Berlin; Hardenbergstrasse 36 10623 Berlin Germany
| |
Collapse
|
13
|
Mühlberg M, Hoesl MG, Kuehne C, Dernedde J, Budisa N, Hackenberger CPR. Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds. Beilstein J Org Chem 2015; 11:784-791. [PMID: 26124880 PMCID: PMC4464295 DOI: 10.3762/bjoc.11.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/05/2015] [Indexed: 01/12/2023] Open
Abstract
To add new tools to the repertoire of protein-based multivalent scaffold design, we have developed a novel dual-labeling strategy for proteins that combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC) and oxime ligation. This method was applied to the conjugation of biotin and β-linked galactose residues to yield an enzymatically active thermophilic lipase, which revealed specific binding to Erythrina cristagalli lectin by SPR binding studies.
Collapse
Affiliation(s)
- Michaela Mühlberg
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, 14195 Berlin, Germany
| | - Michael G Hoesl
- Technische Universität Berlin, AK Biokatalyse, Institut für Chemie, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Christian Kuehne
- Charité - Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Dernedde
- Charité - Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nediljko Budisa
- Technische Universität Berlin, AK Biokatalyse, Institut für Chemie, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Christian P R Hackenberger
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Humboldt Universität zu Berlin, Institut für Organische und Bioorganische Chemie, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
14
|
Völler J, Biava H, Koksch B, Hildebrandt P, Budisa N. Orthogonal Translation Meets Electron Transfer: In Vivo Labeling of Cytochromecfor Probing Local Electric Fields. Chembiochem 2015; 16:742-5. [DOI: 10.1002/cbic.201500022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Indexed: 02/02/2023]
|
15
|
Nischan N, Herce HD, Natale F, Bohlke N, Budisa N, Cardoso MC, Hackenberger CPR. Kovalente Verknüpfung cyclischer TAT-Peptide mit GFP resultiert in der direkten Aufnahme in lebende Zellen mit sofortiger biologischer Verfügbarkeit. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Nischan N, Herce HD, Natale F, Bohlke N, Budisa N, Cardoso MC, Hackenberger CPR. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability. Angew Chem Int Ed Engl 2014; 54:1950-3. [PMID: 25521313 DOI: 10.1002/anie.201410006] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Indexed: 11/08/2022]
Abstract
The delivery of free molecules into the cytoplasm and nucleus by using arginine-rich cell-penetrating peptides (CPPs) has been limited to small cargoes, while large cargoes such as proteins are taken up and trapped in endocytic vesicles. Based on recent work, in which we showed that the transduction efficiency of arginine-rich CPPs can be greatly enhanced by cyclization, the aim was to use cyclic CPPs to transport full-length proteins, in this study green fluorescent protein (GFP), into the cytosol of living cells. Cyclic and linear CPP-GFP conjugates were obtained by using azido-functionalized CPPs and an alkyne-functionalized GFP. Our findings reveal that the cyclic-CPP-GFP conjugates are internalized into live cells with immediate bioavailability in the cytosol and the nucleus, whereas linear CPP analogues do not confer GFP transduction. This technology expands the application of cyclic CPPs to the efficient transport of functional full-length proteins into live cells.
Collapse
Affiliation(s)
- Nicole Nischan
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin (Germany); Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin (Germany)
| | | | | | | | | | | | | |
Collapse
|
17
|
Al Toma RS, Kuthning A, Exner MP, Denisiuk A, Ziegler J, Budisa N, Süssmuth RD. Site-Directed and Global Incorporation of Orthogonal and Isostructural Noncanonical Amino Acids into the Ribosomal Lasso Peptide Capistruin. Chembiochem 2014; 16:503-9. [DOI: 10.1002/cbic.201402558] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Indexed: 02/01/2023]
|
18
|
Deepankumar K, Nadarajan SP, Mathew S, Lee SG, Yoo TH, Hong EY, Kim BG, Yun H. Engineering Transaminase for Stability Enhancement and Site-Specific Immobilization through Multiple Noncanonical Amino Acids Incorporation. ChemCatChem 2014. [DOI: 10.1002/cctc.201402882] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Deepankumar K, Shon M, Nadarajan SP, Shin G, Mathew S, Ayyadurai N, Kim BG, Choi SH, Lee SH, Yun H. Enhancing Thermostability and Organic Solvent Tolerance of ω-Transaminase through Global Incorporation of Fluorotyrosine. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300706] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Wu IL, Patterson MA, Carpenter Desai HE, Mehl RA, Giorgi G, Conticello VP. Multiple Site-Selective Insertions of Noncanonical Amino Acids into Sequence-Repetitive Polypeptides. Chembiochem 2013; 14:968-78. [DOI: 10.1002/cbic.201300069] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 11/11/2022]
|
21
|
Schmidt MJ, Summerer D. A Need for Speed: Genetic Encoding of Rapid Cycloaddition Chemistries for Protein Labelling in Living Cells. Chembiochem 2012; 13:1553-7. [DOI: 10.1002/cbic.201200321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Indexed: 01/08/2023]
|
22
|
Oldach F, Al Toma R, Kuthning A, Caetano T, Mendo S, Budisa N, Süssmuth RD. Lantibiotika-Kongenere mit nicht-kanonischen Aminosäuren durch ribosomale In-vivo-Peptidsynthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Oldach F, Al Toma R, Kuthning A, Caetano T, Mendo S, Budisa N, Süssmuth RD. Congeneric lantibiotics from ribosomal in vivo peptide synthesis with noncanonical amino acids. Angew Chem Int Ed Engl 2011; 51:415-8. [PMID: 22128014 DOI: 10.1002/anie.201106154] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/20/2011] [Indexed: 11/10/2022]
Abstract
Expanded repetoire: Synthetic amino acids translated into propeptides dramatically increase the chemical diversity of the two-component lantibiotic lichenicidin. This opens new routes towards novel and unique peptide antibiotic sequences, which could display features important for medical applications.
Collapse
Affiliation(s)
- Florian Oldach
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Beck-Sickinger AG, Budisa N. Genetically Encoded Photocrosslinkers as Molecular Probes To Study G-Protein-Coupled Receptors (GPCRs). Angew Chem Int Ed Engl 2011; 51:310-2. [DOI: 10.1002/anie.201107211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Indexed: 11/12/2022]
|
25
|
Beck-Sickinger AG, Budisa N. Genetisch kodierte Photovernetzer als molekulare Sonden zur Untersuchung von G-Protein-gekoppelten Rezeptoren (GPCR). Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201107211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Vallée MRJ, Majkut P, Wilkening I, Weise C, Müller G, Hackenberger CPR. Staudinger-Phosphonite Reactions for the Chemoselective Transformation of Azido-Containing Peptides and Proteins. Org Lett 2011; 13:5440-3. [DOI: 10.1021/ol2020175] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Robert J. Vallée
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Paul Majkut
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ina Wilkening
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Gregor Müller
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | |
Collapse
|
27
|
Baker PJ, Montclare JK. Enhanced Refoldability and Thermoactivity of Fluorinated Phosphotriesterase. Chembiochem 2011; 12:1845-8. [DOI: 10.1002/cbic.201100221] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 12/13/2022]
|
28
|
Acevedo-Rocha CG, Budisa N. On the road towards chemically modified organisms endowed with a genetic firewall. Angew Chem Int Ed Engl 2011; 50:6960-2. [PMID: 21710510 DOI: 10.1002/anie.201103010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Indexed: 01/06/2023]
|
29
|
Acevedo-Rocha CG, Budisa N. Auf dem Weg zu chemisch veränderten Organismen mit genetischer Firewall. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Abdeljabbar DM, Klein TJ, Link AJ. An engineered methionyl-tRNA synthetase enables azidonorleucine incorporation in methionine prototrophic bacteria. Chembiochem 2011; 12:1699-702. [PMID: 21671329 DOI: 10.1002/cbic.201100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Diya M Abdeljabbar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
31
|
Nagasundarapandian S, Merkel L, Budisa N, Govindan R, Ayyadurai N, Sriram S, Yun H, Lee SG. Engineering protein sequence composition for folding robustness renders efficient noncanonical amino acid incorporations. Chembiochem 2011; 11:2521-4. [PMID: 21064080 DOI: 10.1002/cbic.201000380] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Hoesl MG, Budisa N. In Vivo Incorporation of Multiple Noncanonical Amino Acids into Proteins. Angew Chem Int Ed Engl 2011; 50:2896-902. [DOI: 10.1002/anie.201005680] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Indexed: 11/11/2022]
|
33
|
Hoesl MG, Budisa N. Paralleler In-vivo-Einbau von mehreren nichtkanonischen Aminosäuren in Proteine. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Hoesl MG, Budisa N. Expanding and Engineering the Genetic Code in a Single Expression Experiment. Chembiochem 2011; 12:552-5. [DOI: 10.1002/cbic.201000586] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Indexed: 12/31/2022]
|
35
|
Hayashi A, Hino N, Kobayashi T, Arai R, Shirouzu M, Yokoyama S, Sakamoto K. Dissecting Cell Signaling Pathways with Genetically Encoded 3-Iodo-L-tyrosine. Chembiochem 2010; 12:387-9. [DOI: 10.1002/cbic.201000665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Indexed: 11/05/2022]
|
36
|
Hoesl MG, Acevedo-Rocha CG, Nehring S, Royter M, Wolschner C, Wiltschi B, Budisa N, Antranikian G. Lipase Congeners Designed by Genetic Code Engineering. ChemCatChem 2010. [DOI: 10.1002/cctc.201000253] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Beatty KE, Fisk JD, Smart BP, Lu YY, Szychowski J, Hangauer MJ, Baskin JM, Bertozzi CR, Tirrell DA. Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. Chembiochem 2010; 11:2092-5. [PMID: 20836119 PMCID: PMC3069858 DOI: 10.1002/cbic.201000419] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly E. Beatty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (USA)
| | - John D. Fisk
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (USA)
| | - Brian P. Smart
- Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California–Berkeley B84 Hildebrand Hall 1460, Berkeley, CA 94720 (USA)
| | - Ying Ying Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (USA)
| | - Janek Szychowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (USA)
| | - Matthew J. Hangauer
- Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California–Berkeley B84 Hildebrand Hall 1460, Berkeley, CA 94720 (USA)
| | - Jeremy M. Baskin
- Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California–Berkeley B84 Hildebrand Hall 1460, Berkeley, CA 94720 (USA)
| | - Carolyn R. Bertozzi
- Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California–Berkeley B84 Hildebrand Hall 1460, Berkeley, CA 94720 (USA)
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (USA)
| |
Collapse
|
38
|
Weikart ND, Mootz HD. Generation of site-specific and enzymatically stable conjugates of recombinant proteins with ubiquitin-like modifiers by the Cu(I)-catalyzed azide-alkyne cycloaddition. Chembiochem 2010; 11:774-7. [PMID: 20209558 DOI: 10.1002/cbic.200900738] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nadine D Weikart
- Fakultät Chemie-Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | | |
Collapse
|
39
|
Lepthien S, Merkel L, Budisa N. Doppelte und dreifache In-vivo-Funktionalisierung von Proteinen mit synthetischen Aminosäuren. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Lepthien S, Merkel L, Budisa N. In Vivo Double and Triple Labeling of Proteins Using Synthetic Amino Acids. Angew Chem Int Ed Engl 2010; 49:5446-50. [DOI: 10.1002/anie.201000439] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Merkel L, Schauer M, Antranikian G, Budisa N. Parallel Incorporation of Different Fluorinated Amino Acids: On the Way to “Teflon” Proteins. Chembiochem 2010; 11:1505-7. [DOI: 10.1002/cbic.201000295] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
|
43
|
Merkel L, Hoesl MG, Albrecht M, Schmidt A, Budisa N. Blue Fluorescent Amino Acids as In Vivo Building Blocks for Proteins. Chembiochem 2010; 11:305-14. [DOI: 10.1002/cbic.200900651] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
|
45
|
Berschneider B, Wieland M, Rubini M, Hartig JS. Small-molecule-dependent regulation of transfer RNA in bacteria. Angew Chem Int Ed Engl 2009; 48:7564-7. [PMID: 19739151 DOI: 10.1002/anie.200900851] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara Berschneider
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
46
|
Berschneider B, Wieland M, Rubini M, Hartig J. Ligandenabhängige Regulierung einer Transfer-RNA in Bakterien. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Sletten E, Bertozzi C. Bioorthogonale Chemie - oder: in einem Meer aus Funktionalität nach Selektivität fischen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900942] [Citation(s) in RCA: 522] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Salwiczek M, Samsonov S, Vagt T, Nyakatura E, Fleige E, Numata J, Cölfen H, Pisabarro M, Koksch B. Position-Dependent Effects of Fluorinated Amino Acids on the Hydrophobic Core Formation of a Heterodimeric Coiled Coil. Chemistry 2009; 15:7628-36. [DOI: 10.1002/chem.200802136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Serwa R, Wilkening I, Del Signore G, Mühlberg M, Claußnitzer I, Weise C, Gerrits M, Hackenberger C. Chemoselektive Staudinger-Phosphit-Reaktion von Aziden für die Phosphorylierung von Proteinen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902118] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
Serwa R, Wilkening I, Del Signore G, Mühlberg M, Claußnitzer I, Weise C, Gerrits M, Hackenberger C. Chemoselective Staudinger-Phosphite Reaction of Azides for the Phosphorylation of Proteins. Angew Chem Int Ed Engl 2009; 48:8234-9. [DOI: 10.1002/anie.200902118] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|