1
|
Ito K, Tayama T, Uemura S, Iizuka R. Isolation of novel fluorogenic RNA aptamers via in vitro compartmentalization using microbead-display libraries. Talanta 2024; 278:126488. [PMID: 38955098 DOI: 10.1016/j.talanta.2024.126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Fluorogenic RNA aptamers, which specifically bind to fluorogens and dramatically enhance their fluorescence, are valuable for imaging and detecting RNAs and metabolites in living cells. Most fluorogenic RNA aptamers have been identified and engineered through iterative rounds of in vitro selection based on their binding to target fluorogens. While such selection is an efficient approach for generating RNA aptamers, it is less efficient for isolating fluorogenic aptamers because it does not directly screen for fluorogenic properties. In this study, we combined a fluorescence-based in vitro selection technique using water-in-oil microdroplets with an affinity-based selection technique to obtain fluorogenic RNA aptamers. This approach allowed us to identify novel fluorogenic aptamers for a biotin-modified thiazole orange derivative. Our results demonstrate that our approach can expand the diversity of fluorogenic RNA aptamers, thus leading to new applications for the imaging and detection of biomolecules.
Collapse
Affiliation(s)
- Keisuke Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomotaka Tayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0075, Japan.
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Bühler B, Schokolowski J, Benderoth A, Englert D, Grün F, Jäschke A, Sunbul M. Avidity-based bright and photostable light-up aptamers for single-molecule mRNA imaging. Nat Chem Biol 2023; 19:478-487. [PMID: 36658339 DOI: 10.1038/s41589-022-01228-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/17/2022] [Indexed: 01/21/2023]
Abstract
Fluorescent light-up aptamers (FLAPs) have emerged as valuable tools to visualize RNAs, but are mostly limited by their poor brightness, low photostability, and high fluorescence background in live cells. Exploiting the avidity concept, here we present two of the brightest FLAPs with the strongest aptamer-dye interaction, high fluorogenicity, and remarkable photostability. They consist of dimeric fluorophore-binding aptamers (biRhoBAST and biSiRA) embedded in an RNA scaffold and their bivalent fluorophore ligands (bivalent tetramethylrhodamine TMR2 and silicon rhodamine SiR2). Red fluorescent biRhoBAST-TMR2 and near-infrared fluorescent biSiRA-SiR2 are orthogonal to each other, facilitating simultaneous visualization of two different RNA species in live cells. One copy of biRhoBAST allows for simple and robust mRNA imaging with strikingly higher signal-to-background ratios than other FLAPs. Moreover, eight biRhoBAST repeats enable single-molecule mRNA imaging and tracking with minimal perturbation of their localization, translation, and degradation, demonstrating the potential of avidity-enhanced FLAPs for imaging RNA dynamics.
Collapse
Affiliation(s)
- Bastian Bühler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Janin Schokolowski
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Anja Benderoth
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Daniel Englert
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Huang Z, Guo X, Ma X, Wang F, Jiang JH. Genetically encodable tagging and sensing systems for fluorescent RNA imaging. Biosens Bioelectron 2023; 219:114769. [PMID: 36252312 DOI: 10.1016/j.bios.2022.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/06/2022]
Abstract
Live cell imaging of RNAs is crucial to interrogate their fundamental roles in various biological processes. The highly spatiotemporal dynamic nature of RNA abundance and localization has presented great challenges for RNA imaging. Genetically encodable tagging and sensing (GETS) systems that can be continuously produced in living systems have afforded promising tools for imaging and sensing RNA dynamics in live cells. Here we review the recent advances of GETS systems that have been developed for RNA tagging and sensing in live cells. We first describe the various GETS systems using MS2-bacteriophage-MS2 coat protein, pumilio homology domain and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9/13 for RNA labeling and tracking. The progresses of GETS systems for fluorogenic labeling and/or sensing RNAs by engineering light-up RNA aptamers, CRISPR-Cas9 systems and RNA aptamer stabilized fluorogenic proteins are then elaborated. The challenges and future perspectives in this field are finally discussed. With the continuing development, GETS systems will afford powerful tools to elucidate RNA biology in living systems.
Collapse
Affiliation(s)
- Zhimei Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaoyan Guo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xianbo Ma
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
4
|
Zhang J, Wang L, Jäschke A, Sunbul M. A Color‐Shifting Near‐Infrared Fluorescent Aptamer–Fluorophore Module for Live‐Cell RNA Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingye Zhang
- Institute of Pharmacy and Molecular Biotechnology (IPMB) Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Lu Wang
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB) Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB) Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
5
|
Zhang J, Wang L, Jäschke A, Sunbul M. A Color-Shifting Near-Infrared Fluorescent Aptamer-Fluorophore Module for Live-Cell RNA Imaging. Angew Chem Int Ed Engl 2021; 60:21441-21448. [PMID: 34309994 PMCID: PMC8518806 DOI: 10.1002/anie.202107250] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 11/07/2022]
Abstract
Fluorescent light‐up RNA aptamers (FLAPs) have become promising tools for visualizing RNAs in living cells. Specific binding of FLAPs to their non‐fluorescent cognate ligands results in a dramatic fluorescence increase, thereby allowing RNA imaging. Here, we present a color‐shifting aptamer‐fluorophore system, where the free dye is cyan fluorescent and the aptamer‐dye complex is near‐infrared (NIR) fluorescent. Unlike other reported FLAPs, this system enables ratiometric RNA imaging. To design the color‐shifting system, we synthesized a series of environmentally sensitive benzopyrylium‐coumarin hybrid fluorophores which exist in equilibrium between a cyan fluorescent spirocyclic form and a NIR fluorescent zwitterionic form. As an RNA tag, we evolved a 38‐nucleotide aptamer that selectively binds the zwitterionic forms with nanomolar affinity. We used this system as a light‐up RNA marker to image mRNAs in the NIR region and demonstrated its utility in ratiometric analysis of target RNAs expressed at different levels in single cells.
Collapse
Affiliation(s)
- Jingye Zhang
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Lu Wang
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Ren K, Keshri P, Wu R, Sun Z, Yu Q, Tian Q, Zhao B, Bagheri Y, Xie Y, You M. A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angew Chem Int Ed Engl 2020; 59:21986-21990. [PMID: 32797667 PMCID: PMC7747015 DOI: 10.1002/anie.202010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Genetically encoded RNA devices have emerged for various cellular applications in imaging and biosensing, but their functions as precise regulators in living systems are still limited. Inspired by protein photosensitizers, we propose here a genetically encoded RNA aptamer based photosensitizer (GRAP). Upon illumination, the RNA photosensitizer can controllably generate reactive oxygen species for targeted cell regulation. The GRAP system can be selectively activated by endogenous stimuli and light of different wavelengths. Compared with their protein analogues, GRAP is highly programmable and exhibits reduced off-target effects. These results indicate that GRAP enables efficient noninvasive target cell ablation with high temporal and spatial precision. This new RNA regulator system will be widely used for optogenetics, targeted cell ablation, subcellular manipulation, and imaging.
Collapse
Affiliation(s)
- Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yiwen Xie
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
7
|
Activatable CRISPR Transcriptional Circuits Generate Functional RNA for mRNA Sensing and Silencing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ying ZM, Wang F, Chu X, Yu RQ, Jiang JH. Activatable CRISPR Transcriptional Circuits Generate Functional RNA for mRNA Sensing and Silencing. Angew Chem Int Ed Engl 2020; 59:18599-18604. [PMID: 32633466 DOI: 10.1002/anie.202004751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Indexed: 12/11/2022]
Abstract
CRISPR-dCas9 systems that are precisely activated by cell-specific information facilitate the development of smart sensors or therapeutic strategies. We report the development of an activatable dCas9 transcriptional circuit that enables sensing and silencing of mRNA in living cells using hybridization-mediated structure switching for gRNA activation. The gRNA is designed with the spacer sequence blocked by a hairpin structure, and mRNA hybridization induces gRNA structure switching and activates the transcription of reporter RNA. An mRNA sensor developed using a light-up RNA reporter shows high sensitivity and fast-response imaging of survivin mRNA in cells under drug treatments and different cell lines. Furthermore, a feedback circuit is engineered by incorporating a small hairpin RNA in the reporter RNA, demonstrating a smart strategy for dynamic sensing and silencing of survivin with induced tumor cell apoptosis. This circuit illustrates a broadly applicable platform for the development of cell-specific sensing and therapeutic strategies.
Collapse
Affiliation(s)
- Zhan-Ming Ying
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
9
|
Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, Pei H. Stochastic DNA Walkers in Droplets for Super‐Multiplexed Bacterial Phenotype Detection. Angew Chem Int Ed Engl 2019; 58:15448-15454. [DOI: 10.1002/anie.201906438] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Kui Zou
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lihua Wang
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Chunhai Fan
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|
10
|
Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, Pei H. Stochastic DNA Walkers in Droplets for Super‐Multiplexed Bacterial Phenotype Detection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906438] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Kui Zou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lihua Wang
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Chunhai Fan
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|
11
|
Neubacher S, Hennig S. RNA Structure and Cellular Applications of Fluorescent Light-Up Aptamers. Angew Chem Int Ed Engl 2019; 58:1266-1279. [PMID: 30102012 PMCID: PMC6391945 DOI: 10.1002/anie.201806482] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/16/2022]
Abstract
The cellular functions of RNA are not limited to their role as blueprints for protein synthesis. In particular, noncoding RNA, such as, snRNAs, lncRNAs, miRNAs, play important roles. With increasing numbers of RNAs being identified, it is well known that the transcriptome outnumbers the proteome by far. This emphasizes the great importance of functional RNA characterization and the need to further develop tools for these investigations, many of which are still in their infancy. Fluorescent light-up aptamers (FLAPs) are RNA sequences that can bind nontoxic, cell-permeable small-molecule fluorogens and enhance their fluorescence over many orders of magnitude upon binding. FLAPs can be encoded on the DNA level using standard molecular biology tools and are subsequently transcribed into RNA by the cellular machinery, so that they can be used as fluorescent RNA tags (FLAP-tags). In this Minireview, we give a brief overview of the fluorogens that have been developed and their binding RNA aptamers, with a special focus on published crystal structures. A summary of current and future cellular FLAP applications with an emphasis on the study of RNA-RNA and RNA-protein interactions using split-FLAP and Förster resonance energy transfer (FRET) systems is given.
Collapse
Affiliation(s)
- Saskia Neubacher
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081HZAmsterdamThe Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081HZAmsterdamThe Netherlands
| |
Collapse
|
12
|
Steinmetzger C, Palanisamy N, Gore KR, Höbartner C. A Multicolor Large Stokes Shift Fluorogen-Activating RNA Aptamer with Cationic Chromophores. Chemistry 2019; 25:1931-1935. [PMID: 30485561 DOI: 10.1002/chem.201805882] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 12/31/2022]
Abstract
Large Stokes shift (LSS) fluorescent proteins (FPs) exploit excited state proton transfer pathways to enable fluorescence emission from the phenolate intermediate of their internal 4-hydroxybenzylidene imidazolone (HBI) chromophore. An RNA aptamer named Chili mimics LSS FPs by inducing highly Stokes-shifted emission from several new green and red HBI analogues that are non-fluorescent when free in solution. The ligands are bound by the RNA in their protonated phenol form and feature a cationic aromatic side chain for increased RNA affinity and reduced magnesium dependence. In combination with oxidative functionalization at the C2 position of the imidazolone, this strategy yielded DMHBO+ , which binds to the Chili aptamer with a low-nanomolar KD . Because of its highly red-shifted fluorescence emission at 592 nm, the Chili-DMHBO+ complex is an ideal fluorescence donor for Förster resonance energy transfer (FRET) to the rhodamine dye Atto 590 and will therefore find applications in FRET-based analytical RNA systems.
Collapse
Affiliation(s)
- Christian Steinmetzger
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Navaneethan Palanisamy
- International Max Planck Research School Molecular Biology, University of Göttingen, Germany.,Present address: BIOSS Center for Biological Signaling Studies, University of Freiburg, Germany
| | - Kiran R Gore
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Present address: Department of Chemistry, University of Mumbai, India
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,International Max Planck Research School Molecular Biology, University of Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
13
|
Neubacher S, Hennig S. RNA Structure and Cellular Applications of Fluorescent Light-Up Aptamers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Saskia Neubacher
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
14
|
Büchner D, John L, Mertens M, Wessig P. Detection of dsDNA with [1,3]Dioxolo[4,5-f
]benzodioxol (DBD) Dyes. Chemistry 2018; 24:16183-16190. [DOI: 10.1002/chem.201804057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Dörthe Büchner
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Leonard John
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Monique Mertens
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Pablo Wessig
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| |
Collapse
|