1
|
Xue Z, Wang L, Pan S, Yan J, You M, Yao C. The nucleic acid reactions on the nanomaterials surface for biomedicine. J Nanobiotechnology 2025; 23:308. [PMID: 40269855 PMCID: PMC12016162 DOI: 10.1186/s12951-025-03374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Integrating nucleic acids (NAs) with nanomaterials has substantially advanced biomedical research, enabling critical applications in biosensing, drug delivery, therapeutics, and the synthesis of nanomaterials. At the core of these advances are the reactions of NAs on nanomaterial surfaces, encompassing conjugation (covalent and non-covalent), detachment (physical and chemical), and signal amplification (enzyme-mediated signal amplification, enzyme-free signal amplification, and DNA Walker). Here, we review the fundamental mechanisms and recent progress in nucleic acid reactions on nanomaterial surfaces, discuss emerging applications for diagnostics, nanomedicine, and gene therapy, and explore persistent challenges in the field. We offer a forward-looking perspective on how future developments could better control, optimize, and harness these reactions for transformative advances in nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Zhenrui Xue
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lu Wang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Shengnan Pan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Jie Yan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Metallic Nanoparticles as promising tools to eradicate H. pylori: A comprehensive review on recent advancements. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Samuel Raj V, Chang CM, Priyadarshini A. Synthesis and Biological Characterization of Phyto-Fabricated Silver Nanoparticles from Azadirachta indica. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticles (NPs) have garnered a lot of interest in sectors like medicine, cosmetics, food, and pharmaceuticals for antibacterial catalytic properties, reduced toxicity, and easy production. Biological synthesis of silver nanoparticle (AgNPs) is considered as green, eco-friendly,
and cost-effective approach; therefore, Azadirachta indica extracts were utilized for a dual role of fabrication and functionalization of AgNPs. Optical and physical characterizations were achieved for confirming the biosynthesized AgNPs. SEM images detected quasi-spherical AgNPs of
44.04 to 66.50 nm. Some of potent phytochemicals like flavonoids and proteins from Azadirachta indica formed a strong coating or capping on the AgNPs without affecting their secondary structure by interacting with Ag+ and NPs for the formation of AgNPs. AgNPs exhibited strong
antibacterial activity (MIC 10 μg/ml) against multidrug-resistant bacteria Enterococcus faecalis; at different concentrations, no IC50 values were recorded for AgNPs as well as Azadirachta indica signifying low cytotoxicity in the exposed concentration range. The DNA
degradation activity of AgNPs through the TUNEL assay revealed no significant increase in the overall FITC mean fluorescence intensity as well as a DNA fragmentation index with 5.45% DNA damage (10 μg/ml AgNPs). Drug uptake of AgNPs was also investigated through a permeability assay
via Caco-2 cell lines at test concentrations where apparent permeability was detected as moderate.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana 121002, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - V. Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist. Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| |
Collapse
|
4
|
Brokesh AM, Gaharwar AK. Inorganic Biomaterials for Regenerative Medicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5319-5344. [PMID: 31989815 DOI: 10.1021/acsami.9b17801] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regenerative medicine leverages the innate potential of the human body to efficiently repair and regenerate damaged tissues using engineered biomaterials. By designing responsive biomaterials with the appropriate biophysical and biochemical characteristics, cellular response can be modulated to direct tissue healing. Recently, inorganic biomaterials have been shown to regulate cellular responses including cell-cell and cell-matrix interactions. Moreover, ions released from these mineral-based biomaterials play a vital role in defining cell identity, as well as driving tissue-specific functions. The intrinsic properties of inorganic biomaterials, such as the release of bioactive ions (e.g., Ca, Mg, Sr, Si, B, Fe, Cu, Zn, Cr, Co, Mo, Mn, Au, Ag, V, Eu, and La), can be leveraged to induce phenotypic changes in cells or modulate the immune microenvironment to direct tissue healing and regeneration. Biophysical characteristics of biomaterials, such as topography, charge, size, electrostatic interactions, and stiffness can be modulated by addition of inorganic micro- and nanoparticles to polymeric networks have also been shown to play an important role in their biological response. In this Review, we discuss the recent emergence of inorganic biomaterials to harness the innate regenerative potential of the body. Specifically, we will discuss various biophysical or biochemical effects of inorganic-based materials in directing cellular response for regenerative medicine applications.
Collapse
Affiliation(s)
- Anna M Brokesh
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Material Science and Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Center for Remote Health Technologies and Systems , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
5
|
Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019; 9:57. [PMID: 30729081 PMCID: PMC6352626 DOI: 10.1007/s13205-019-1577-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/13/2023] Open
Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
Collapse
Affiliation(s)
- Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| | - Sahil Nagpal
- Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Mahero Ayesha Shah
- Julius Maximilians Universität Würzburg, Faculty of medicine Uniklinik, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ananya Srivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana Mahendergarh, Haryana, 123031 India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities 2004 Folwell Ave, Saint Paul, MN 55108 USA
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
6
|
Ďorďovič V, Vojtová J, Jana S, Uchman M. Charge reversal and swelling in saccharide binding polyzwitterionic phenylboronic acid-modified poly(4-vinylpyridine) nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py00938h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present the synthesis and characterization of zwitterionic poly(4-vinylpyridine) nanoparticles quaternized with phenylboronic acid (QxPVP-PBA) whose size and surface charge can be tuned by varying the saccharide and the degree of quaternization.
Collapse
Affiliation(s)
- Vladimír Ďorďovič
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Jana Vojtová
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Somdeb Jana
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| |
Collapse
|
7
|
Affiliation(s)
- Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, 6 Hohe St., 01069 Dresden, Germany
| |
Collapse
|
8
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Int J Biol Macromol 2018; 107:865-873. [DOI: 10.1016/j.ijbiomac.2017.09.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
|
10
|
Cantarutti C, Bertoncin P, Posocco P, Hunashal Y, Giorgetti S, Bellotti V, Fogolari F, Esposito G. The interaction of β2-microglobulin with gold nanoparticles: impact of coating, charge and size. J Mater Chem B 2018; 6:5964-5974. [PMID: 32254716 DOI: 10.1039/c8tb01129j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gold nanoparticles (AuNPs) have been proved to be ideal scaffolds to build nanodevices whose performance can be tuned by changing their coating.
Collapse
Affiliation(s)
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita
- Università di Trieste
- 34128 Trieste
- Italy
| | - Paola Posocco
- Dipartimento di Ingegneria ed Architettura
- Università di Trieste
- 34127 Trieste
- Italy
| | | | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
- Division of Medicine
| | | | | |
Collapse
|
11
|
Adarsh N, Ramya AN, Maiti KK, Ramaiah D. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells. Chemistry 2017; 23:14286-14291. [DOI: 10.1002/chem.201702626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nagappanpillai Adarsh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram- 695 019, Kerala India
| | - Adukkadan N. Ramya
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram- 695 019, Kerala India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR-NIIST; Thiruvananthapuram India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram- 695 019, Kerala India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR-NIIST; Thiruvananthapuram India
| | - Danaboyina Ramaiah
- Academy of Scientific and Innovative Research (AcSIR)-CSIR-NIIST; Thiruvananthapuram India
- CSIR-North East Institute of Science and Technology (CSIR-NEIST); Jorhat, Assam India
| |
Collapse
|
12
|
Goodman AM, Hogan NJ, Gottheim S, Li C, Clare SE, Halas NJ. Understanding Resonant Light-Triggered DNA Release from Plasmonic Nanoparticles. ACS NANO 2017; 11:171-179. [PMID: 28114757 DOI: 10.1021/acsnano.6b06510] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticle-based platforms for gene therapy and drug delivery are gaining popularity for cancer treatment. To improve therapeutic selectivity, one important strategy is to remotely trigger the release of a therapeutic cargo from a specially designed gene- or drug-laden near-infrared (NIR) absorbing gold nanoparticle complex with NIR light. While there have been multiple demonstrations of NIR nanoparticle-based release platforms, our understanding of how light-triggered release works in such complexes is still limited. Here, we investigate the specific mechanisms of DNA release from plasmonic nanoparticle complexes using continuous wave (CW) and femtosecond pulsed lasers. We find that the characteristics of nanoparticle-based DNA release vary profoundly from the same nanoparticle complex, depending on the type of laser excitation. CW laser illumination drives the photothermal release of dehybridized single-stranded DNA, while pulsed-laser excitation results in double-stranded DNA release by cleavage of the Au-S bond, with negligible local heating. This dramatic difference in DNA release from the same DNA-nanoparticle complex has very important implications in the development of NIR-triggered gene or drug delivery nanocomplexes.
Collapse
Affiliation(s)
| | | | | | | | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
| | | |
Collapse
|
13
|
Kozielski KL, Rui Y, Green JJ. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv 2016; 13:1475-87. [PMID: 27248202 DOI: 10.1080/17425247.2016.1190707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The delivery of nucleic acids such as DNA and short interfering RNA (siRNA) is promising for the treatment of many diseases, including cancer, by enabling novel biological mechanisms of action. Non-viral nanoparticles are a promising class of nucleic acid carriers that can be designed to be safer and more versatile than traditional viral vectors. AREAS COVERED In this review, recent advances in the intracellular delivery of DNA and siRNA are described with a focus on non-viral nanoparticle-based delivery methods. Material properties that have enabled successful delivery are discussed as well as applications that have directly been applied to cancer therapy. Strategies to co-deliver different nucleic acids are highlighted, as are novel targets for nucleic acid co-delivery. EXPERT OPINION The treatment of complex genetically-based diseases such as cancer can be enabled by safe and effective intracellular delivery of multiple nucleic acids. Non-viral nanoparticles can be fabricated to deliver multiple nucleic acids to the same cell simultaneously to prevent tumor cells from easily compensating for the knockdown or overexpression of one genetic target. The continued innovation of new therapeutic modalities and non-viral nanotechnologies to provide target-specific and personalized forms of gene therapy hold promise for genetic medicine to treat diseases like cancer in the clinic.
Collapse
Affiliation(s)
- Kristen L Kozielski
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Yuan Rui
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jordan J Green
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Departments of Ophthalmology, Oncology, Neurosurgery, and Materials Science & Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
14
|
Pan Y, Li T, Cheng J, Telesca D, Zink JI, Jiang J. Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. RSC Adv 2016. [DOI: 10.1039/c6ra01298a] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational approaches have evolved as efficient alternatives to understand the adverse effects of nanoparticles on human health and the environment.
Collapse
Affiliation(s)
- Yong Pan
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control
- Nanjing Tech University
- Nanjing
- China
- Department of Chemistry & Biochemistry
| | - Ting Li
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control
- Nanjing Tech University
- Nanjing
- China
| | - Jie Cheng
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control
- Nanjing Tech University
- Nanjing
- China
| | | | - Jeffrey I. Zink
- Department of Chemistry & Biochemistry
- University of California
- Los Angeles
- USA
| | - Juncheng Jiang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
15
|
Lin M, Gao Y, Hornicek F, Xu F, Lu TJ, Amiji M, Duan Z. Near-infrared light activated delivery platform for cancer therapy. Adv Colloid Interface Sci 2015; 226:123-37. [PMID: 26520243 PMCID: PMC4679704 DOI: 10.1016/j.cis.2015.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022]
Abstract
Cancer treatment using conventional drug delivery platforms may lead to fatal damage to normal cells. Among various intelligent delivery platforms, photoresponsive delivery platforms are becoming popular, as light can be easily focused and tuned in terms of power intensity, wavelength, and irradiation time, allowing remote and precise control over therapeutic payload release both spatially and temporally. This unprecedented controlled delivery manner is important to improve therapeutic efficacy while minimizing side effects. However, most of the existing photoactive delivery platforms require UV/visible excitation to initiate their function, which suffers from phototoxicity and low level of tissue penetration limiting their practical applications in biomedicine. With the advanced optical property of converting near infrared (NIR) excitation to localized UV/visible emission, upconversion nanoparticles (UCNPs) have emerged as a promising photoactive delivery platform that provides practical applications for remote spatially and temporally controlled release of therapeutic payload molecules using low phototoxic and high tissue penetration NIR light as the excitation source. This article reviews the state-of-the-art design, synthesis and therapeutic molecular payload encapsulation strategies of UCNP-based photoactive delivery platforms for cancer therapy. Challenges and promises for engineering of advanced delivery platforms are also highlighted.
Collapse
Affiliation(s)
- Min Lin
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA; The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yan Gao
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Francis Hornicek
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA.
| |
Collapse
|
16
|
Chen ZP, Li M, Zhang LJ, He JY, Wu L, Xiao YY, Duan JA, Cai T, Li WD. Mitochondria-targeted drug delivery system for cancer treatment. J Drug Target 2015; 24:492-502. [DOI: 10.3109/1061186x.2015.1108325] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Zhi-Peng Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China and
| | - Man Li
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China and
| | - Liu-Jie Zhang
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China and
| | - Jia-Yu He
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China and
| | - Li Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China and
| | - Yan-Yu Xiao
- Department of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jin-Ao Duan
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China and
| | - Ting Cai
- Department of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Wei-Dong Li
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China and
| |
Collapse
|
17
|
Barhoumi A, Liu Q, Kohane DS. Ultraviolet light-mediated drug delivery: Principles, applications, and challenges. J Control Release 2015. [PMID: 26208426 DOI: 10.1016/j.jconrel.2015.07.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
UV light has been extensively employed in drug delivery because of its versatility, ease of manipulation, and ability to induce chemical changes on the therapeutic carrier. Here we review the mechanisms by which UV light affects drug delivery systems. We will present the challenges facing UV-induced drug delivery and some of the proposed solutions.
Collapse
Affiliation(s)
- Aoune Barhoumi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institutes for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qian Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institutes for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institutes for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Muddineti OS, Ghosh B, Biswas S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int J Pharm 2015; 484:252-67. [DOI: 10.1016/j.ijpharm.2015.02.038] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 02/06/2023]
|
19
|
Idris NM, Jayakumar MKG, Bansal A, Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 2015; 44:1449-1478. [DOI: 10.1039/c4cs00158c] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Upconversion nanoparticles enable use of near infrared light for spatially and temporally controlled activation of therapeutic compounds in deeper tissues.
Collapse
Affiliation(s)
- Niagara Muhammad Idris
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
| | | | - Akshaya Bansal
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| | - Yong Zhang
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| |
Collapse
|
20
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
21
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
22
|
Bansal A, Zhang Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc Chem Res 2014; 47:3052-60. [PMID: 25137555 DOI: 10.1021/ar500217w] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
"Smart" stimuli-responsive nanomaterials are becoming popular as targeted delivery systems because they allow the use of internal or external stimuli to achieve spatial or temporal control over the delivery process. Among the stimuli that have been used, light is of special interest because it is not only noninvasive but also controllable both spatially and temporally, thus allowing unprecedented control over the delivery of bioactive molecules such as nucleic acids, proteins, drugs, etc. This is particularly advantageous for biomedical applications where specificity and selectivity are highly desired. Several strategies have evolved under the umbrella of light based delivery systems and can be classified into three main groups. The first strategy involves "caging" of the bioactive molecule using photolabile groups, loading these caged molecules onto a carrier and then "uncaging" or activating them at the targeted site upon irradiation with light of a particular wavelength. The second strategy makes use of nanocarriers that themselves are made photoresponsive either through modification with photosensitive groups or through the attachment of photolinkers on the carrier surface. These nanoparticles upon irradiation dissociate, releasing the cargo encapsulated within, or the photolinkers attaching the cargo to the surface get cleaved, resulting in release. The third approach makes use of the surface plasmon resonance of noble metal based nanoparticles. Upon irradiation with light at the plasmon resonant frequency, the resulting thermal or nonthermal field enhancement effects facilitate the release of bioactive molecules loaded onto the nanoparticles. In addition, other materials, certain metal sulfides, graphene oxide, etc., also exhibit photothermal transduction that can be exploited for targeted delivery. These approaches, though effective, are constrained by their predominant use of UV or visible light to which most photolabile groups are sensitive. Near infrared (NIR) excitation is preferred because NIR light is safer and can penetrate deeper in biological tissues. However, most photolabile groups cannot be excited by NIR light directly. So light conversion from NIR to UV/visible is required. Nanomaterials that display upconversion or two-photon-excitation properties have been developed that can serve as nanotransducers, converting NIR to UV/visible light to which the aforementioned photoresponsive moieties are sensitive. This Account will review the existing light-based nanoparticle delivery systems, their applications, the limitations they face, and the technologies that have emerged in an effort to overcome these limitations.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical
Engineering, Faculty of Engineering, National University of Singapore, 117575 Singapore
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 117456 Singapore
| | - Yong Zhang
- Department of Biomedical
Engineering, Faculty of Engineering, National University of Singapore, 117575 Singapore
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 117456 Singapore
| |
Collapse
|
23
|
Barhoumi A, Wang W, Zurakowski D, Langer RS, Kohane DS. Photothermally targeted thermosensitive polymer-masked nanoparticles. NANO LETTERS 2014; 14:3697-701. [PMID: 24884872 DOI: 10.1021/nl403733z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The targeted delivery of therapeutic cargos using noninvasive stimuli has the potential to improve efficacy and reduce off-target effects (toxicity). Here, we demonstrate a targeting mechanism that uses a thermoresponsive copolymer to mask a peptide ligand that binds a widely distributed receptor (integrin β1) on the surface of silica core-gold shell nanoparticles. The nanoparticles convert NIR light into heat, which causes the copolymer to collapse, exposing the ligand peptide, allowing cell binding. The use of NIR light could allow targeting of plasmonic nanoparticles deep within tissues. This approach could be extended to a variety of applications including photothermal therapy and drug delivery.
Collapse
Affiliation(s)
- Aoune Barhoumi
- Laboratory for Biomaterials and Drug Delivery, §Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | | | | | | | | |
Collapse
|
24
|
Lülf H, Bertucci A, Septiadi D, Corradini R, De Cola L. Multifunctional Inorganic Nanocontainers for DNA and Drug Delivery into Living Cells. Chemistry 2014; 20:10900-4. [DOI: 10.1002/chem.201403232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 12/31/2022]
|
25
|
Zhao D, Chen Y, Liu Y. Construction and DNA Condensation of Cyclodextrin-Coated Gold Nanoparticles with Anthryl Grafts. Chem Asian J 2014; 9:1895-903. [DOI: 10.1002/asia.201402078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 12/27/2022]
|
26
|
Hu X, Li Y, Liu T, Zhang G, Liu S. Photodegradable Neutral-Cationic Brush Block Copolymers for Nonviral Gene Delivery. Chem Asian J 2014; 9:2148-55. [DOI: 10.1002/asia.201402171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 11/09/2022]
|
27
|
He L, Feng L, Cheng L, Liu Y, Li Z, Peng R, Li Y, Guo L, Liu Z. Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10381-10388. [PMID: 24070392 DOI: 10.1021/am403554x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Upconversion nanoparticles (UCNPs) have been widely explored for various bioapplications because of their unique optical properties, easy surface functionalization, and low cytotoxicity. Herein, we synthesize gadolinium (Gd3+)-doped UCNPs, which are modified first with poly(ethylene glycol) (PEG) and then with two layers of poly(ethylenimine) (PEI) via covalent conjugation and layer-by-layer assembly, respectively. Compared with UCNP-PEG@1×PEI with only one layer of PEI coating, the final complex, UCNP-PEG@2×PEI, with two PEI layers exhibits reduced cytotoxicity and enhanced gene transfection efficiency. It is interesting to find that while free PEI polymer is only effective in gene transfection in a serum-free medium and shows drastically reduced transfection ability if serum is added, UCNP-PEG@2×PEI is able to transfect cells in both serum-free and -containing media and, surprisingly, offers even higher gene transfection efficiency if serum is added. This is likely due to the formation of protein corona on the nanoparticle surface, which triggers the receptor-mediated endocytosis of our UCNP vectors. Considering the upconversion luminescence and magnetic resonance imaging contrasting ability of UCNPs, our novel nanovector could serve as a "trackable" gene-delivery carrier promising for theranostic applications.
Collapse
Affiliation(s)
- Lu He
- Department of Radiology, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yin L, Tang H, Kim KH, Zheng N, Song Z, Gabrielson NP, Lu H, Cheng J. Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery. Angew Chem Int Ed Engl 2013; 52:9182-9186. [PMID: 23832670 PMCID: PMC4232450 DOI: 10.1002/anie.201302820] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/25/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| | - Haoyu Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| | - Kyung Hoon Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| | - Nathan P. Gabrielson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| | - Hua Lu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA)
| |
Collapse
|
29
|
Jin M, Xu H, Hong H, Bao C, Pu H, Wan D, Zhu L. Micropatterning of polymethacrylates by single- or two-photon irradiation using π-conjugatedo-nitrobenzyl ester phototrigger as side chains. J Appl Polym Sci 2013. [DOI: 10.1002/app.39683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ming Jin
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Haoran Xu
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Hong Hong
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Chunyan Bao
- East China University of Science and Technology; Shanghai; 200237; China
| | - Hongting Pu
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Decheng Wan
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Linyong Zhu
- East China University of Science and Technology; Shanghai; 200237; China
| |
Collapse
|
30
|
Yin L, Tang H, Kim KH, Zheng N, Song Z, Gabrielson NP, Lu H, Cheng J. Light‐Responsive Helical Polypeptides Capable of Reducing Toxicity and Unpacking DNA: Toward Nonviral Gene Delivery. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| | - Haoyu Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| | - Kyung Hoon Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| | - Nathan P. Gabrielson
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| | - Hua Lu
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA) http://cheng.matse.illinois.edu/
| |
Collapse
|
31
|
Lim EK, Jang E, Lee K, Haam S, Huh YM. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 2013; 5:294-317. [PMID: 24300452 PMCID: PMC3834952 DOI: 10.3390/pharmaceutics5020294] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/15/2013] [Accepted: 05/03/2013] [Indexed: 02/04/2023] Open
Abstract
Nanoparticles have been investigated as drug carriers, because they provide a great opportunity due to their advantageous features: (i) various formulations using organic/inorganic materials, (ii) easy modification of targeting molecules, drugs or other molecules on them, (iii) effective delivery to target sites, resulting in high therapeutic efficacy and (iv) controlling drug release by external/internal stimuli. Because of these features, therapeutic efficacy can be improved and unwanted side effects can be reduced. Theranostic nanoparticles have been developed by incorporating imaging agents in drug carriers as all-in-one system, which makes it possible to diagnose and treat cancer by monitoring drug delivery behavior simultaneously. Recently, stimuli-responsive, activatable nanomaterials are being applied that are capable of producing chemical or physical changes by external stimuli. By using these nanoparticles, multiple tasks can be carried out simultaneously, e.g., early and accurate diagnosis, efficient cataloguing of patient groups of personalized therapy and real-time monitoring of disease progress. In this paper, we describe various types of nanoparticles for drug delivery systems, as well as theranostic systems.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- Department of Radiology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea.
| | | | | | | | | |
Collapse
|
32
|
Ye S, Xiao J, Guo Y, Zhang S. Aptamer-based SERS assay of ATP and lysozyme by using primer self-generation. Chemistry 2013; 19:8111-6. [PMID: 23640878 DOI: 10.1002/chem.201300126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Indexed: 01/27/2023]
Abstract
A simple bifunctional surface-enhanced Raman scattering (SERS) assay based on primer self-generation strand-displacement polymerization (PS-SDP) is developed to detect small molecules or proteins in parallel. Triphosphate (ATP) and lysozyme are used as the models of small molecules and proteins. Compared to traditional bifunctional methods, the method possesses some remarkable features as follows: 1) by virtue of the simple PS-SDP reaction, a bifunctional aptamer assembly binding of trigger 1 and trigger 2 was used as a functional structure for the simultaneous sensing of ATP or lysozyme. 2) The concept of isothermal amplification bifunctional detection has been first introduced into SERS biosensing applications as a signal-amplification tool. 3) The problem of high background induced by excess bio-barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal-output products and massive of hairpin DNA binding with SERS active bio-barcodes relied on Au nanoparticles (Au NPs), SERS signal is significantly enhanced. Overall, with multiple amplification steps and one magnetic-separation procedure, this flexible biosensing system exhibited not only high sensitivity and specificity, with the detection limits of ATP and lysozyme of 0.05 nM and 10 fM, respectively.
Collapse
Affiliation(s)
- Sujuan Ye
- Key Laboratory of Biochemical Analysis, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | | | | | | |
Collapse
|
33
|
Lim EK, Lee K, Huh YM, Haam S. Remotely Triggered Drug Release from Gold Nanoparticle-based Systems. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849734318-00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nanoparticles are attractive drug carriers that can combine drug molecules and targeting moieties in order to improve treatment efficacy and reduce unwanted side effects. In addition, activatable nanoparticles may enable drug release in the target sites at accurate timings or conditions, in which drug discharge can be controlled by specific stimuli. Especially, gold nanoparticles provide a great opportunity as drug carriers because of the following advantageous features: i) simple formulation with various sizes and shapes and non-toxicity; ii) easy incorporation of targeting molecules, drugs or other therapeutic molecules on them; iii) triggered drug release by means of external or internal stimuli. In this chapter, we describe relevant examples of the preparation techniques and the performance of various types of gold nanoparticles for drug delivery as well as theranostics.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- Department of Chemical and Bimolecular Engineering Yonsei University Seoul 120-749, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry Korea University Seoul, 136-701, Republic of Korea
| | - Yong-Min Huh
- Department of Radiology Yonsei University Seoul, 120-752, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Bimolecular Engineering Yonsei University Seoul 120-749, Republic of Korea
| |
Collapse
|
34
|
Sinclair A, Bai T, Carr LR, Ella-Menye JR, Zhang L, Jiang S. Engineering Buffering and Hydrolytic or Photolabile Charge Shifting in a Polycarboxybetaine Ester Gene Delivery Platform. Biomacromolecules 2013; 14:1587-93. [DOI: 10.1021/bm400221r] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew Sinclair
- Department of Chemical Engineering, University of Washington, Seattle, Washington
98195, United States
| | - Tao Bai
- Department of Chemical Engineering, University of Washington, Seattle, Washington
98195, United States
| | - Louisa R. Carr
- Department of Chemical Engineering, University of Washington, Seattle, Washington
98195, United States
| | - Jean-Rene Ella-Menye
- Department of Chemical Engineering, University of Washington, Seattle, Washington
98195, United States
| | - Lei Zhang
- Department of Chemical Engineering, University of Washington, Seattle, Washington
98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, Washington
98195, United States
| |
Collapse
|
35
|
Taylor U, Barchanski A, Kues W, Barcikowski S, Rath D. Impact of metal nanoparticles on germ cell viability and functionality. Reprod Domest Anim 2013; 47 Suppl 4:359-68. [PMID: 22827393 DOI: 10.1111/j.1439-0531.2012.02099.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal nanoparticles play an increasing role in consumer products, biomedical applications and in the work environment. Therefore, the effects of nanomaterials need to be properly understood. This applies especially to their potential reproductive toxicology (nanoreprotoxicity), because any shortcomings in this regard would be reflected into the next generation. This review is an attempt to summarize the current knowledge regarding the effects of nanoparticles on reproductive outcomes. A comprehensive collection of significant experimental nanoreprotoxicity data is presented, which highlight how the toxic effect of nanoparticles can be influenced, not only by the particles' chemical composition, but also by particle size, surface modification, charge and to a considerable extent on the experimental set-up. The period around conception is characterized by considerable cytological and molecular restructuring and is therefore particularly sensitive to disturbances. Nanoparticles are able to penetrate through biological barriers into reproductive tissue and at least can have an impact on sperm vitality and function as well as embryo development. Particularly, further investigations are urgently needed on the repetitively shown effect of the ubiquitously used titanium dioxide nanoparticles on the development of the nervous system. It is recommended that future research focuses more on the exact mechanism behind the observed effects, because such information would facilitate the production of nanoparticles with increased biocompatibility.
Collapse
Affiliation(s)
- U Taylor
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Mariensee, Germany Laser Zentrum Hannover eV, Hannover, Germany.
| | | | | | | | | |
Collapse
|
36
|
Bisker G, Yeheskely-Hayon D, Minai L, Yelin D. Controlled release of Rituximab from gold nanoparticles for phototherapy of malignant cells. J Control Release 2012; 162:303-9. [PMID: 22759981 DOI: 10.1016/j.jconrel.2012.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/12/2012] [Accepted: 06/22/2012] [Indexed: 12/17/2022]
Abstract
Releasing drug molecules at their targets with high spatial and temporal accuracy could aid numerous clinical applications which require low systemic damage and low side effects. Nano-carriers of drugs are an attractive solution for such task, allowing specific accumulation in tumors and gradual release of their payload. Here, we utilize gold nanospheres conjugated to Rituximab, an anti-CD20 monoclonal antibody-based drug, for carrying and releasing the drug upon irradiation of specifically tailored femtosecond laser pulses. The released anti-CD20 molecules retain their functionality and ability of triggering the complement-dependent cytotoxicity. This effect comes in addition to cell necrosis caused by the plasmonic nanometric shock waves emanating from the nanospheres and rupturing the plasma membranes. Main advantages of the presented technique include high spatial and temporal resolution, low toxicity and high repeatability and consistency due to the morphological stability of the nanospheres.
Collapse
Affiliation(s)
- Gili Bisker
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
37
|
Gold Nanomaterials: Preparation, Chemical Modification, Biomedical Applications and Potential Risk Assessment. Appl Biochem Biotechnol 2012; 166:1533-51. [DOI: 10.1007/s12010-012-9548-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/04/2012] [Indexed: 12/19/2022]
|
38
|
Bao C, Jin M, Li B, Xu Y, Jin J, Zhu L. Long conjugated 2-nitrobenzyl derivative caged anticancer prodrugs with visible light regulated release: preparation and functionalizations. Org Biomol Chem 2012; 10:5238-44. [DOI: 10.1039/c2ob25701g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Nalluri SKM, Voskuhl J, Bultema JB, Boekema EJ, Ravoo BJ. Light-Responsive Capture and Release of DNA in a Ternary Supramolecular Complex. Angew Chem Int Ed Engl 2011; 50:9747-51. [DOI: 10.1002/anie.201103707] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/28/2011] [Indexed: 01/08/2023]
|
40
|
Nalluri SKM, Voskuhl J, Bultema JB, Boekema EJ, Ravoo BJ. Lichtgesteuerte Bindung und Freisetzung von DNA aus einem ternären supramolekularen Komplex. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103707] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
HERRANZ FERNANDO, ALMARZA ELENA, RODRÍGUEZ IGNACIO, SALINAS BEATRIZ, ROSELL YAMILKA, DESCO MANUEL, BULTE JEFFW, RUIZ-CABELLO JESÚS. The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc Res Tech 2011; 74:577-91. [PMID: 21484943 PMCID: PMC3422774 DOI: 10.1002/jemt.20992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 12/31/2010] [Indexed: 12/20/2022]
Abstract
The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application.
Collapse
Affiliation(s)
- FERNANDO HERRANZ
- Facultad de Farmacia, Departamento de Química Física II, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Universidad Complutense de Madrid, Madrid, Spain
- Laboratorio de Imagen Médica, Medicina y Cirugía Experimental, Hospital General Universitario “Gregorio Marañ ón,” Madrid, Spain
| | - ELENA ALMARZA
- División de Hematopoyesis y Terapia Génica, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - IGNACIO RODRÍGUEZ
- Facultad de Farmacia, Departamento de Química Física II, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Universidad Complutense de Madrid, Madrid, Spain
| | - BEATRIZ SALINAS
- Facultad de Farmacia, Departamento de Química Física II, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Universidad Complutense de Madrid, Madrid, Spain
- Laboratorio de Imagen Médica, Medicina y Cirugía Experimental, Hospital General Universitario “Gregorio Marañ ón,” Madrid, Spain
| | - YAMILKA ROSELL
- Facultad de Farmacia, Departamento de Química Física II, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Universidad Complutense de Madrid, Madrid, Spain
| | - MANUEL DESCO
- Laboratorio de Imagen Médica, Medicina y Cirugía Experimental, Hospital General Universitario “Gregorio Marañ ón,” Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - JEFF W. BULTE
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Department of Biomedical Engineering, Department of Chemical & Biomolecular Engineering, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - JESÚS RUIZ-CABELLO
- Facultad de Farmacia, Departamento de Química Física II, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Samanta A, Maiti KK, Soh KS, Liao X, Vendrell M, Dinish US, Yun SW, Bhuvaneswari R, Kim H, Rautela S, Chung J, Olivo M, Chang YT. Ultrasensitive Near-Infrared Raman Reporters for SERS-Based In Vivo Cancer Detection. Angew Chem Int Ed Engl 2011; 50:6089-92. [DOI: 10.1002/anie.201007841] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/16/2011] [Indexed: 01/04/2023]
|
43
|
Samanta A, Maiti KK, Soh KS, Liao X, Vendrell M, Dinish US, Yun SW, Bhuvaneswari R, Kim H, Rautela S, Chung J, Olivo M, Chang YT. Ultrasensitive Near-Infrared Raman Reporters for SERS-Based In Vivo Cancer Detection. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007841] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Yesilyurt V, Ramireddy R, Thayumanavan S. Photoregulated release of noncovalent guests from dendritic amphiphilic nanocontainers. Angew Chem Int Ed Engl 2011; 50:3038-42. [PMID: 21404394 PMCID: PMC3401537 DOI: 10.1002/anie.201006193] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/30/2010] [Indexed: 01/08/2023]
Affiliation(s)
- Volkan Yesilyurt
- Department of Chemistry, University of Massachusetts Amherst, MA 01003 (USA)
| | | | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, MA 01003 (USA)
| |
Collapse
|
45
|
Yesilyurt V, Ramireddy R, Thayumanavan S. Photoregulated Release of Noncovalent Guests from Dendritic Amphiphilic Nanocontainers. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
|
47
|
Stark WJ. Nanoparticles in Biological Systems. Angew Chem Int Ed Engl 2011; 50:1242-58. [DOI: 10.1002/anie.200906684] [Citation(s) in RCA: 429] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/23/2010] [Indexed: 12/12/2022]
|
48
|
Singh V, Zharnikov M, Gulino A, Gupta T. DNA immobilization, delivery and cleavage on solid supports. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04359a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 2010; 49:3280-94. [PMID: 20401880 PMCID: PMC3930332 DOI: 10.1002/anie.200904359] [Citation(s) in RCA: 1625] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.
Collapse
Affiliation(s)
| | | | - Weston L. Daniel
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| | - Matthew D. Massich
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| | - Pinal C. Patel
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| |
Collapse
|
50
|
Giljohann D, Seferos D, Daniel W, Massich M, Patel P, Mirkin C. Goldnanopartikel in Biologie und Medizin. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904359] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|