1
|
Ovalle M, Kathan M, Toyoda R, Stindt CN, Crespi S, Feringa BL. Light-Fueled Transformations of a Dynamic Cage-Based Molecular System. Angew Chem Int Ed Engl 2023; 62:e202214495. [PMID: 36453623 DOI: 10.1002/anie.202214495] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In a chemical equilibrium, the formation of high-energy species-in a closed system-is inefficient due to microscopic reversibility. Here, we demonstrate how this restriction can be circumvented by coupling a dynamic equilibrium to a light-induced E/Z isomerization of an azobenzene imine cage. The stable E-cage resists intermolecular imine exchange reactions that would "open" it. Upon switching, the strained Z-cage isomers undergo imine exchange spontaneously, thus opening the cage. Subsequent isomerization of the Z-open compounds yields a high-energy, kinetically trapped E-open species, which cannot be efficiently obtained from the initial E-cage, thus shifting an imine equilibrium energetically uphill in a closed system. Upon heating, the nucleophile is displaced back into solution and an opening/closing cycle is completed by regenerating the stable all-E-cage. Using this principle, a light-induced cage-to-cage transformation is performed by the addition of a ditopic aldehyde.
Collapse
Affiliation(s)
- Marco Ovalle
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| | - Michael Kathan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aobaku, Sendai, 980-8578, Japan
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| |
Collapse
|
2
|
Zhang Z, Hu X. Visible-Light-Driven Catalytic Deracemization of Secondary Alcohols. Angew Chem Int Ed Engl 2021; 60:22833-22838. [PMID: 34397164 PMCID: PMC8519112 DOI: 10.1002/anie.202107570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Deracemization of racemic chiral compounds is an attractive approach in asymmetric synthesis, but its development has been hindered by energetic and kinetic challenges. Here we describe a catalytic deracemization method for secondary benzylic alcohols which are important synthetic intermediates and end products for many industries. Driven by visible light only, this method is based on sequential photochemical dehydrogenation followed by enantioselective thermal hydrogenation. The combination of a heterogeneous dehydrogenation photocatalyst and a chiral molecular hydrogenation catalyst is essential to ensure two distinct pathways for the forward and reverse reactions. These reactions convert a large number of racemic aryl alkyl alcohols into their enantiomerically enriched forms in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Zhikun Zhang
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Poly-technique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 3305Lausanne1015Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Poly-technique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 3305Lausanne1015Switzerland
| |
Collapse
|
3
|
Zhang Z, Hu X. Visible‐Light‐Driven Catalytic Deracemization of Secondary Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhikun Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Poly-technique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Poly-technique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 Lausanne 1015 Switzerland
| |
Collapse
|
4
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self-Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021; 60:20120-20143. [PMID: 33704885 PMCID: PMC8453758 DOI: 10.1002/anie.202100274] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Life is a non-equilibrium state of matter maintained at the expense of energy. Nature uses predominantly chemical energy stored in thermodynamically activated, but kinetically stable, molecules. These high-energy molecules are exploited for the synthesis of other biomolecules, for the activation of biological machinery such as pumps and motors, and for the maintenance of structural order. Knowledge of how chemical energy is transferred to biochemical processes is essential for the development of artificial systems with life-like processes. Here, we discuss how chemical energy can be used to control the structural organization of organic molecules. Four different strategies have been identified according to a distinguishable physical-organic basis. For each class, one example from biology and one from chemistry are discussed in detail to illustrate the practical implementation of each concept and the distinct opportunities they offer. Specific attention is paid to the discussion of chemically fueled non-equilibrium self-assembly. We discuss the meaning of non-equilibrium self-assembly, its kinetic origin, and strategies to develop synthetic non-equilibrium systems.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Luca Gabrielli
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Leonard J. Prins
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
5
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self‐Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
6
|
Shi Q, Ye J. Deracemization Enabled by Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2020; 59:4998-5001. [PMID: 32031314 DOI: 10.1002/anie.201914858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 01/12/2023]
Abstract
Deracemization is an ideal but challenging strategy for the conversion of a racemic mixture into a single enantiomer. Recent studies have demonstrated that visible-light photocatalysis could be utilized to promote selective deracemization of axially chiral allenes as well as cyclopropylquinolones and cyclic ureas with central chirality either through energy transfer or through a sequence of electron, proton, and hydrogen-atom transfer.
Collapse
Affiliation(s)
- Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Affiliation(s)
- Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
8
|
Li LH, Jiang Y, Hao J, Wei Y, Shi M. N
2
-Selective Autocatalytic Ditriazolylation Reactions of Cyclopropenones and Tropone with N
1
-Sulfonyl-1,2,3-triazoles. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Long-Hai Li
- Department of Chemistry; Shanghai University; 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yu Jiang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Jian Hao
- Department of Chemistry; Shanghai University; 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry; University of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory of Organometallic Chemistry; University of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
9
|
Gillick-Healy MW, Jennings EV, Müller-Bunz H, Ortin Y, Nikitin K, Gilheany DG. Two Independent Orthogonal Stereomutations at a Single Asymmetric Center: A Narcissistic Couple. Chemistry 2016; 23:2332-2339. [DOI: 10.1002/chem.201604080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - Yannick Ortin
- School of Chemistry; University College Dublin; Ireland
| | | | | |
Collapse
|
10
|
Astumian RD, Mukherjee S, Warshel A. The Physics and Physical Chemistry of Molecular Machines. Chemphyschem 2016; 17:1719-41. [PMID: 27149926 PMCID: PMC5518708 DOI: 10.1002/cphc.201600184] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Indexed: 12/25/2022]
Abstract
The concept of a "power stroke"-a free-energy releasing conformational change-appears in almost every textbook that deals with the molecular details of muscle, the flagellar rotor, and many other biomolecular machines. Here, it is shown by using the constraints of microscopic reversibility that the power stroke model is incorrect as an explanation of how chemical energy is used by a molecular machine to do mechanical work. Instead, chemically driven molecular machines operating under thermodynamic constraints imposed by the reactant and product concentrations in the bulk function as information ratchets in which the directionality and stopping torque or stopping force are controlled entirely by the gating of the chemical reaction that provides the fuel for the machine. The gating of the chemical free energy occurs through chemical state dependent conformational changes of the molecular machine that, in turn, are capable of generating directional mechanical motions. In strong contrast to this general conclusion for molecular machines driven by catalysis of a chemical reaction, a power stroke may be (and often is) an essential component for a molecular machine driven by external modulation of pH or redox potential or by light. This difference between optical and chemical driving properties arises from the fundamental symmetry difference between the physics of optical processes, governed by the Bose-Einstein relations, and the constraints of microscopic reversibility for thermally activated processes.
Collapse
Affiliation(s)
- R Dean Astumian
- Department of Physics, University of Maine, Orono, ME, 04469, USA.
| | - Shayantani Mukherjee
- Department of Chemistry, University of Southern California, Los Angeles, California, USA.
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
11
|
Boscheto E, López-Castillo A. Spontaneous Chiral Symmetry Breaking for Finite Systems. Chemphyschem 2015; 16:3728-35. [PMID: 26395183 DOI: 10.1002/cphc.201500635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/09/2015] [Indexed: 11/07/2022]
Abstract
Theoretical clues are desirable to help uncover the origin of bio-homochirality in life, as well as the mechanisms for the asymmetric production of functional chiral substances. Here, an open-to-matter reaction network based on a model proposed by Plasson et al. is studied. In the extended model, the statistical fluctuations lead the system to break chiral symmetry autonomously, that is, without any initial enantiomeric excess or external influence. In the stability diagrams, we observe regions of parameter space that correspond to racemic, homochiral, chiral oscillatory, and, to our knowledge, for the first time in a chiral model, chaotic regimes. The dependencies of the final concentrations of chiral substances on the parameters are determined analytically and discussed for both the racemic and homochiral regimes.
Collapse
Affiliation(s)
- Emerson Boscheto
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil.
| | | |
Collapse
|
12
|
Valero G, Ribó JM, Moyano A. A Closer Look at Spontaneous Mirror Symmetry Breaking in Aldol Reactions. Chemistry 2014; 20:17395-408. [DOI: 10.1002/chem.201404497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/09/2022]
|
13
|
|
14
|
Bissette AJ, Fletcher SP. Mechanisms of Autocatalysis. Angew Chem Int Ed Engl 2013; 52:12800-26. [DOI: 10.1002/anie.201303822] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 12/17/2022]
|
15
|
Fransson L, Moberg C. Gaining Selectivity by Combining Catalysts: Sequential versus Recycling Processes. ChemCatChem 2010. [DOI: 10.1002/cctc.201000267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Wingstrand E, Laurell A, Fransson L, Hult K, Moberg C. Minor Enantiomer Recycling: Metal Catalyst, Organocatalyst and Biocatalyst Working in Concert. Chemistry 2009; 15:12107-13. [DOI: 10.1002/chem.200901338] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Crusats J, Hochberg D, Moyano A, Ribó JM. Frank Model and Spontaneous Emergence of Chirality in Closed Systems. Chemphyschem 2009; 10:2123-31. [DOI: 10.1002/cphc.200900181] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|