1
|
Davies JA, Tarzia A, Ronson TK, Auras F, Jelfs KE, Nitschke JR. Tetramine Aspect Ratio and Flexibility Determine Framework Symmetry for Zn 8 L 6 Self-Assembled Structures. Angew Chem Int Ed Engl 2023; 62:e202217987. [PMID: 36637345 PMCID: PMC10946785 DOI: 10.1002/anie.202217987] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
We derive design principles for the assembly of rectangular tetramines into Zn8 L6 pseudo-cubic coordination cages. Because of the rectangular, as opposed to square, geometry of the ligand panels, and the possibility of either Δ or Λ handedness of each metal center at the eight corners of the pseudo-cube, many different cage diastereomers are possible. Each of the six tetra-aniline subcomponents investigated in this work assembled with zinc(II) and 2-formylpyridine in acetonitrile into a single Zn8 L6 pseudo-cube diastereomer, however. Each product corresponded to one of four diastereomeric configurations, with T, Th , S6 or D3 symmetry. The preferred diastereomer for a given tetra-aniline subcomponent was shown to be dependent on its aspect ratio and conformational flexibility. Analysis of computationally modeled individual faces or whole pseudo-cubes provided insight as to why the observed diastereomers were favored.
Collapse
Affiliation(s)
- Jack A. Davies
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Andrew Tarzia
- Department of ChemistryMolecular Sciences Research HubImperial College London White City CampusWood LaneLondonW12 0BZUK
| | - Tanya K. Ronson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Florian Auras
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| | - Kim E. Jelfs
- Department of ChemistryMolecular Sciences Research HubImperial College London White City CampusWood LaneLondonW12 0BZUK
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
2
|
Bouteille Q, Sonet D, Hennebelle M, Desvergne JP, Morvan E, Scalabre A, Pouget E, Méreau R, Bibal B. Singlet Oxygen Responsive Molecular Receptor to Modulate Atropisomerism and Cation Binding. Chemistry 2023; 29:e202203210. [PMID: 36639240 DOI: 10.1002/chem.202203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 01/15/2023]
Abstract
In switchable molecular recognition, 1 O2 stimulus responsive receptors offer a unique structural change that is rarely exploited. The employed [4+2] reaction between 1 O2 and anthracene derivatives is quantitative, reversible and easily implemented. To evaluate the full potential of this new stimulus, a non-macrocyclic anthracene-based host was designed for the modular binding of cations. The structural investigation showed that 1 O2 controlled the atropisomerism in an on/off fashion within the pair of hosts. The binding studies revealed higher association constants for the endoperoxide receptor compared to the parent anthracene, due to a more favoured preorganization of the recognition site. The fatigue of the 1 O2 switchable hosts and their complexes was monitored over five cycles of cycloaddition/cycloreversion.
Collapse
Affiliation(s)
- Quentin Bouteille
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Dorian Sonet
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Marc Hennebelle
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Jean-Pierre Desvergne
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UAR 3033 CNRS INSERM, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Brigitte Bibal
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| |
Collapse
|
3
|
Hugenbusch D, Lehr M, von Glasenapp JS, McConnell AJ, Herges R. Light-Controlled Destruction and Assembly: Switching between Two Differently Composed Cage-Type Complexes. Angew Chem Int Ed Engl 2023; 62:e202212571. [PMID: 36215411 PMCID: PMC10099457 DOI: 10.1002/anie.202212571] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 12/30/2022]
Abstract
We report on two regioisomeric, diazocine ligands 1 and 2 that can both be photoswitched between the E- and Z-configurations with violet and green light. The self-assembly of the four species (1-Z, 1-E, 2-Z, 2-E) with CoII ions was investigated upon changing the coordination vectors as a function of the ligand configuration (E vs Z) and regioisomer (1 vs 2). With 1-Z, Co2 (1-Z)3 was self-assembled, while a mixture of ill-defined species (oligomers) was observed with 2-Z. Upon photoswitching with 385 nm to the E configurations, the opposite was observed with 1-E forming oligomers and 2-E forming Co2 (2-E)3 . Light-controlled dis/assembly was demonstrated in a ligand competition experiment with sub-stoichiometric amounts of CoII ions; alternating irradiation with violet and green light resulted in the reversible transformation between Co2 (1-Z)3 and Co2 (2-E)3 over multiple cycles without significant fatigue by photoswitching.
Collapse
Affiliation(s)
- Daniel Hugenbusch
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Marc Lehr
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Anna J McConnell
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
4
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022; 61:e202206631. [PMID: 35852813 PMCID: PMC9826306 DOI: 10.1002/anie.202206631] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Molecular machines are at the frontier of biology and chemistry. The ability to control molecular motion and emulating the movement of biological systems are major steps towards the development of responsive and adaptive materials. Amazing progress has been seen for the design of molecular machines including light-induced unidirectional rotation of overcrowded alkenes. However, the feasibility of inducing unidirectional rotation about a single bond as a result of chemical conversion has been a challenging task. In this Review, an overview of approaches towards the design, synthesis, and dynamic properties of different classes of atropisomers which can undergo controlled switching or rotation under the influence of a chemical stimulus is presented. They are categorized as molecular switches, rotors, motors, and autonomous motors according to their type of response. Furthermore, we provide a future perspective and challenges focusing on building sophisticated molecular machines.
Collapse
Affiliation(s)
- Anirban Mondal
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Department of ChemistryGraduate School of ScienceTohoku University6-3 Aramaki-Aza-AobaAobaku, Sendai980-8578Japan
| | - Romain Costil
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
5
|
Wu K, Tessarolo J, Baksi A, Clever GH. Guest-Modulated Circularly Polarized Luminescence by Ligand-to-Ligand Chirality Transfer in Heteroleptic Pd II Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202205725. [PMID: 35616285 PMCID: PMC9544203 DOI: 10.1002/anie.202205725] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/11/2022]
Abstract
Multicomponent metallo-supramolecular assembly allows the rational combination of different building blocks. Discrete multifunctional hosts with an accessible cavity can be prepared in a non-statistical fashion. We employ our shape-complementary assembly (SCA) method to achieve for the first time integrative self-sorting of heteroleptic PdII cages showing guest-tunable circularly polarized luminescence (CPL). An enantiopure helicene-based ligand (M or P configuration) is coupled with a non-chiral emissive fluorenone-based ligand (A or B) to form a series of Pd2 L2 L'2 assemblies. The modular strategy allows to impart the chiral information of the helicenes to the overall supramolecular system, resulting in CPL from the non-chiral component. Guest binding results in a 4-fold increase of CPL intensity. The principle offers potential to generate libraries of multifunctional materials with applications in molecular recognition, enantioselective photo-redox catalysis and information processing.
Collapse
Affiliation(s)
- Kai Wu
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| | - Ananya Baksi
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| |
Collapse
|
6
|
Qin Y, Xiong J, Li Q, Zhang Y, Zeng M. Construction of Photo‐Responsive Pd
2
L
4
‐Type Nanocages based on Feringa's Second‐Generation Motor and Its Guest Binding Ability for C
60. Chemistry 2022; 28:e202201821. [DOI: 10.1002/chem.202201821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yunan Qin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China
| | - Jingpeng Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China
| | - Quan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China
| | - Yuexing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China
| | - Ming‐Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
7
|
Bhandari P, Mukherjee PS. Post‐Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry 2022; 28:e202201901. [DOI: 10.1002/chem.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
8
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anirban Mondal
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chmistry NETHERLANDS
| | - Romain Costil
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
9
|
Dowds M, Stenspil SG, de Souza JH, Laursen BW, Cacciarini M, Nielsen MB. Orthogonal‐ and Path‐dependent Photo/Acidoswitching in an Eight‐state Dihydroazulene‐Spiropyran Dyad. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mathias Dowds
- University of Copenhagen Department of Chemistry DENMARK
| | | | | | - Bo W. Laursen
- University of Copenhagen Department of Chemistry DENMARK
| | | | - Mogens Brøndsted Nielsen
- University of Copenhagen Department of Chemistry Universitetsparken 5 DK-2100 Copenhagen DENMARK
| |
Collapse
|
10
|
Wu K, Tessarolo J, Baksi A, Clever GH. Guest‐modulated Circularly Polarized Luminescence by Ligand‐to‐Ligand Chirality Transfer in Heteroleptic Pd(II) Coordination Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Wu
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Jacopo Tessarolo
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Ananya Baksi
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Guido H. Clever
- TU Dortmund University Faculty for Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund GERMANY
| |
Collapse
|
11
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
12
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual‐Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| |
Collapse
|
13
|
Shi J, Wang M. Self-Assembly Methods for Recently Reported Discrete Supramolecular Structures Based on Terpyridine. Chem Asian J 2021; 16:4037-4048. [PMID: 34672098 DOI: 10.1002/asia.202101136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Indexed: 01/10/2023]
Abstract
In this Review, self-assembly methods of discrete metallo-supramolecules based on 2,2' : 6',2''-terpyridine (tpy) are comprehensively summarized. With the development of self-assembly, strategies for discrete 2D and 3D supramolecular architectures have boomed, including the geometry-directed method, template-driven method, and stepwise method. Ligand geometry-directed method mainly depends on the geometry of ligands (i. e., angle, geometric strain, and rigidity), and it is suitable for dual-component systems, while the template-driven method can guide the self-assembly of predesigned supramolecules by the introduction of specific templates. Meanwhile, stepwise method, breaking the inherent self-sorting of ligands and reducing the probability of mismatch, is suitable for multicomponent systems to yield predesigned supramolecules. This review focuses on self-assembly methods and aims to provide a guideline for constructing supramolecular architectures using a suitable approach.
Collapse
Affiliation(s)
- Junjuan Shi
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Ming Wang
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
14
|
Yu H, Li J, Shan C, Lu T, Jiang X, Shi J, Wojtas L, Zhang H, Wang M. Conformational Control of a Metallo-Supramolecular Cage via the Dissymmetrical Modulation of Ligands. Angew Chem Int Ed Engl 2021; 60:26523-26527. [PMID: 34779543 DOI: 10.1002/anie.202111430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Indexed: 12/15/2022]
Abstract
In nature as well as life systems, the presence of asymmetrical and dissymmetrical structures with specific functions is extremely common. However, the construction of metallo-supramolecular assemblies based on dissymmetrical ligands still remains a considerable challenge for avoiding the generation of unexpected isomers with similar thermodynamic stabilities, especially for three-dimensional supramolecular structures. In this study, a strategy for the conformational control of metallo-supramolecular cages via the enhancement of ligand dissymmetry was proposed. Four dissymmetrical ditopic ligands were designed and synthesized. By increasing the dissymmetry of length or angle, conformations of assemblies were precisely controlled to form discrete cis-Pdn L2n molecular cages.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
15
|
Yu H, Li J, Shan C, Lu T, Jiang X, Shi J, Wojtas L, Zhang H, Wang M. Conformational Control of a Metallo‐Supramolecular Cage via the Dissymmetrical Modulation of Ligands. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| |
Collapse
|
16
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual-Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2021; 61:e202113914. [PMID: 34796586 DOI: 10.1002/anie.202113914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/08/2022]
Abstract
New C3 -symmetric imidazole ligands were designed with phosphine and phosphine oxide linkers (LP and LPO , respectively) to demonstrate a dual-triggered dynamic closed coordination cage. Both LP and LPO form discrete Zn4 L4 -closed cages (1P and 1PO , respectively) with excellent selectively for BPh4 - , whereas 1P and 1PO encapsulate neither a slightly larger size anion [B(C6 H4 CH3 )4 - ] nor smaller size anions (BF4 - , PF6 - , SbF6 - , and OSO2 CF3 - ). 1PO exhibits more negative enthalpy and entropy changes upon anion encapsulation, thus releasing almost all of the encapsulated anions at high temperature (343 K) (trigger 1: BPh4 - ⊂1PO ← → 1PO +BPh4 - ). In contrast 1P has less negative enthalpy and entropy changes, thus preserving the captured anion over a wide range of temperatures (298 K to 343 K). The 1P cage can be quantitatively oxidized to the 1PO cage by a mild oxidant (Ox.=H2 O2 ), and therefore the captured anion can be released by a redox triggering event (trigger 2: BPh4 - ⊂1P +Ox.→1PO +BPh4 - ).
Collapse
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
17
|
Ferreira P, Moncelsi G, Aragay G, Ballester P. Hydrogen-Bonded Dimeric Capsules with Appended Spiropyran Units: Towards Controlled Cargo Release. Chemistry 2021; 27:12675-12685. [PMID: 34097321 PMCID: PMC8456926 DOI: 10.1002/chem.202101643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 01/16/2023]
Abstract
We report the synthesis of unprecedented tetra-urea derivatives of calix[4]arene and calix[4]pyrrole containing four spiropyran (SP) units at their upper rim. We investigate the photo- and acid-induced isomerization of the monomeric and homo-dimeric tetra-ureas derivatives using UV-Vis and 1 H NMR spectroscopies. At micromolar concentration, irradiation of the samples with 365 nm light induces changes in their absorption spectra that are consistent with SP→merocyanine (MC) isomerization. However, analogous experiments at millimolar concentration do not produce noticeable changes in the 1 H NMR spectra. The addition of triflic acid to micromolar and millimolar solutions of the tetra-ureas produces the quantitative isomerization of the SP units to the protonated merocyanine form (E-MCH+ ) and the simultaneous disassembly of the capsular dimers to form ill-defined aggregates. The neutralization of the acid solutions resets the SP form. Under these acid/base treatment conditions, the controlled release of the included guest and the reassembly of the all-SP tetra-urea dimers occurs at different extents depending on its calix[4]arene or calix[4]pyrrole scaffold.
Collapse
Affiliation(s)
- Pedro Ferreira
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Department de Química Analítica i Química Orgànica, Universitat Rovira i Virgili (URV), c/Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Giulia Moncelsi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Department de Química Analítica i Química Orgànica, Universitat Rovira i Virgili (URV), c/Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Gemma Aragay
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08101, Barcelona, Spain
| |
Collapse
|
18
|
Zhang HN, Yu WB, Lin YJ, Jin GX. Stimuli-Responsive Topological Transformation of a Molecular Borromean Ring via Controlled Oxidation of Thioether Moieties. Angew Chem Int Ed Engl 2021; 60:15466-15471. [PMID: 33871131 DOI: 10.1002/anie.202103264] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 01/31/2023]
Abstract
A Cp*-Rh based D-shaped binuclear metallacycle and a template-free molecular Borromean ring (BR) were obtained in high yield using the semi-rigid thioether dipyridyl ligand 1,4-bis[(pyridin-4-ylthio)methyl]benzene (Bptmb). The topological transformation from a binuclear metallacycle and a BR to tetranuclear metallacycles was realized via the controlled oxidation of thioethers. The strategy used in this work can be regarded as a new form of stimuli-responsive post-synthesis modification (PSM).
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Wei-Bin Yu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
19
|
Zhang L, Lin YJ, Li ZH, Fraser Stoddart J, Jin GX. Coordination-Driven Selective Formation of D 2 Symmetric Octanuclear Organometallic Cages. Chemistry 2021; 27:9524-9528. [PMID: 33882176 DOI: 10.1002/chem.202101204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/09/2022]
Abstract
The coordination-driven self-assembly of organometallic half-sandwich iridium(III)- and rhodium(III)-based building blocks with asymmetric ambidentate pyridyl-carboxylate ligands is described. Despite the potential for obtaining a statistical mixture of multiple products, D2 symmetric octanuclear cages were formed selectively by taking advantage of the electronic effects emanating from the two types of chelating sites - (O,O') and (N,N') - on the tetranuclear building blocks. The metal sources and the lengths of bridging ligands influence the selectivity of the self-assembly. Experimental observations, supported by computational studies, suggest that the D2 symmetric cages are the thermodynamically favored products. Overall, the results underline the importance of electronic effects on the selectivity of coordination-driven self-assembly, and demonstrate that asymmetric ambidentate ligands can be used to control the design of discrete supramolecular coordination complexes.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China.,Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310021, P.R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| |
Collapse
|
20
|
Hao Q, Li ZJ, Bai B, Zhang X, Zhong YW, Wan LJ, Wang D. A Covalent Organic Framework Film for Three-State Near-Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021; 60:12498-12503. [PMID: 33756014 DOI: 10.1002/anie.202100870] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Indexed: 11/10/2022]
Abstract
A Kagome structure covalent organic framework (COF) film with three-state NIR electrochromic properties was designed and synthesized. The COFTPDA-PDA film is composed of hexagonal nanosheets with high crystallinity and has three reversible color states at different applied potentials. It has high absorption spectra changes in the NIR region, ascribed to the strong intervalence charge transfer (IVCT) interaction of the Class III mixed-valence systems of the conjugated triphenylamine species. The film showed sub-second response time (1.3 s for coloring and 0.7 s for bleaching at 1050 nm) and long retention time in the NIR region. COFTPDA-PDA film shows superior NIR electrochromic properties in term of response time and stability, attributed to the highly ordered porous structure and the π-π stacking structure of the COFTPDA-PDA architecture. The COFTPDA-PDA film was applied in mimicking a flip-flop logic gate with optical memory function.
Collapse
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Juan Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Zhang H, Yu W, Lin Y, Jin G. Stimuli‐Responsive Topological Transformation of a Molecular Borromean Ring via Controlled Oxidation of Thioether Moieties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hai‐Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Wei‐Bin Yu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
22
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew Chem Int Ed Engl 2021; 60:14109-14116. [PMID: 33834590 DOI: 10.1002/anie.202103822] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/07/2022]
Abstract
Fullerene extracts obtained from fullerene soot lack their real application due to their poor solubility in common solvents and difficulty in purification. Encapsulation of these extracts in a suitable host is an important approach to address these issues. We present a new Pd6 barrel (1), which is composed of three 1,4-dihydropyrrolo[3,2-b]pyrrole panels, clipped through six cis-PdII acceptors. Large open windows and cavity make it an efficient host for a large guest. Favorable interactions between the ligand and fullerene (C60 and C70 ) allows the barrel to encapsulate fullerene efficiently. Thorough investigation reveals that barrel 1 has a stronger binding affinity towards C70 over C60 , resulting in the predominant extraction of C70 from a mixture of the two. Finally, the fullerene encapsulated barrels C60 ⊂1 and C70 ⊂1 were found to be efficient for visible-light-induced singlet oxygen generation. Such preferential binding of C70 and photosensitizing ability of C60 ⊂1 and C70 ⊂1 are noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
23
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self‐Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene‐Encapsulated Barrel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
24
|
Hao Q, Li Z, Bai B, Zhang X, Zhong Y, Wan L, Wang D. A Covalent Organic Framework Film for Three‐State Near‐Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Juan Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
25
|
Wang S, Huang Z, Li A, Zhao Y, Zuo W, Li Y, Miao H, Ma J, Sun W, Wang X, Cao L, Wu B, Jia C. Crown Ether Functionalized Potassium‐Responsive Anionocages for Cascaded Guest Delivery. Angew Chem Int Ed Engl 2021; 60:9573-9579. [DOI: 10.1002/anie.202100441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhe Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Haohao Miao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jiacheng Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Cluster Science of Ministry of Education Key Laboratory of Medical Molecule Science and Pharmaceutics, Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
26
|
Wang S, Huang Z, Li A, Zhao Y, Zuo W, Li Y, Miao H, Ma J, Sun W, Wang X, Cao L, Wu B, Jia C. Crown Ether Functionalized Potassium‐Responsive Anionocages for Cascaded Guest Delivery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhe Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Haohao Miao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jiacheng Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Cluster Science of Ministry of Education Key Laboratory of Medical Molecule Science and Pharmaceutics, Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
27
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Coal-Tar Dye-based Coordination Cages and Helicates. Angew Chem Int Ed Engl 2021; 60:5673-5678. [PMID: 33245206 PMCID: PMC7986857 DOI: 10.1002/anie.202015246] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 02/07/2023]
Abstract
A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd2 L4 ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd2 L4 ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd3 L6 ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.
Collapse
Affiliation(s)
- Irene Regeni
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Bin Chen
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
- Current Address: State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Soochow UniversitySuzhou215123China
| | - Marina Frank
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Ananya Baksi
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Julian J. Holstein
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
28
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Teerfarben‐basierte Koordinationskäfige und ‐helikate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Irene Regeni
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Bin Chen
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
- Derzeitige Adresse: State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Soochow University Suzhou 215123 China
| | - Marina Frank
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Ananya Baksi
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
29
|
Brunet G, Suturina EA, George GPC, Ovens JS, Richardson P, Bucher C, Murugesu M. A Barrel‐Shaped Metal–Organic Blue‐Box Analogue with Photo‐/Redox‐Switchable Behavior. Chemistry 2020; 26:16455-16462. [DOI: 10.1002/chem.202003073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Gabriel Brunet
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | | - Guillaume P. C. George
- Univ. Lyon ENS de Lyon Université Claude Bernard Lyon 1 Laboratoire de Chimie CNRS UMR 5182 69342 Lyon France
| | - Jeffrey S. Ovens
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Paul Richardson
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Christophe Bucher
- Univ. Lyon ENS de Lyon Université Claude Bernard Lyon 1 Laboratoire de Chimie CNRS UMR 5182 69342 Lyon France
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
30
|
Affiliation(s)
- Zhiyao Yang
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| | - Zejiang Liu
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| | - Lihua Yuan
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
31
|
Schulte TR, Holstein JJ, Schneider L, Adam A, Haberhauer G, Clever GH. A New Mechanically-Interlocked [Pd 2 L 4 ] Cage Motif by Dimerization of two Peptide-based Lemniscates. Angew Chem Int Ed Engl 2020; 59:22489-22493. [PMID: 32845570 PMCID: PMC7756597 DOI: 10.1002/anie.202010995] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 12/31/2022]
Abstract
Most metallo-supramolecular assemblies of low nuclearity adopt simple topologies, with bridging ligands spanning neighboring metal centers in a direct fashion. Here we contribute a new structural motif to the family of host compounds with low metal count (two) that consists of a pair of doubly-interlocked, Figure-eight-shaped subunits, also termed "lemniscates". Each metal is chelated by two chiral bidentate ligands, composed of a peptidic macrocycle that resembles a natural product with two pyridyl-terminated arms. DFT calculation results suggest that dimerization of the mononuclear halves is driven by a combination of 1) Coulomb interaction with a central anion, 2) π-stacking between intertwined ligand arms and 3) dispersive interactions between the structure's compact inner core bedded into an outer shell composed of the cavitand-type macrocycles. The resulting cage-like architecture was characterized by NMR, MS and X-ray structure analyses. This new mechanically bonded system highlights the scope of structural variety accessible in metal-mediated self-assemblies composed of only a few constituents.
Collapse
Affiliation(s)
- Thorben R. Schulte
- Faculty of Chemistry and Chemical BiologyTU Dortmund Univ.Otto-Hahn-Str. 644227DortmundGermany
| | - Julian J. Holstein
- Faculty of Chemistry and Chemical BiologyTU Dortmund Univ.Otto-Hahn-Str. 644227DortmundGermany
| | - Laura Schneider
- Faculty of Chemistry and Chemical BiologyTU Dortmund Univ.Otto-Hahn-Str. 644227DortmundGermany
| | - Abdulselam Adam
- Institute for Organic ChemistryUniv. Duisburg-EssenUniversitätsstr. 745117EssenGermany
| | - Gebhard Haberhauer
- Institute for Organic ChemistryUniv. Duisburg-EssenUniversitätsstr. 745117EssenGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund Univ.Otto-Hahn-Str. 644227DortmundGermany
| |
Collapse
|
32
|
Schulte TR, Holstein JJ, Schneider L, Adam A, Haberhauer G, Clever GH. Ein neues, mechanisch verzahntes [Pd
2
L
4
] Käfigmotiv durch Dimerisierung von zwei Peptid‐basierten Lemniskaten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thorben R. Schulte
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Laura Schneider
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Abdulselam Adam
- Institut für Organische Chemie Univ. Duisburg-Essen Universitätsstr. 7 45117 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische Chemie Univ. Duisburg-Essen Universitätsstr. 7 45117 Essen Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| |
Collapse
|
33
|
Yue Y, Azumi R, Norikane Y. Fatigue‐Resistant Crosslinked Azopolymers with Inhibited H‐Aggregation for Efficient Photopatterning. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Youfeng Yue
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| | - Reiko Azumi
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| | - Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
34
|
Zanetti‐Polzi L, Djemili R, Durot S, Heitz V, Daidone I, Ventura B. Allosteric Control of Naphthalene Diimide Encapsulation and Electron Transfer in Porphyrin Containers: Photophysical Studies and Molecular Dynamics Simulation. Chemistry 2020; 26:17514-17524. [DOI: 10.1002/chem.202003151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Indexed: 12/20/2022]
Affiliation(s)
| | - Ryan Djemili
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Stéphanie Durot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Isabella Daidone
- Department of Physical and Chemical Sciences University of L'Aquila via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Barbara Ventura
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti 101 40129 Bologna Italy
| |
Collapse
|
35
|
Hiraoka S, Takahashi S, Sato H. Coordination Self-Assembly Processes Revealed by Collaboration of Experiment and Theory: Toward Kinetic Control of Molecular Self-Assembly. CHEM REC 2020; 21:443-459. [PMID: 33241912 DOI: 10.1002/tcr.202000124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
The importance of the collaboration of experiment and theory has been proven in many examples in science and technology. Here, such a new example is shown in the investigation of molecular self-assembly process, which is a complicated multi-step chemical reaction occurring in the reaction network composed of a huge number of intermediates. An experimental method, QASAP (quantitative analysis of self-assembly process), developed by us and a numerical approach, NASAP (numerical analysis of self-assembly process), that analyzes the experimental data obtained by QASAP to draw detail molecular self-assembly pathways, which was also developed by us, are introduced, and their application to the investigation of Pd(II)-mediated coordination assemblies are presented. Further, the possibility of the prediction of the outcomes of molecular self-assembly by varying the reaction conditions is also demonstrated. Finally, a future direction in the field of artificial molecular self-assembly based on pathway-dependent self-assembly, that is, kinetic control of molecular self-assembly is discussed.
Collapse
Affiliation(s)
- Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan.,Elements Strategy Initiative for Catalyst and Batteries, Kyoto University, Kyoto, 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| |
Collapse
|
36
|
Zeng H, Stewart-Yates L, Casey LM, Bampos N, Roberts DA. Covalent Post-Assembly Modification: A Synthetic Multipurpose Tool in Supramolecular Chemistry. Chempluschem 2020; 85:1249-1269. [PMID: 32529789 DOI: 10.1002/cplu.202000279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Indexed: 11/10/2022]
Abstract
The use of covalent post-assembly modification (PAM) in supramolecular chemistry has grown significantly in recent years, to the point where PAM is now a versatile synthesis tool for tuning, modulating, and expanding the functionality of self-assembled complexes and materials. PAM underpins supramolecular template-synthesis strategies, enables modular derivatization of supramolecular assemblies, permits the covalent 'locking' of unstable structures, and can trigger controlled structural transformations between different assembled morphologies. This Review discusses key examples of PAM spanning a range of material classes, including discrete supramolecular complexes, self-assembled soft nanostructures and hierarchically ordered polymeric and framework materials. As such, we hope to highlight how PAM has continued to evolve as a creative and functional addition to the synthetic chemist's toolbox for constructing bespoke self-assembled complexes and materials.
Collapse
Affiliation(s)
- Haoxiang Zeng
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luke Stewart-Yates
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Louis M Casey
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Bampos
- Department of Chemistry, The University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Derrick A Roberts
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
37
|
Sakata Y, Okada M, Tamiya M, Akine S. Post‐Metalation Modification of a Macrocyclic Dicobalt(III) Metallohost by Site‐Selective Ligand Exchange for Guest Recognition Control. Chemistry 2020; 26:7595-7601. [DOI: 10.1002/chem.202001072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/01/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Masahiro Okada
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Munehiro Tamiya
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
38
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal-Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020; 59:7435-7438. [PMID: 32073709 PMCID: PMC7217015 DOI: 10.1002/anie.202001059] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/06/2023]
Abstract
The use of di(2-pyridyl)ketone in subcomponent self-assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn4 L4 tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal-ion vertices. The acid stability of 1 was found to be greater than that of the analogous tetrahedron 2 built from 2-formylpyridine. Intriguingly, the peripheral presence of additional pyridine rings in 1 resulted in distinct guest binding behavior from that of 2, affecting guest scope as well as binding affinities. The different stabilities and guest affinities of capsules 1 and 2 enabled the design of systems whereby different cargoes could be moved between cages using acid and base as chemical stimuli.
Collapse
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | |
Collapse
|
39
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020; 59:11101-11107. [DOI: 10.1002/anie.202003220] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
40
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
41
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal–Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
42
|
Salinas‐Uber J, Barrios LA, Estrader M, Roubeau O, Aromí G. Dinuclear Copper(II) Complexes Exhibiting Reversible Photochromism. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jorge Salinas‐Uber
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Leoní A. Barrios
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) 08028 Barcelona Spain
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) 08028 Barcelona Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA) CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) 08028 Barcelona Spain
| |
Collapse
|
43
|
Hardy M, Struch N, Holstein JJ, Schnakenburg G, Wagner N, Engeser M, Beck J, Clever GH, Lützen A. Dynamic Complex-to-Complex Transformations of Heterobimetallic Systems Influence the Cage Structure or Spin State of Iron(II) Ions. Angew Chem Int Ed Engl 2020; 59:3195-3200. [PMID: 31788925 PMCID: PMC7028022 DOI: 10.1002/anie.201914629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 12/26/2022]
Abstract
Two new heterobimetallic cages, a trigonal‐bipyramidal and a cubic one, were assembled from the same mononuclear metalloligand by adopting the molecular library approach, using iron(II) and palladium(II) building blocks. The ligand system was designed to readily assemble through subcomponent self‐assembly. It allowed the introduction of steric strain at the iron(II) centres, which stabilizes its paramagnetic high‐spin state. This steric strain was utilized to drive dynamic complex‐to‐complex transformations with both the metalloligand and heterobimetallic cages. Addition of sterically less crowded subcomponents as a chemical stimulus transformed all complexes to their previously reported low‐spin analogues. The metalloligand and bipyramid incorporated the new building block more readily than the cubic cage, probably because the geometric structure of the sterically crowded metalloligand favours the cube formation. Furthermore it was possible to provoke structural transformations upon addition of more favourable chelating ligands, converting the cubic structures into bipyramidal ones.
Collapse
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.,Current address: Arlanxeo Netherlands B.V., Urmonderbaan 24, 6167 RD, Geleen, The Netherlands
| | - Julian J Holstein
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Norbert Wagner
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Johannes Beck
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Guido H Clever
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
44
|
Hardy M, Struch N, Holstein JJ, Schnakenburg G, Wagner N, Beck J, Engeser M, Clever GH, Lützen A. Dynamische Komplex‐zu‐Komplex‐Umwandlungen von heterobimetallischen Systemen und ihr Einfluss auf die Käfigstruktur oder den Spinzustand von Eisen(II)‐Ionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
- derzeitige Adresse: Arlanxeo Netherlands B.V. Urmonderbaan 24 6167 RD Geleen Niederlande
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Norbert Wagner
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Johannes Beck
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
45
|
Zeng L, Sun S, Wei ZW, Xin Y, Liu L, Zhang J. Confinement of a Au–N-heterocyclic carbene in a Pd6L12 metal–organic cage. RSC Adv 2020; 10:39323-39327. [PMID: 35518404 PMCID: PMC9057365 DOI: 10.1039/d0ra07509d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
A Au(i)–N-heterocyclic-carbene (NHC)-edged Pd6L12 molecular metal–organic cage is assembled from a Au(i)–NHC-based bipyridyl bent ligand and Pd2+. The octahedral cage structure is unambiguously established by NMR, electrospray ionization-mass spectrometry and single crystal X-ray crystallography. The electrochemical behaviour was analyzed by cyclic voltammetry. The octahedral cage has a central cavity for guest binding, and is capable of encapsulating PF6− and BF4− anions within the cavity. A Au(i)–NHC-edged Pd6L12 molecular cage is assembled from a Au(i)–NHC-based bipyridyl bent ligand and Pd2+.![]()
Collapse
Affiliation(s)
- Lihua Zeng
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Shujian Sun
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Zhang-Wen Wei
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Yu Xin
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Liping Liu
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| |
Collapse
|
46
|
de Jong J, Feringa BL, Wezenberg SJ. Light-Modulated Self-Blockage of a Urea Binding Site in a Stiff-Stilbene Based Anion Receptor. Chemphyschem 2019; 20:3306-3310. [PMID: 31622003 PMCID: PMC6972635 DOI: 10.1002/cphc.201900917] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Anion binding to a receptor based on stiff-stilbene, which is equipped with a urea hydrogen bond donating group and a phosphate or phosphinate hydrogen bond accepting group, can be controlled by light. In one photoaddressable state (E isomer) the urea binding site is available for binding, while in the other (Z isomer) it is blocked because of an intramolecular interaction with its hydrogen bond accepting motif. This intramolecular interaction is supported by DFT calculations and 1 H NMR titrations reveal a significantly lower anion binding strength for the state in which anion binding is blocked. Furthermore, the molecular switching process has been studied in detail by UV/Vis and NMR spectroscopy. The presented approach opens up new opportunities toward the development of photoresponsive anion receptors.
Collapse
Affiliation(s)
- Jorn de Jong
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Sander J. Wezenberg
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
47
|
Chen B, Horiuchi S, Holstein JJ, Tessarolo J, Clever GH. Tunable Fullerene Affinity of Cages, Bowls and Rings Assembled by Pd II Coordination Sphere Engineering. Chemistry 2019; 25:14921-14927. [PMID: 31529653 PMCID: PMC6899814 DOI: 10.1002/chem.201903317] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Indexed: 01/18/2023]
Abstract
For metal-mediated host compounds, the development of strategies to reduce symmetry and introduce multiple functionalities in a non-statistical way is a challenging task. We show that the introduction of steric stress around the coordination environment of square-planar PdII cations and bis-monodentate nitrogen donor ligands allows to control the size and shape of the assembled product, from [Pd2 L4 ] cages over [Pd2 L3 ] bowl-shaped structures to [Pd2 L2 ] rings. Therefore, banana-shaped ligand backbones were equipped with pyridines, two different quinoline isomers and acridine, the latter three introducing steric congestion through hydrogen substituents on annelated benzene rings. Differing behavior of the four resulting hosts towards the binding of C60 and C70 fullerenes was studied and related to structural differences by NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction. The three cages based on pyridine, 6-quinoline or 3-quinoline donors were found to either bind C60 , C70 or no fullerene at all.
Collapse
Affiliation(s)
- Bin Chen
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Shinnosuke Horiuchi
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
- Division of Chemistry and Materials ScienceGraduate School of EngineeringNagasaki University, Bunkyo-machiNagasaki852-8521Japan
| | - Julian J. Holstein
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Jacopo Tessarolo
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
48
|
Ogata D, Yuasa J. Dynamic Open Coordination Cage from Nonsymmetrical Imidazole-Pyridine Ditopic Ligands for Turn-On/Off Anion Binding. Angew Chem Int Ed Engl 2019; 58:18424-18428. [PMID: 31625649 DOI: 10.1002/anie.201911097] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Indexed: 12/22/2022]
Abstract
This work demonstrates a new nonconventional ligand design, imidazole/pyridine-based nonsymmetrical ditopic ligands (1 and 1S ), to construct a dynamic open coordination cage from nonsymmetrical building blocks. Upon complex formation with Pd2+ at a 1:4 molar ratio, 1 and 1S initially form mononuclear PdL4 complexes (Pd2+ (1)4 and Pd2+ (1S )4 ) without formation of a cage. The PdL4 complexes undergo a stoichiometrically controlled structural transition to Pd2 L4 open cages ((Pd2+ )2 (1)4 and (Pd2+ )2 (1S )4 ) capable of anion binding, leading to turn-on anion binding. The structural transitions between the Pd2 L4 open cage and the PdL4 complex are reversible. Thus, stoichiometric addition (2 equiv) of free 1S to the (Pd2+ )2 (1S )4 open cage holding a guest anion ((Pd2+ )2 (1S )4 ⋅G- ) enables the structural transition to the Pd2+ (1S )4 complex, which does not have a cage and thus causes the release of the guest anion (Pd2+ (1S )4 +G- ).
Collapse
Affiliation(s)
- Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
49
|
Ogata D, Yuasa J. Dynamic Open Coordination Cage from Nonsymmetrical Imidazole–Pyridine Ditopic Ligands for Turn‐On/Off Anion Binding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daiji Ogata
- Department of Applied ChemistryTokyo University of Science 1–3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied ChemistryTokyo University of Science 1–3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
50
|
Preston D, Inglis AR, Crowley JD, Kruger PE. Self‐assembly and Cycling of a Three‐state Pd
x
L
y
Metallosupramolecular System. Chem Asian J 2019; 14:3404-3408. [DOI: 10.1002/asia.201901238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Dan Preston
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| | - Amanda R. Inglis
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and NanotechnologyDepartment of ChemistryUniversity of Otago Dunedin New Zealand
| | - Paul E. Kruger
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| |
Collapse
|