1
|
Yadav K, Kuldeep J, Shabeer Ali H, Siddiqi MI, Tripathi R. Metacaspase (Pf MCA-1) as antimalarial drug target: An in silico approach and their biological validation. Life Sci 2023; 335:122271. [PMID: 37977356 DOI: 10.1016/j.lfs.2023.122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
AIMS Acquired drug resistance of Plasmodium is a global issue for the treatment of malaria. There are various proteases in the genome of Plasmodium falciparum (P. falciparum) including metacaspase-1 (PfMCA-1) that are essential and are being considered as an attractive drug target. It is aimed to identify novel therapeutics against malaria and their action on PfMCA-1 along with other apoptotic pathway events. MAIN METHODS High throughput virtual screening of 55,000 compounds derived from Maybridge library was performed against PfMCA-1. Based on the docking score, sixteen compounds were selected for in vitro antimalarial screening against drug sensitive and resistant strains of P. falciparum using SYBR green-based assay. Subsequently, three lead molecules were selected and subjected to the evaluation of cytotoxicity, caspase like protease activity, mitochondrial membrane potential, ROS generation and DNA fragmentation via TUNEL assay. KEY FINDINGS The in silico and in vitro approaches have brought forward some Maybridge library compounds with antiplasmodial activity most likely by enhancing the metacaspase activity. The compound CD11095 has shown better antimalarial efficacy, and KM06591 depicted higher caspase mediated killing, elevated TUNEL positive cells and moderate ROS generation. Mitochondrial membrane depolarization was augmented by RJC0069. Exposure of P. falciparum to CD11095, KM06591 and RJC0069 has ended up in parasite growth arrest via multiple mechanisms. SIGNIFICANCE It is proposed that the Maybridge molecules CD11095, KM06591 and RJC0069 have antimalarial activity. Their mechanism of action was found to be by enhancing the metacaspases-like protease activity, mitochondrial depolarization and DNA fragmentation which stipulates significant insights towards promising candidates for drug development.
Collapse
Affiliation(s)
- Kanchan Yadav
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jitendra Kuldeep
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - H Shabeer Ali
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renu Tripathi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
2
|
Grebner C, Matter H, Plowright AT, Hessler G. Automated De Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn? J Med Chem 2020; 63:8809-8823. [PMID: 32134646 DOI: 10.1021/acs.jmedchem.9b02044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Artificial intelligence offers promising solutions for property prediction, compound design, and retrosynthetic planning, which are expected to significantly accelerate the search for pharmacologically relevant molecules. Here, we investigate aspects of artificial intelligence based de novo design pertaining to its integration into real-life workflows. First, different chemical spaces were used as training sets for reinforcement learning (RL) in combination with different reward functions. With the trained neuronal networks different biologically active molecules could be regenerated. Excluding molecules with substructures such as five-membered rings from training spaces nevertheless produced results containing these moieties. Furthermore, different scoring functions in RL were investigated and produced different design ensembles. In summary, some of these design proposals are close in chemical space to the query, thus supporting lead optimization, while 3D-shape or QSAR (quantitative structure-activity relationship) models produced significantly different proposals by sampling a broader region of the chemical space, thus supporting lead generation. Therefore, RL provides a good framework to tailored design approaches for different discovery phases.
Collapse
Affiliation(s)
- Christoph Grebner
- Synthetic Molecular Design, Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Hans Matter
- Synthetic Molecular Design, Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Alleyn T Plowright
- Synthetic Molecular Design, Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- Synthetic Molecular Design, Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Seidel P, Schwarzer A, Mazik M. Fluorene Derivatives Bearing Halogenomethyl Groups: Synthesis, Molecular Structures, and Halogen/Hydrogen Bonding Patterns in the Crystalline State. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pierre Seidel
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| | - Anke Schwarzer
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| | - Monika Mazik
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
4
|
Schulze MM, Koch N, Seichter W, Mazik M. Crystalline Ammonium Complexes of Trimethyl- and Triethylbenzene-Based Tripodal Compounds Bearing Pyrazole and Indazole Groups. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mathias M. Schulze
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| | - Niklas Koch
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| | - Wilhelm Seichter
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| | - Monika Mazik
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
5
|
Matter H, Güssregen S. Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands. Bioorg Med Chem Lett 2018; 28:2343-2352. [PMID: 29880400 DOI: 10.1016/j.bmcl.2018.05.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
Abstract
Water is an essential part of protein binding sites and mediates interactions to ligands. Its displacement by ligand parts affects the free binding energy of resulting protein-ligand complexes. Therefore the characterization of solvation properties is important for design. Of particular interest is the propensity of localized water to be favorably displaced by a ligand. This review discusses two popular computational approaches addressing these questions, namely WaterMap based on statistical mechanics analysis of MD simulations and 3D RISM based on integral equation theory of liquids. The theoretical background and recent applications in structure-based design will be presented.
Collapse
Affiliation(s)
- Hans Matter
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838, Industriepark Höchst, 65926 Frankfurt am Main, Germany.
| | - Stefan Güssregen
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Güssregen S, Matter H, Hessler G, Lionta E, Heil J, Kast SM. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series. J Chem Inf Model 2017; 57:1652-1666. [DOI: 10.1021/acs.jcim.6b00765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Güssregen
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Hans Matter
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Evanthia Lionta
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Jochen Heil
- Physikalische
Chemie III, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Stefan M. Kast
- Physikalische
Chemie III, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Parrish RM, Sitkoff DF, Cheney DL, Sherrill CD. The Surprising Importance of Peptide Bond Contacts in Drug–Protein Interactions. Chemistry 2017; 23:7887-7890. [DOI: 10.1002/chem.201701031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Robert M. Parrish
- Center for Computational Molecular Science and Technology School of Chemistry and Biochemistry School of Computational Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0400 USA
| | - Doree F. Sitkoff
- Molecular Structure and Design Bristol-Myers Squibb Company 311 Pennington-Rocky Hill Road Pennington NJ 08534 USA
| | - Daniel L. Cheney
- Molecular Structure and Design Bristol-Myers Squibb Company 311 Pennington-Rocky Hill Road Pennington NJ 08534 USA
| | - C. David Sherrill
- Center for Computational Molecular Science and Technology School of Chemistry and Biochemistry School of Computational Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0400 USA
| |
Collapse
|
8
|
Sun H, Horatscheck A, Martos V, Bartetzko M, Uhrig U, Lentz D, Schmieder P, Nazaré M. Direct Experimental Evidence for Halogen-Aryl π Interactions in Solution from Molecular Torsion Balances. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Han Sun
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - André Horatscheck
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
- Drug Discovery and Development Centre (H3D); Department of Chemistry; University of Cape Town; Rondebosch 7701 South Africa
| | - Vera Martos
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Max Bartetzko
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Germany
| | - Ulrike Uhrig
- European Molecular Biology Laboratory (EMBL); Chemical Biology Core Facility; Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Dieter Lentz
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstrasse 34-36 14195 Berlin Germany
| | - Peter Schmieder
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Marc Nazaré
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| |
Collapse
|
9
|
Sun H, Horatscheck A, Martos V, Bartetzko M, Uhrig U, Lentz D, Schmieder P, Nazaré M. Direct Experimental Evidence for Halogen-Aryl π Interactions in Solution from Molecular Torsion Balances. Angew Chem Int Ed Engl 2017; 56:6454-6458. [PMID: 28452102 DOI: 10.1002/anie.201700520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 12/24/2022]
Abstract
We dissected halogen-aryl π interactions experimentally using a bicyclic N-arylimide based molecular torsion balances system, which is based on the influence of the non-bonded interaction on the equilibria between folded and unfolded states. Through comparison of balances modulated by higher halogens with fluorine balances, we determined the magnitude of the halogen-aryl π interactions in our unimolecular systems to be larger than -5.0 kJ mol-1 , which is comparable with the magnitude estimated in the biomolecular systems. Our study provides direct experimental evidence of halogen-aryl π interactions in solution, which until now have only been revealed in the solid state and evaluated theoretically by quantum-mechanical calculations.
Collapse
Affiliation(s)
- Han Sun
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - André Horatscheck
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.,Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Vera Martos
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Max Bartetzko
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.,Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Ulrike Uhrig
- European Molecular Biology Laboratory (EMBL), Chemical Biology Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Dieter Lentz
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Peter Schmieder
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Marc Nazaré
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| |
Collapse
|
10
|
Affiliation(s)
- Bo Lu
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Xueying Zhang
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Lingpeng Meng
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Yanli Zeng
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| |
Collapse
|
11
|
The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis. Sci Rep 2016; 6:34750. [PMID: 27708371 PMCID: PMC5052520 DOI: 10.1038/srep34750] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023] Open
Abstract
The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis.
Collapse
|
12
|
Ramanathan N, Sundararajan K, Vidya K, Jemmis ED. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 157:69-78. [PMID: 26722673 DOI: 10.1016/j.saa.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed.
Collapse
Affiliation(s)
- N Ramanathan
- Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India
| | - K Sundararajan
- Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India.
| | - K Vidya
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695016, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
13
|
Feng Y, Chen H, Liu ZX, He YM, Fan QH. A Pronounced Halogen Effect on the Organogelation Properties of Peripherally Halogen Functionalized Poly(benzyl ether) Dendrons. Chemistry 2016; 22:4980-90. [DOI: 10.1002/chem.201504598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Feng
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 P.R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 P.R. China
| | - Zhi-Xiong Liu
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 P.R. China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 P.R. China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 P.R. China
| |
Collapse
|
14
|
A Complete NCI Perspective: From New Bonds to Reactivity. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2016. [DOI: 10.1007/978-3-319-29022-5_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
The Bright Future of Unconventional σ/π-Hole Interactions. Chemphyschem 2015; 16:2496-517. [DOI: 10.1002/cphc.201500314] [Citation(s) in RCA: 475] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 01/25/2023]
|
16
|
Cadoni E, Ferino G, Pitzanti P, Secci F, Fattuoni C, Nicolò F, Bruno G. Halogen and Hydrogen Bonding Benzothiophene Diol Derivatives: A Study Using ab initio Calculations and X-Ray Crystal Structure Measurements. ChemistryOpen 2015; 4:161-8. [PMID: 25969814 PMCID: PMC4420588 DOI: 10.1002/open.201402087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 12/03/2022] Open
Abstract
The aim of this study is to describe and compare the supramolecular interactions, in the solid state, of chloro-, bromo-, and iodobenzothiophene diols. The compounds were obtained through organo-catalyzed reactions starting from 3-substituted halobenzothiophene carbaldehydes. Energies of the noncovalent interactions were obtained by density functional theory calculations. Bond distances and angles were found to be in accordance with those determined by X-ray structure analysis. anti-Bromobenzothiophene derivatives showed strong halogen⋅⋅⋅π interactions between bromine and the heterocyclic phenyl ring, corresponding to an energy of 7.5 kcal mol(-1). syn-Bromo and syn-iodo derivatives appeared to be isostructural, showing X⋅⋅⋅O (carbonyl) interactions, π stacking, and formation of extended hydrogen bonding networks. In contrast, the chloro derivatives displayed no halogen bonding interactions.
Collapse
Affiliation(s)
- Enzo Cadoni
- Dipartimento di Scienze Chimiche, Università degli Studi di Cagliari, Cittadella Universitaria di MonserratoSS 554, Bivio per Sestu, 90042, Monserrato, CA, Italy
| | - Giulio Ferino
- Dipartimento di Scienze Chimiche, Università degli Studi di Cagliari, Cittadella Universitaria di MonserratoSS 554, Bivio per Sestu, 90042, Monserrato, CA, Italy
| | - Patrizia Pitzanti
- Dipartimento di Scienze Chimiche, Università degli Studi di Cagliari, Cittadella Universitaria di MonserratoSS 554, Bivio per Sestu, 90042, Monserrato, CA, Italy
| | - Francesco Secci
- Dipartimento di Scienze Chimiche, Università degli Studi di Cagliari, Cittadella Universitaria di MonserratoSS 554, Bivio per Sestu, 90042, Monserrato, CA, Italy
| | - Claudia Fattuoni
- Dipartimento di Scienze Chimiche, Università degli Studi di Cagliari, Cittadella Universitaria di MonserratoSS 554, Bivio per Sestu, 90042, Monserrato, CA, Italy
| | - Francesco Nicolò
- Dipartimento di Scienze Chimiche, Università degli Studi di MessinaSalita Sperone 31, Villaggio S. Agata, 98166, Messina, Italy
| | - Giuseppe Bruno
- Dipartimento di Scienze Chimiche, Università degli Studi di MessinaSalita Sperone 31, Villaggio S. Agata, 98166, Messina, Italy
| |
Collapse
|
17
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
19
|
Wang W, Yang W, Guo R, Gong S. ‘Honeycomb’ nanotube assembly based on thiacalix[4]arene derivatives by weak interactions. CrystEngComm 2015. [DOI: 10.1039/c5ce01088h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Crystallisation of six thiacalix[4]arene derivatives from hexane–chloroform leads to ‘honeycomb’ nanotube architectures and each tubular stack is surrounded by six close tubular neighbours via weak interactions, such as S⋯π interactions, C–H⋯π interactions, and so on.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, PR China
| | - Weiping Yang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, PR China
- Key Laboratory of Tobacco Flavor Basic Research
- Zhengzhou Tobacco Research Institute of CNTC
| | - Rong Guo
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, PR China
| | - Shuling Gong
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, PR China
| |
Collapse
|
20
|
Kudryavtsev KV, Shulga DA, Chupakhin VI, Sinauridze EI, Ataullakhanov FI, Vatsadze SZ. Synthesis of novel bridged dinitrogen heterocycles and their evaluation as potential fragments for the design of biologically active compounds. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Forni A, Pieraccini S, Rendine S, Gabas F, Sironi M. Halogen-Bonding Interactions with π Systems: CCSD(T), MP2, and DFT Calculations. Chemphyschem 2012; 13:4224-34. [DOI: 10.1002/cphc.201200605] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/19/2012] [Indexed: 02/04/2023]
|
22
|
Beaulieu LPB, Zimmer LE, Gagnon A, Charette AB. Highly enantioselective synthesis of 1,2,3-substituted cyclopropanes by using α-Iodo- and α-chloromethylzinc carbenoids. Chemistry 2012; 18:14784-91. [PMID: 23012181 DOI: 10.1002/chem.201202528] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Indexed: 01/31/2023]
Abstract
Herein, we report the enantio- and diastereoselective formation of trans-iodo- and trans-chlorocyclopropanes from α-iodo- and α-chlorozinc carbenoids by using a dioxaborolane-derived chiral ligand. The synthetically useful iodocyclopropane building blocks were derivatized by an electrophilic trapping of the corresponding cyclopropyl lithium species or a Negishi coupling to give access to a variety of enantioenriched 1,2,3-substituted cyclopropanes. The synthetic utility of this method was demonstrated by the formal synthesis of an HIV-1 protease inhibitor. In addition, the related stereoselective bromocyclopropanation was also investigated. New insights about the relative electrophilicity of haloiodomethylzinc carbenoids are also presented.
Collapse
Affiliation(s)
- Louis-Philippe B Beaulieu
- Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, Station Downtown, Canada
| | | | | | | |
Collapse
|
23
|
Steinmetzer T, Baum B, Biela A, Klebe G, Nowak G, Bucha E. Beyond Heparinization: Design of Highly Potent Thrombin Inhibitors Suitable for Surface Coupling. ChemMedChem 2012; 7:1965-73. [DOI: 10.1002/cmdc.201200292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Indexed: 11/10/2022]
|
24
|
Mayerhöffer U, Würthner F. Halogen-Arene Interactions Assist in Self-Assembly of Dyes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Mayerhöffer U, Würthner F. Halogen-Arene Interactions Assist in Self-Assembly of Dyes. Angew Chem Int Ed Engl 2012; 51:5615-9. [DOI: 10.1002/anie.201200897] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Indexed: 12/14/2022]
|
26
|
Fradera X, Kazemier B, Carswell E, Cooke A, Oubrie A, Hamilton W, Dempster M, Krapp S, Nagel S, Jestel A. High-resolution crystal structures of factor XIa coagulation factor in complex with nonbasic high-affinity synthetic inhibitors. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:404-8. [PMID: 22505407 PMCID: PMC3325807 DOI: 10.1107/s1744309112009037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/29/2012] [Indexed: 01/18/2023]
Abstract
Factor XI (FXI) is a key enzyme in the coagulation pathway and an attractive target for the development of anticoagulant drugs. A small number of high-resolution crystal structures of FXIa in complex with small synthetic inhibitors have been published to date. All of these ligands have a basic P1 group and bind exclusively in the nonprime side of the active site of FXIa. Here, two structures of FXIa in complex with nonbasic inhibitors that occupy both the prime and nonprime sides of the active site are presented. These new structures could be valuable in the design and optimization of new FXIa synthethic inhibitors.
Collapse
Affiliation(s)
- Xavier Fradera
- Merck Research Laboratories, MSD, Newhouse, Lanarkshire ML1 5SH, Scotland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nazaré M, Matter H, Will DW, Wagner M, Urmann M, Czech J, Schreuder H, Bauer A, Ritter K, Wehner V. Fragment Deconstruction of Small, Potent Factor Xa Inhibitors: Exploring the Superadditivity Energetics of Fragment Linking in Protein-Ligand Complexes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201107091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Nazaré M, Matter H, Will DW, Wagner M, Urmann M, Czech J, Schreuder H, Bauer A, Ritter K, Wehner V. Fragment Deconstruction of Small, Potent Factor Xa Inhibitors: Exploring the Superadditivity Energetics of Fragment Linking in Protein-Ligand Complexes. Angew Chem Int Ed Engl 2011; 51:905-11. [DOI: 10.1002/anie.201107091] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/22/2011] [Indexed: 01/09/2023]
|
29
|
Salonen LM, Holland MC, Kaib PSJ, Haap W, Benz J, Mary JL, Kuster O, Schweizer WB, Banner DW, Diederich F. Molecular recognition at the active site of factor Xa: cation-π interactions, stacking on planar peptide surfaces, and replacement of structural water. Chemistry 2011; 18:213-22. [PMID: 22162109 DOI: 10.1002/chem.201102571] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Indexed: 11/10/2022]
Abstract
Factor Xa, a serine protease from the blood coagulation cascade, is an ideal enzyme for molecular recognition studies, as its active site is highly shape-persistent and features distinct, concave sub-pockets. We developed a family of non-peptidic, small-molecule inhibitors with a central tricyclic core orienting a neutral heterocyclic substituent into the S1 pocket and a quaternary ammonium ion into the aromatic box in the S4 pocket. The substituents were systematically varied to investigate cation-π interactions in the S4 pocket, optimal heterocyclic stacking on the flat peptide walls lining the S1 pocket, and potential water replacements in both the S1 and the S4 pockets. Structure-activity relationships were established to reveal and quantify contributions to the binding free enthalpy, resulting from single-atom replacements or positional changes in the ligands. A series of high-affinity ligands with inhibitory constants down to K(i)=2 nM were obtained and their proposed binding geometries confirmed by X-ray co-crystal structures of protein-ligand complexes.
Collapse
Affiliation(s)
- Laura M Salonen
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, HCI, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abel R, Salam NK, Shelley J, Farid R, Friesner RA, Sherman W. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. ChemMedChem 2011; 6:1049-66. [PMID: 21506273 DOI: 10.1002/cmdc.201000533] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/08/2011] [Indexed: 11/12/2022]
Abstract
The prevention of blood coagulation is important in treating thromboembolic disorders, and several serine proteases involved in the coagulation cascade have been classified as pharmaceutically relevant. Whereas structure-based drug design has contributed to the development of some serine protease inhibitors, traditional computational methods have not been able to fully describe structure-activity relationships (SAR). Here, we study the SAR for a number of serine proteases by using a method that calculates the thermodynamic properties (enthalpy and entropy) of the water that solvates the active site. We show that the displacement of water from specific subpockets (such as S1-4 and the ester binding pocket) of the active site by the ligand can govern potency, especially for cases in which small chemical changes (i.e., a methyl group or halogen) result in a substantial increase in potency. Furthermore, we describe how relative binding free energies can be estimated by combining the water displacement energy with complementary terms from an implicit solvent molecular mechanics description binding.
Collapse
|
31
|
Werner T, Sander K, Tanrikulu Y, Kottke T, Proschak E, Stark H, Schneider G. In Silico Characterization of Ligand Binding Modes in the Human Histamine H4 Receptor and their Impact on Receptor Activation. Chembiochem 2010; 11:1850-5. [DOI: 10.1002/cbic.201000180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Lapadula G, Judaš N, Friščić T, Jones W. A Three-Component Modular Strategy to Extend and Link Coordination Complexes by Using Halogen Bonds to O, S and π Acceptors. Chemistry 2010; 16:7400-3. [DOI: 10.1002/chem.201000049] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|