1
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
2
|
Bresinsky M, Goepferich A. Control of biomedical nanoparticle distribution and drug release in vivo by complex particle design strategies. Eur J Pharm Biopharm 2025; 208:114634. [PMID: 39826847 DOI: 10.1016/j.ejpb.2025.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The utilization of targeted nanoparticles as a selective drug delivery system is a powerful tool to increase the amount of active substance reaching the target site. This can increase therapeutic efficacy while reducing adverse drug effects. However, nanoparticles face several challenges: upon injection, the immediate adhesion of plasma proteins may mask targeting ligands, thereby diminishing the target cell selectivity. In addition, opsonization can lead to premature clearance and the widespread presence of receptors or enzymes limits the accuracy of target cell recognition. Nanoparticles may also suffer from endosomal entrapment, and controlled drug release can be hindered by premature burst release or insufficient particle retention at the target site. Various strategies have been developed to address these adverse events, such as the implementation of switchable particle properties, regulating the composition of the formed protein corona, or using click-chemistry based targeting approaches. This has resulted in increasingly complex particle designs, raising the question of whether this development actually improves the therapeutic efficacy in vivo. This review provides an overview of the challenges in targeted drug delivery and explores potential solutions described in the literature. Subsequently, appropriate strategies for the development of nanoparticular drug delivery concepts are discussed.
Collapse
Affiliation(s)
- Melanie Bresinsky
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany.
| |
Collapse
|
3
|
Zhao Y, Qin J, Yu D, Liu Y, Song D, Tian K, Chen H, Ye Q, Wang X, Xu T, Xuan H, Sun N, Ma W, Zhong J, Sun P, Song Y, Hu J, Zhao Y, Hou X, Meng X, Jiang C, Cai J. Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA delivery and CRISPR-Cas gene editing. NATURE NANOTECHNOLOGY 2024; 19:1869-1879. [PMID: 39209994 DOI: 10.1038/s41565-024-01769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
In patients with glioblastoma (GBM), upregulated midkine (MDK) limits the survival benefits conferred by temozolomide (TMZ). RNA interference (RNAi) and CRISPR-Cas9 gene editing technology are attractive approaches for regulating MDK expression. However, delivering these biologics to GBM tissue is challenging. Here we demonstrate a polymer-locking fusogenic liposome (Plofsome) that can be transported across the blood-brain barrier (BBB) and deliver short interfering RNA or CRISPR-Cas9 ribonucleoprotein complexes into the cytoplasm of GBM cells. Plofsome is designed by integrating a 'lock' into the fusogenic liposome using a traceless reactive oxygen species (ROS)-cleavable linker so that fusion occurs only after crossing the BBB and entering the GBM tissue with high ROS levels. Our results showed that MDK suppression by Plofsomes significantly reduced TMZ resistance and inhibited GBM growth in orthotopic brain tumour models. Importantly, Plofsomes are effective only at tumour sites and not in normal tissues, which improves the safety of combined RNAi and CRISPR-Cas9 therapeutics.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China.
| | - Jie Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanwen Xuan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Penggang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingze Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunlei Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Chasara RS, Ajayi TO, Leshilo DM, Poka MS, Witika BA. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon 2023; 9:e19896. [PMID: 37809420 PMCID: PMC10559285 DOI: 10.1016/j.heliyon.2023.e19896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The cellular milieu in which malignant growths or cancer stem cells reside is known as the tumour microenvironment (TME). It is the consequence of the interactivity amongst malignant and non-malignant cells and directly affects cancer development and progression. Reactive oxygen species (ROS) are chemically reactive molecules that contain oxygen, they are generated because of numerous endogenous and external factors. Endogenous ROS produced from mitochondria is known to significantly increase intracellular oxidative stress. In addition to playing a key role in several biological processes both in healthy and malignant cells, ROS function as secondary messengers in cell signalling. At low to moderate concentrations, ROS serves as signalling transducers to promote cancer cell motility, invasion, angiogenesis, and treatment resistance. At high concentrations, ROS can induce oxidative stress, leading to DNA damage, lipid peroxidation and protein oxidation. These effects can result in cell death or trigger signalling pathways that lead to apoptosis. The creation of innovative therapies and cancer management techniques has been aided by a thorough understanding of the TME. At present, surgery, chemotherapy, and radiotherapy, occasionally in combination, are the most often used methods for tumour treatment. The current challenge that these therapies face is the lack of spatiotemporal application specifically at the lesion which results in toxic effects on healthy cells associated with off-target drug delivery and undesirably high doses. Nanotechnology can be used to specifically deliver various chemicals via nanocarriers to target tumour cells, thereby increasing the accumulation of ROS-inducing agents at the site of the tumour. Nanoparticles can be engineered to release ROS-inducing agents in a controlled manner to the TME that will in turn react with the ROS to either increase or decrease it, thereby improving antitumour efficiency. Nano-delivery systems such as liposomes, nanocapsules, solid lipid nanoparticles and nanostructured lipid carriers were explored for the up/down-regulation of ROS. This review will discuss the use of nanotechnology in targeting and altering the ROS in the TME.
Collapse
Affiliation(s)
- Rumbidzai Sharon Chasara
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Taiwo Oreoluwa Ajayi
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Dineo Motjoadi Leshilo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| |
Collapse
|
5
|
Pourali P, Dzmitruk V, Pátek M, Neuhöferová E, Svoboda M, Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci Rep 2023; 13:4916. [PMID: 36966192 PMCID: PMC10039949 DOI: 10.1038/s41598-023-31792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Enzymotherapy based on DNase I or RNase A has often been suggested as an optional strategy for cancer treatment. The efficacy of such procedures is limited e.g. by a short half-time of the enzymes or a low rate of their internalization. The use of nanoparticles, such as gold nanoparticles (AuNPs), helps to overcome these limits. Specifically, biologically produced AuNPs represent an interesting variant here due to naturally occurring capping agents (CA) on their surface. The composition of the CA depends on the producing microorganism. CAs are responsible for the stabilization of the nanoparticles, and promote the direct linking of targeting and therapeutic molecules. This study provided proof of enzyme adsorption onto gold nanoparticles and digestion efficacy of AuNPs-adsorbed enzymes. We employed Fusarium oxysporum extract to produce AuNPs. These nanoparticles were round or polygonal with a size of about 5 nm, negative surface charge of about - 33 mV, and maximum absorption peak at 530 nm. After the adsorption of DNAse I, RNase A, or Proteinase K onto the AuNPs surface, the nanoparticles exhibited shifts in surface charge (values between - 22 and - 13 mV) and maximum absorption peak (values between 513 and 534 nm). The ability of AuNP-enzyme complexes to digest different targets was compared to enzymes alone. We found a remarkable degradation of ssDNA, and dsDNA by AuNP-DNAse I, and a modest degradation of ssRNA by AuNP-RNase A. The presence of particular enzymes on the AuNP surface was proved by liquid chromatography-mass spectrometry (LC-MS). Using SDS-PAGE electrophoresis, we detected a remarkable digestion of collagen type I and fibrinogen by AuNP-proteinase K complexes. We concluded that the biologically produced AuNPs directly bound DNase I, RNase A, and proteinase K while preserving their ability to digest specific targets. Therefore, according to our results, AuNPs can be used as effective enzyme carriers and the AuNP-enzyme conjugates can be effective tools for enzymotherapy.
Collapse
Affiliation(s)
- Parastoo Pourali
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Volha Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Eva Neuhöferová
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Milan Svoboda
- Institute of Analytical Chemistry, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Veronika Benson
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic.
| |
Collapse
|
6
|
Wang G, Su Y, Chen X, Zhou Y, Huang P, Huang W, Yan D. H 2O 2-responsive polymer prodrug nanoparticles with glutathione scavenger for enhanced chemo-photodynamic synergistic cancer therapy. Bioact Mater 2023; 25:189-200. [PMID: 36817822 PMCID: PMC9932349 DOI: 10.1016/j.bioactmat.2023.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The combination of chemotherapy and photodynamic therapy (PDT) based on nanoparticles (NPs) has been extensively developed to improve the therapeutic effect and decrease the systemic toxicity of current treatments. However, overexpressed glutathione (GSH) in tumor cells efficiently scavenges singlet oxygens (1O2) generated from photosensitizers and results in the unsatisfactory efficacy of PDT. To address this obstacle, here we design H2O2-responsive polymer prodrug NPs with GSH-scavenger (Ce6@P(EG-a-CPBE) NPs) for chemo-photodynamic synergistic cancer therapy. They are constructed by the co-self-assembly of photosensitizer chlorin e6 (Ce6) and amphiphilic polymer prodrug P(EG-a-CPBE), which is synthesized from a hydrophilic alternating copolymer P(EG-a-PD) by conjugating hydrophobic anticancer drug chlorambucil (CB) via an H2O2-cleavable linker 4-(hydroxymethyl)phenylboronic acid (PBA). Ce6@P(EG-a-CPBE) NPs can efficiently prevent premature drug leakage in blood circulation because of the high stability of the PBA linker under the physiological environment and facilitate the delivery of Ce6 and CB to the tumor site after intravenous injection. Upon internalization of Ce6@P(EG-a-CPBE) NPs by tumor cells, PBA is cleaved rapidly triggered by endogenous H2O2 to release CB and Ce6. Ce6 can effectively generate abundant 1O2 under 660 nm light irradiation to synergistically kill cancer cells with CB. Concurrently, PBA can be transformed into a GSH-scavenger (quinine methide, QM) under intracellular H2O2 and prevent the depletion of 1O2, which induces the cooperatively strong oxidative stress and enhanced cancer cell apoptosis. Collectively, such H2O2-responsive polymer prodrug NPs loaded with photosensitizer provide a feasible approach to enhance chemo-photodynamic synergistic cancer treatment.
Collapse
Affiliation(s)
- Guanchun Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinliang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Yin SY, Hu Y, Zheng J, Li J, Yang R. Tannic Acid-Assisted Biomineralization Strategy for Encapsulation and Intracellular Delivery of Protein Drugs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50583-50591. [PMID: 36322919 DOI: 10.1021/acsami.2c15205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein therapy has been considered to be one of the most direct and safe ways to regulate cell function and treat tumors. However, safe and effective intracellular delivery of protein drugs is still a key challenge. Herein, we developed a tannic acid-assisted biomineralization strategy for the encapsulation and intracellular delivery of protein drugs. RNase A and glucose oxidase (GOD) were choose as the protein drug model. RNase A, GOD, TA, and Mn2+ are mixed in one pot to attain RG@MT, and CaCO3 coating is subsequently carried out to construct RG@MT@C through biomineralization. Once RG@MT@C is endocytosed, the acidic environment of the lysosome will dissolve the protective layer of CaCO3 and produce plenty of CO2 to cause lysosome bursting, ensuring the lysosome escape of the RG@MT@C and thus releasing the generated TA-Mn2+, RNase A, and GOD into the cytoplasm. The released substances would activate starvation therapy, chemodynamic therapy, and protein therapy pathways to ensure a high performance of cancer therapy. Due to simple preparation, low toxicity, and controlled release in the tumor microenvironment, we expect it can realize efficient and nondestructive delivery of protein drugs and meet the needs for precise, high performance of synergistically antitumor therapy in biomedical applications.
Collapse
Affiliation(s)
- Sheng-Yan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Sunil V, Mozhi A, Zhan W, Teoh JH, Ghode PB, Thakor NV, Wang CH. In-situ vaccination using dual responsive organelle targeted nanoreactors. Biomaterials 2022; 290:121843. [PMID: 36228516 DOI: 10.1016/j.biomaterials.2022.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
9
|
Chen Z, Zhao Y, Liu Y. Advanced Strategies in Enzyme Activity Regulation for Biomedical Applications. Chembiochem 2022; 23:e202200358. [PMID: 35896516 DOI: 10.1002/cbic.202200358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Enzymes are important macromolecular biocatalysts that accelerate chemical and biochemical reactions in living organisms. Most human diseases are related to alterations in enzyme activity. Moreover, enzymes are potential therapeutic tools for treating different diseases, such as cancer, infections, and cardiovascular and cerebrovascular diseases. Precise remote enzyme activity regulation provides new opportunities to combat diseases. This review summarizes recent advances in the field of enzyme activity regulation, including reversible and irreversible regulation. It also discusses the mechanisms and approaches for on-demand control of these activities. Furthermore, a range of stimulus-responsive inhibitors, polymers, and nanoparticles for regulating enzyme activity and their prospective biomedical applications are summarized. Finally, the current challenges and future perspectives on enzyme activity regulation are discussed.
Collapse
Affiliation(s)
- Zihan Chen
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yu Zhao
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yang Liu
- Nankai University, College of Chemistry, 94 Weijin Rd., Mengminwei Bldg 412, 300071, Tianjin, CHINA
| |
Collapse
|
10
|
Chen S, Qiu Q, Wang D, She D, Yin B, Gu G, Chai M, Heo DN, He H, Wang J. Dual-sensitive drug-loaded hydrogel system for local inhibition of post-surgical glioma recurrence. J Control Release 2022; 349:565-579. [PMID: 35835399 DOI: 10.1016/j.jconrel.2022.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Local treatment after resection to inhibit glioma recurrence is thought to able to meet the real medical needs. However, the only clinically approved local glioma treatment-wafer containing bis(2-chloroethyl) nitrosourea (BCNU) showed very limited effects. Herein, in order to inhibit tumor recurrence with prolonged and synergistic therapeutic effect of drugs after tumor resection, an in situ dual-sensitive hydrogel drug delivery system loaded with two synergistic chemo-drugs BCNU and temozolomide (TMZ) was developed. The thermosensitive hydrogel was loaded with reactive oxygen species (ROS)-sensitive poly (lactic-co-glycolic) acid nanoparticles (NPs) encapsulating both BCNU and TMZ and also free BCNU and TMZ. The in vitro synergistic effect of BCNU and TMZ and in vivo presence of ROS at the residual tumor site were confirmed. The prepared ROS-sensitive NPs and thermosensitive hydrogel, as well as the long-term release behavior of drugs and NPs, were fully characterized both in vitro and in vivo. After >90% glioblastoma resection, the dual-sensitive hydrogel drug delivery system was injected into the resection cavity. The median survival time of the experimental group reached 65 days which was twice as long as the Resection only group, implying that this in situ drug delivery system effectively inhibited tumor recurrence. Overall, this study provides new ideas and strategies for the inhibition of postoperative glioma recurrence.
Collapse
Affiliation(s)
- Sunhui Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China; Department of Pharmacy, Fujian Provincial Hospital & Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Qiujun Qiu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Dejun She
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Guolong Gu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Meihong Chai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China.
| |
Collapse
|
11
|
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, Du Y, Ling L. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surf B Biointerfaces 2022; 215:112503. [PMID: 35429736 DOI: 10.1016/j.colsurfb.2022.112503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022]
Abstract
Natural types of cells display distinct characteristics with homotypic targeting and extended circulation in the blood, which are worthy of being explored as promising drug delivery systems (DDSs) for cancer therapy. To enhance their delivery efficiency, these cells can be combined with therapeutic agents and artificial nanocarriers to construct the next generation of DDSs in the form of biomimetic nanomedicines. In this review, we present the recent advances in cell membrane-based DDSs (CDDSs) and their applications for efficient cancer therapy. Different sources of cell membranes are discussed, mainly including red blood cells (RBC), leukocytes, cancer cells, stem cells and hybrid cells. Moreover, the extraction methods used for obtaining such cells and the mechanism contributing to the functional action of these biomimetic CDDSs are explained. Finally, a future perspective is proposed to highlight the limitations of CDDSs and the possible resolutions toward clinical transformation of currently developed biomimetic chemotherapies.
Collapse
Affiliation(s)
- Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
12
|
Saxon E, Peng X. Recent Advances in Hydrogen Peroxide Responsive Organoborons for Biological and Biomedical Applications. Chembiochem 2021; 23:e202100366. [PMID: 34636113 DOI: 10.1002/cbic.202100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.
Collapse
Affiliation(s)
- Eron Saxon
- University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Xiaohua Peng
- University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
13
|
Li W, Liu J, Shao L, Mao L, Wang M. DNAzyme-Catalyzed Cellular Oxidative Stress Amplification for Pro-protein Activation in Living Cells. Chembiochem 2021; 22:2608-2613. [PMID: 34155741 DOI: 10.1002/cbic.202100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Indexed: 11/10/2022]
Abstract
The conditional control of protein function in response to the physiological change of cells is of great interest for studying protein function in biological settings and developing protein therapeutics. We report herein that catalase (CAT) DNAzyme can potentiate the generation of reactive oxygen species (ROS) in living cells by knocking down catalase expression, which could further activate a reactive oxygen species (ROS)-responsive pro-protein, RNase A-NBC, in situ. Using an optimized lipid nanoparticle delivery system to simultaneously introduce CAT DNAzyme and RNase A-NBC into cells, we show that the pro-protein, RNase A-NBC, could be activated in a significantly enhanced manner to prohibit tumor cell growth in different types of cancer cells. We believe the methodology of regulating pro-protein activity using DNAzyme biocatalysis to differentiate intracellular environment could further be extended to other functional proteins, and even fundamental investigations in living systems to develop pro-protein therapeutics.
Collapse
Affiliation(s)
- Wenting Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Ji Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- Beijing Key Laboratory of Organic Materials Testing Technology and Quality Evaluation, Beijing Center for Physical and Chemical Analysis, Beijing, 100089, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, P. R. China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Liu J, Luo T, Xue Y, Mao L, Stang PJ, Wang M. Hierarchical Self-assembly of Discrete Metal-Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angew Chem Int Ed Engl 2021; 60:5429-5435. [PMID: 33247547 DOI: 10.1002/anie.202013904] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Hierarchical self-assembly (HAS) is a powerful approach to create supramolecular nanostructures for biomedical applications. This potency, however, is generally challenged by the difficulty of controlling the HAS of biomacromolecules and the functionality of resulted HAS nanostructures. Herein, we report a modular approach for controlling the HAS of discrete metal-organic cages (MOC) into supramolecular nanoparticles, and its potential for intracellular protein delivery and cell-fate specification. The hierarchical coordination-driven self-assembly of adamantane-functionalized M12 L24 MOC (Ada-MOC) and the host-guest interaction of Ada-MOC with β-cyclodextrin-conjugated polyethylenimine (PEI-βCD) afford supramolecular nanoparticles in a controllable manner. HAS maintains high efficiency and orthogonality in the presence of protein, enabling the encapsulation of protein into the nanoparticles for intracellular protein delivery for therapeutic application and CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Ji Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Liu J, Luo T, Xue Y, Mao L, Stang PJ, Wang M. Hierarchical Self‐assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ji Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peter J. Stang
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Ming Wang
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
16
|
ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
18
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed Engl 2020; 60:9804-9827. [DOI: 10.1002/anie.201915833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
19
|
Li X, Wei Y, Wu Y, Yin L. Hypoxia‐Induced Pro‐Protein Therapy Assisted by a Self‐Catalyzed Nanozymogen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xudong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Yuchen Wu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| |
Collapse
|
20
|
Li X, Wei Y, Wu Y, Yin L. Hypoxia‐Induced Pro‐Protein Therapy Assisted by a Self‐Catalyzed Nanozymogen. Angew Chem Int Ed Engl 2020; 59:22544-22553. [DOI: 10.1002/anie.202004008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/17/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Xudong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Yuchen Wu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| |
Collapse
|
21
|
Li Y, Jarvis R, Zhu K, Glass Z, Ogurlu R, Gao P, Li P, Chen J, Yu Y, Yang Y, Xu Q. Protein and mRNA Delivery Enabled by Cholesteryl-Based Biodegradable Lipidoid Nanoparticles. Angew Chem Int Ed Engl 2020; 59:14957-14964. [PMID: 32438474 PMCID: PMC7679290 DOI: 10.1002/anie.202004994] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/12/2022]
Abstract
Developing safe and efficient delivery systems for therapeutic biomacromolecules is a long-standing challenge. Herein, we report a newly developed combinatorial library of cholesteryl-based disulfide bond-containing biodegradable cationic lipidoid nanoparticles. We have identified a subset of this library which is effective for protein and mRNA delivery in vitro and in vivo. These lipidoids showed comparable transfection efficacies but much lower cytotoxicities compared to the Lpf2k in vitro. In vivo studies in adult mice demonstrated the successful delivery of genome engineering protein and mRNA molecules in the skeletal muscle (via intramuscular injection), lung and spleen (via intravenous injection), and brain (via lateral ventricle infusion).
Collapse
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Rachel Jarvis
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Kuixin Zhu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Roza Ogurlu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peiyang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peixuan Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yingjie Yu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
22
|
Pan X, Yang Y, Li L, Li X, Li Q, Cui C, Wang B, Kuai H, Jiang J, Tan W. A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery. Chem Sci 2020; 11:9648-9654. [PMID: 34123176 PMCID: PMC8161142 DOI: 10.1039/d0sc02279a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 01/12/2023] Open
Abstract
Chemically engineering endogenous amino acids with a molecular tag is one of the most common routes of artificially functionalizing proteins for identification or cellular delivery. However, it is challenging to make conjugation efficient, facile and productive as well as avoiding a high chance of deactivation of the functional proteins. Here we present a new and straightforward design to specifically tether the distinct six polyhistidine tag, terminally expressed on protein cargoes and cellular membrane proteins by using bispecific circular aptamers (bc-apts). The anti-His tag aptamer on one end of the bc-apt can easily recognize the biorthogonal six polyhistidine tag (His tag) on functional proteins like EGFP or RNase A. Meanwhile, a cell-specific aptamer, sgc8, on the other end efficiently facilitates the targeted delivery of functional proteins, improving their overall bioactivity in the cellular milieu by around 4 fold. Therefore, the nuclease-resistant bc-apt is a promising molecular tethering reagent to enable the noncovalent crosslink between live diseased cells and His tag protein cargoes.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
| | - Yu Yang
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
| | - Long Li
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
| | - Xiaowei Li
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
| | - Qiang Li
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
| | - Cheng Cui
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 P. R. China
| | - Bang Wang
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 P. R. China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 P. R. China
| | - Weihong Tan
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida Gainesville FL 32611-7200 USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 P. R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
23
|
Ju E, Wang F, Wang Z, Liu C, Dong K, Pu F, Ren J, Qu X. Modular AND Gate-Controlled Delivery Platform for Tumor Microenvironment Specific Activation of Protein Activity. Chemistry 2020; 26:7573-7577. [PMID: 32128887 DOI: 10.1002/chem.202000219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 11/10/2022]
Abstract
Protein therapeutics have inspired intensive research interest in a variety of realms. It is still urgently required to avoid premature or unexpected activation of therapeutic proteins to achieve great specificity for therapy. Herein, we reported a modular AND gate-controlled delivery platform for tumor microenvironment specific activation of therapeutic protein activity based on biomineralization of molecular glue-adhered protein enzyme. The AND gate integrates the specific microenvironment of tumor tissues (acidic pH and a certain concentration of ATP) as inputs and activates the therapeutic activity of protein only when both inputs are active. More importantly, the activity of therapeutic protein would not be activated either at acidic pH or in the presence of ATP, which could greatly avoid the deleterious effect on normal tissues. Besides, this AND gate can be modular design and suitable for a variety of therapeutic proteins and nucleic acids.
Collapse
Affiliation(s)
- Enguo Ju
- Laboratory of Chemical Biology and, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Faming Wang
- Laboratory of Chemical Biology and, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Zhenzhen Wang
- Laboratory of Chemical Biology and, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Chaoying Liu
- Department of Respiratory Medicine, First Affiliated Hospital, Jilin University, Changchun, 130021, P. R. China
| | - Kai Dong
- Laboratory of Chemical Biology and, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Fang Pu
- Laboratory of Chemical Biology and, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
24
|
Li Y, Jarvis R, Zhu K, Glass Z, Ogurlu R, Gao P, Li P, Chen J, Yu Y, Yang Y, Xu Q. Protein and mRNA Delivery Enabled by Cholesteryl‐Based Biodegradable Lipidoid Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Rachel Jarvis
- Department of Neuroscience Tufts University Boston MA 02111 USA
| | - Kuixin Zhu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Zachary Glass
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Roza Ogurlu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peiyang Gao
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Jinjin Chen
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Yingjie Yu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Yongjie Yang
- Department of Neuroscience Tufts University Boston MA 02111 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
25
|
Peng D, Gao H, Huang P, Shi X, Zhou J, Zhang J, Dong A, Tang H, Wang W, Deng L. Host-guest supramolecular hydrogel based on nanoparticles: co-delivery of DOX and siBcl-2 for synergistic cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:877-893. [DOI: 10.1080/09205063.2019.1612602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dan Peng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huijie Gao
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoguang Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria-Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019; 58:7657-7661. [PMID: 30994955 DOI: 10.1002/anie.201901699] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Mitochondria are key organelles in mammalian cells whose dysfunction is linked to various diseases. Drugs targeting mitochondrial proteins provide a highly promising strategy for potential therapeutics. Methods for the delivery of small-molecule drugs to the mitochondria are available, but these are not suitable for macromolecules, such as proteins. Herein, we report the delivery of native proteins and antibodies to the mitochondria using biodegradable silica nanoparticles (BS-NPs). The modification of the nanoparticle surface with triphenylphosphonium (TPP) and cell-penetrating poly(disulfide)s (CPD) facilitated their rapid intracellular uptake with minimal endolysosomal trapping, providing sufficient time for effective mitochondrial localization followed by glutathione-triggered biodegradation and of native, functional proteins into the mitochondria.
Collapse
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaofeng Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21816, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
27
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria‐Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiyan Yuan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat-sen University Guangzhou 510275 China
| | - Xin Mao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiaofeng Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Si Si Liew
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM)Nanjing Tech University 30 South Puzhu Road Nanjing 21816 China
| | - Shao Q. Yao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
28
|
Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 2018; 171:72-82. [DOI: 10.1016/j.biomaterials.2018.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
|
29
|
Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800511] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| |
Collapse
|
30
|
Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angew Chem Int Ed Engl 2018; 57:3995-3998. [PMID: 29417709 DOI: 10.1002/anie.201800511] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 11/09/2022]
Abstract
Regulation of enzyme activity is fundamentally challenging but practically meaningful for biology and medicine. However, noninvasive remote control of enzyme activity in living systems has been rarely demonstrated and exploited for therapy. Herein, we synthesize a semiconducting polymer nanoenzyme with photothermic activity for enhanced cancer therapy. Upon near-infrared (NIR) light irradiation, the activity of the nanoenzyme can be enhanced by 3.5-fold to efficiently digest collagen in the tumor extracellular matrix (ECM), leading to enhanced nanoparticle accumulation in tumors and consequently improved photothermal therapy (PTT). This study thus provides a promising strategy to remotely regulate enzyme activity for cancer therapy.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
31
|
Luo CQ, Zhou YX, Zhou TJ, Xing L, Cui PF, Sun M, Jin L, Lu N, Jiang HL. Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy. J Control Release 2018; 274:56-68. [DOI: 10.1016/j.jconrel.2018.01.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/03/2023]
|
32
|
Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F. An Intracellular H2
O2
-Responsive AIEgen for the Peroxidase-Mediated Selective Imaging and Inhibition of Inflammatory Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yong Cheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Jun Dai
- Department of Obstetrics and Gynecology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Chunli Sun
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Rui Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| |
Collapse
|
33
|
Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F. An Intracellular H2
O2
-Responsive AIEgen for the Peroxidase-Mediated Selective Imaging and Inhibition of Inflammatory Cells. Angew Chem Int Ed Engl 2018; 57:3123-3127. [DOI: 10.1002/anie.201712803] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/17/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Yong Cheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Jun Dai
- Department of Obstetrics and Gynecology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Chunli Sun
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Rui Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| |
Collapse
|
34
|
Gao J, Liu X, Secinti H, Jiang Z, Munkhbat O, Xu Y, Guo X, Thayumanavan S. Photoactivation of Ligands for Extrinsically and Intrinsically Triggered Disassembly of Amphiphilic Nanoassemblies. Chemistry 2018; 24:1789-1794. [PMID: 29314349 PMCID: PMC6192416 DOI: 10.1002/chem.201705217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Indexed: 11/10/2022]
Abstract
Specific response to the concurrent presence of two different inputs is one of the hallmarks of incorporating specificities in nature. Artificial nanoassemblies that concurrently respond to two very different inputs are of great interest in a variety of applications, especially in biomedicine. Here, we present a design strategy for amphiphilic nanoassemblies with such capabilities, enabled by photocaging a ligand moiety that is capable of binding to a specific protein. New molecular designs that offer nanoassemblies that respond to either of two inputs or only to the concurrent presence of two inputs are outlined. Such biomimetic nanoassemblies could find use in many applications, including drug delivery and diagnostics.
Collapse
Affiliation(s)
- Jingjing Gao
- J. Gao, Dr. X. Liu, Dr. H. Secinti, Z. Jiang, O. Munkhbat, Prof. Dr. S. Thayumanavan, Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003(USA)
| | - Xiaochi Liu
- J. Gao, Dr. X. Liu, Dr. H. Secinti, Z. Jiang, O. Munkhbat, Prof. Dr. S. Thayumanavan, Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003(USA)
- Dr. X. Liu, Dr. Y. Xu, Prof. Dr. X. Guo., State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hatice Secinti
- J. Gao, Dr. X. Liu, Dr. H. Secinti, Z. Jiang, O. Munkhbat, Prof. Dr. S. Thayumanavan, Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003(USA)
| | - Ziwen Jiang
- J. Gao, Dr. X. Liu, Dr. H. Secinti, Z. Jiang, O. Munkhbat, Prof. Dr. S. Thayumanavan, Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003(USA)
| | - Oyuntuya Munkhbat
- J. Gao, Dr. X. Liu, Dr. H. Secinti, Z. Jiang, O. Munkhbat, Prof. Dr. S. Thayumanavan, Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003(USA)
| | - Yisheng Xu
- Dr. X. Liu, Dr. Y. Xu, Prof. Dr. X. Guo., State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Guo
- Dr. X. Liu, Dr. Y. Xu, Prof. Dr. X. Guo., State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - S. Thayumanavan
- J. Gao, Dr. X. Liu, Dr. H. Secinti, Z. Jiang, O. Munkhbat, Prof. Dr. S. Thayumanavan, Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003(USA)
- Prof. Dr. S. Thayumanavan, Center for Bioactive Delivery, Institute for Applied Life Sciences, Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003(USA),
| |
Collapse
|
35
|
Qian L, Fu J, Yuan P, Du S, Huang W, Li L, Yao SQ. Intracellular Delivery of Native Proteins Facilitated by Cell-Penetrating Poly(disulfide)s. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711651] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Linghui Qian
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Jiaqi Fu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Peiyan Yuan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| |
Collapse
|
36
|
Qian L, Fu J, Yuan P, Du S, Huang W, Li L, Yao SQ. Intracellular Delivery of Native Proteins Facilitated by Cell-Penetrating Poly(disulfide)s. Angew Chem Int Ed Engl 2018; 57:1532-1536. [DOI: 10.1002/anie.201711651] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Linghui Qian
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Jiaqi Fu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Peiyan Yuan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| |
Collapse
|
37
|
Wang J, Zhang Y, Archibong E, Ligler FS, Gu Z. Leveraging H 2 O 2 Levels for Biomedical Applications. ACTA ACUST UNITED AC 2017; 1:e1700084. [PMID: 32646189 DOI: 10.1002/adbi.201700084] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/31/2017] [Indexed: 12/21/2022]
Abstract
Hydrogen peroxide (H2 O2 )-responsive materials have been employed as drug delivery or diagnostic systems to treat or detect diseases with abnormal oxidative stress. A number of H2 O2 -responsive systems have been developed, and they have achieved great progress in controlled drug delivery for disease treatment. However, pathological sites with elevated H2 O2 level, such as cancer and inflammation, have their own characteristics; therefore the material structures and the subsequent formulations should be reasonably designed to acquire maximized therapeutic effects. In this progress report, we overview the development of H2 O2 -responsive functional groups for constructing H2 O2 -responsive formulations, as well as the guidance for designing suitable formulations to treat each specific pathological condition. The challenges and perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edikan Archibong
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
38
|
Feng L, Wang Y, Luo Z, Huang Z, Zhang Y, Guo K, Ye D. Dual Stimuli-Responsive Nanoparticles for Controlled Release of Anticancer and Anti-inflammatory Drugs Combination. Chemistry 2017; 23:9397-9406. [DOI: 10.1002/chem.201701524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Liandong Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 210023 P.R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
39
|
Hoang TT, Smith TP, Raines RT. A Boronic Acid Conjugate of Angiogenin that Shows ROS-Responsive Neuroprotective Activity. Angew Chem Int Ed Engl 2017; 56:2619-2622. [PMID: 28120377 PMCID: PMC5418131 DOI: 10.1002/anie.201611446] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/23/2016] [Indexed: 12/27/2022]
Abstract
Angiogenin (ANG) is a human ribonuclease that is compromised in patients with amyotrophic lateral sclerosis (ALS). ANG also promotes neovascularization, and can induce hemorrhage and encourage tumor growth. The causal neurodegeneration of ALS is associated with reactive oxygen species, which are also known to elicit the oxidative cleavage of carbon-boron bonds. We have developed a synthetic boronic acid mask that restrains the ribonucleolytic activity of ANG. The masked ANG does not stimulate endothelial cell proliferation but protects astrocytes from oxidative stress. By differentiating between the two dichotomous biological activities of ANG, this strategy could provide a viable pharmacological approach for the treatment of ALS.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| | - Thomas P Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706-1322, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706-1322, USA
| |
Collapse
|
40
|
Hoang TT, Smith TP, Raines RT. A Boronic Acid Conjugate of Angiogenin that Shows ROS-Responsive Neuroprotective Activity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Trish T. Hoang
- Department of Biochemistry; University of Wisconsin-Madison; 433 Babcock Drive Madison WI 53706-1544 USA
| | - Thomas P. Smith
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706-1322 USA
| | - Ronald T. Raines
- Department of Biochemistry; University of Wisconsin-Madison; 433 Babcock Drive Madison WI 53706-1544 USA
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706-1322 USA
| |
Collapse
|
41
|
Zhang T, Chen X, Xiao C, Zhuang X, Chen X. Synthesis of a phenylboronic ester-linked PEG-lipid conjugate for ROS-responsive drug delivery. Polym Chem 2017. [DOI: 10.1039/c7py00915a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A kind of phenylboronic ester-linked PEG-lipid conjugate was designed and synthesized for ROS-responsive drug delivery.
Collapse
Affiliation(s)
- Tianhui Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xin Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
42
|
Saravanakumar G, Kim J, Kim WJ. Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600124. [PMID: 28105390 PMCID: PMC5238745 DOI: 10.1002/advs.201600124] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/26/2016] [Indexed: 05/19/2023]
Abstract
Given the increasing evidence indicates that many pathological conditions are associated with elevated reactive oxygen species (ROS) levels, there have been growing research efforts focused on the development of ROS-responsive carrier systems because of their promising potential to realize more specific diagnosis and effective therapy. By judicious utilization of ROS-responsive functional moieties, a wide range of carrier systems has been designed for ROS-mediated drug delivery. In this review article, insights into design principle and recent advances on the development of ROS-responsive carrier systems for drug delivery applications are provided alongside discussion of their in vitro and in vivo evaluation. In particular, the discussions in this article will mainly focus on polymeric nanoparticles, hydrogels, inorganic nanoparticles, and activatable prodrugs that have been integrated with diverse ROS-responsive moieties for spatiotemporally controlled release of drugs for effective therapy.
Collapse
Affiliation(s)
- Gurusamy Saravanakumar
- Center for Self‐Assembly and ComplexityInstitute for Basic Science (IBS)Pohang37673Republic of Korea
| | - Jihoon Kim
- Center for Self‐Assembly and ComplexityInstitute for Basic Science (IBS)Pohang37673Republic of Korea
| | - Won Jong Kim
- Center for Self‐Assembly and ComplexityInstitute for Basic Science (IBS)Pohang37673Republic of Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| |
Collapse
|
43
|
Lee Y, Lee S, Lee DY, Yu B, Miao W, Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew Chem Int Ed Engl 2016; 55:10676-80. [DOI: 10.1002/anie.201604858] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/20/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Dong Yun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Byeongjun Yu
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
44
|
Lee Y, Lee S, Lee DY, Yu B, Miao W, Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Dong Yun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Byeongjun Yu
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
45
|
Liu X, Zhang P, He D, Rödl W, Preiß T, Rädler JO, Wagner E, Lächelt U. pH-Reversible Cationic RNase A Conjugates for Enhanced Cellular Delivery and Tumor Cell Killing. Biomacromolecules 2015; 17:173-82. [DOI: 10.1021/acs.biomac.5b01289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaowen Liu
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| | - Peng Zhang
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| | - Dongsheng He
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
- Nanosystems
Initiative
Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Wolfgang Rödl
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| | - Tobias Preiß
- Faculty
of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Joachim O. Rädler
- Faculty
of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Nanosystems
Initiative
Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
- Nanosystems
Initiative
Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| |
Collapse
|
46
|
Yin S, Huai J, Chen X, Yang Y, Zhang X, Gan Y, Wang G, Gu X, Li J. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater 2015; 26:274-85. [PMID: 26300335 DOI: 10.1016/j.actbio.2015.08.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
Abstract
Polymer-drug conjugates have demonstrated application potentials in optimizing chemotherapeutics. In this study a new bioconjugate, HA-ss-PTX, was designed and synthesized with cooperative dual characteristics of active tumor targeting and selective intracellular drug release. Paclitaxel (PTX) was covalently attached to hyaluronic acid (HA) with various sizes (MW 9.5, 35, 770 kDa); a cross-linker containing disulfide bond was also used to shield drug leakage in blood circulation and to achieve rapid drug release in tumor cells in response to glutathione. Incorporation of HA to the conjugate enhanced the capabilities of drug loading, intracellular endocytosis and tumor targeting of micelles in comparison to mPEG. HA molecular weight showed significant effect on properties and antitumor efficacy of the synthesized conjugates. Intracellular uptake of HA-ss-PTX toward MCF-7 cells was mediated by CD44-caveolae-mediated endocytosis. Compared to Taxol and mPEG-ss-PTX, HA9.5-ss-PTX demonstrated improved tumor growth inhibition in vivo with a TIR of 83.27 ± 5.20%. It was concluded that HA9.5-ss-PTX achieved rapid intracellular release of PTX and enhanced its therapeutic efficacy, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. STATEMENT OF SIGNIFICANCE Polymer-drug conjugates, promising nanomedicines, still face some technical challenges including a lack of specific targeting and rapid intracellular drug release at the target site. In this manuscript we designed and constructed a novel bioconjugate HA-ss-PTX, which possessed coordinated dual characteristics of active tumor targeting and selective intracellular drug release. Redox-responsive disulfide bond was introduced to the conjugate to shield drug leakage in blood circulation and to achieve rapid drug release at tumor site in response to reductant like glutathione. Paclitaxel was selected as a model drug to be covalently attached to hyaluronic acid (HA) with various sizes to elucidate the structure-activity relationship and to address whether HA could substitute PEG as a carrier for polymeric conjugates. Based on a series of in vitro and in vivo experiments, HA-ss-PTX performed well in drug loading, cellular internalization, tumor targeting by entering tumor cells via CD44-caveolae-mediated endocytosis and rapidly release drug at target in the presence of GSH. One of the key issues in clinical oncology is to enhance drug delivery efficacy while minimizing side effects. The study indicated that this new polymeric conjugate system would be useful in delivering anticancer agents to improve therapeutic efficacy and to minimize adverse effects, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics.
Collapse
|
47
|
Chung MF, Chia WT, Wan WL, Lin YJ, Sung HW. Controlled Release of an Anti-inflammatory Drug Using an Ultrasensitive ROS-Responsive Gas-Generating Carrier for Localized Inflammation Inhibition. J Am Chem Soc 2015; 137:12462-5. [PMID: 26391111 DOI: 10.1021/jacs.5b08057] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation is associated with many diseases, in which activated inflammatory cells produce various reactive oxygen species (ROS), including H2O2. This work proposes an ultrasensitive ROS-responsive hollow microsphere (HM) carrier that contains an anti-inflammatory drug, an acid precursor consisting of ethanol and FeCl2, and sodium bicarbonate (SBC) as a bubble-generating agent. In cases of inflamed osteoarthritis, the H2O2 at low concentration diffuses through the HMs to oxidize their encapsulated ethanol in the presence of Fe(2+) by the Fenton reaction, establishing an acidic milieu. In acid, SBC decomposes to form CO2 bubbles, disrupting the shell wall of the HMs and releasing the anti-inflammatory drug to the problematic site, eventually protecting against joint destruction. These results reveal that the proposed HMs may uniquely exploit biologically relevant concentrations of H2O2 and thus be used for the site-specific delivery of therapeutics in inflamed tissues.
Collapse
Affiliation(s)
| | - Wei-Tso Chia
- Department of Orthopaedics, National Taiwan University Hospital Hsinchu Branch , Hsinchu 30013, Taiwan (ROC)
| | | | | | | |
Collapse
|