1
|
Sternstein C, Böhm TM, Fink J, Meyr J, Lüdemann M, Krug M, Kriukov K, Gurdap CO, Sezgin E, Ebert R, Seibel J. Development of an Effective Functional Lipid Anchor for Membranes (FLAME) for the Bioorthogonal Modification of the Lipid Bilayer of Mesenchymal Stromal Cells. Bioconjug Chem 2023; 34:1221-1233. [PMID: 37328799 DOI: 10.1021/acs.bioconjchem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The glycosylation of cellular membranes is crucial for the survival and communication of cells. As our target is the engineering of the glycocalyx, we designed a functionalized lipid anchor for the introduction into cellular membranes called Functional Lipid Anchor for MEmbranes (FLAME). Since cholesterol incorporates very effectively into membranes, we developed a twice cholesterol-substituted anchor in a total synthesis by applying protecting group chemistry. We labeled the compound with a fluorescent dye, which allows cell visualization. FLAME was successfully incorporated in the membranes of living human mesenchymal stromal cells (hMSC), acting as a temporary, nontoxic marker. The availability of an azido function─a bioorthogonal reacting group within the compound─enables the convenient coupling of alkyne-functionalized molecules, such as fluorophores or saccharides. After the incorporation of FLAME into the plasma membrane of living hMSC, we were able to successfully couple our molecule with an alkyne-tagged fluorophore via click reaction. This suggests that FLAME is useful for the modification of the membrane surface. Coupling FLAME with a galactosamine derivative yielded FLAME-GalNAc, which was incorporated into U2OS cells as well as in giant unilamellar vesicles (GUVs) and cell-derived giant plasma membrane vesicles (GPMVs). With this, we have shown that FLAME-GalNAc is a useful tool for studying the partitioning in the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. The molecular tool can also be used to analyze the diffusion behavior in the model and the cell membranes by fluorescence correlation spectroscopy (FCS).
Collapse
Affiliation(s)
- Christine Sternstein
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa-Maria Böhm
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica Meyr
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Lüdemann
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Kirill Kriukov
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Qian RC, Zhou ZR, Wu Y, Yang Z, Guo W, Li DW, Lu Y. Combination Cancer Treatment: Using Engineered DNAzyme Molecular Machines for Dynamic Inter- and Intracellular Regulation. Angew Chem Int Ed Engl 2022; 61:e202210935. [PMID: 36253586 PMCID: PMC10245287 DOI: 10.1002/anie.202210935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/05/2022]
Abstract
Despite the promise of combination cancer therapy, it remains challenging to develop targeted strategies that are nontoxic to normal cells. Here we report a combination therapeutic strategy based on engineered DNAzyme molecular machines that can promote cancer apoptosis via dynamic inter- and intracellular regulation. To achieve external regulation of T-cell/cancer cell interactions, we designed a DNAzyme-based molecular machine with an aptamer and an i-motif, as the MUC-1-selective aptamer allows the specific recognition of cancer cells. The i-motif is folded under the tumor acidic microenvironment, shortening the intercellular distance. As a result, T-cells are released by metal ion activated DNAzyme cleavage. To achieve internal regulation of mitochondria, we delivered another DNAzyme-based molecular machine with mitochondria-targeted peptides into cancer cells to induce mitochondria aggregation. Our strategy achieved an enhanced killing effect in zinc deficient cancer cells.
Collapse
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuting Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenglin Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijie Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Church DC, Pokorski JK. Cell Engineering with Functional Poly(oxanorbornene) Block Copolymers. Angew Chem Int Ed Engl 2020; 59:11379-11383. [PMID: 32281276 PMCID: PMC7482174 DOI: 10.1002/anie.202005148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Cell-based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring-opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non-covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of 1 O2 at the cell surface in response to red-light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell-surfaces.
Collapse
Affiliation(s)
- Derek C Church
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Church DC, Pokorski JK. Cell Engineering with Functional Poly(oxanorbornene) Block Copolymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
5
|
Gu Y, Liu B, Liu Q, Hang Y, Wang L, Brash JL, Chen G, Chen H. Modular Polymers as a Platform for Cell Surface Engineering: Promoting Neural Differentiation and Enhancing the Immune Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47720-47729. [PMID: 31793283 DOI: 10.1021/acsami.9b16882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulating cell behavior and cell fate are of great significance for basic biological research and cell therapy. Carbohydrates, as the key biomacromolecules, play a crucial role in regulating cell behavior. Herein, "modular" glycopolymers were synthesized by reversible addition-fragmentation chain transfer polymerization. These glycopolymers contain sugar units (glucose), anchoring units (cholesterol), "guest" units (adamantane) for host-guest interaction, and fluorescent labeling units (fluorescein). It was demonstrated that these glycopolymers can insert into cell membranes with high efficiency and their residence time on the membranes can be regulated by controlling their cholesterol content. Furthermore, the behavior of the engineered cells can be controlled by modifying with different functional β-cyclodextrins (CD-X) via host-guest interactions with the adamantane units. Host-guest interactions with the modular polymers were demonstrated using CD-RBITC (X = a rhodamine B isothiocyanate). The glycopolymers were modified with CD-S (X = seven sulfonate groups) and CD-M (X = seven mannose groups) and were then attached, respectively, to the surfaces of mouse embryonic stem cells for the promotion of neural differentiation and to the surfaces of cancer cells for the enhancement of the immune response. The combination of multiple anchors and host-guest interactions provides a widely applicable cell membrane modification platform for a variety of applications.
Collapse
Affiliation(s)
- Yan Gu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Bing Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - Qi Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Yingjie Hang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - Lei Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - John L Brash
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- School of Biomedical Engineering and Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S4L7 , Canada
| | - Gaojian Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Hong Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
6
|
De Vrieze J, Louage B, Deswarte K, Zhong Z, De Coen R, Van Herck S, Nuhn L, Kaas Frich C, Zelikin AN, Lienenklaus S, Sanders NN, Lambrecht BN, David SA, De Geest BG. Potent Lymphatic Translocation and Spatial Control Over Innate Immune Activation by Polymer-Lipid Amphiphile Conjugates of Small-Molecule TLR7/8 Agonists. Angew Chem Int Ed Engl 2019; 58:15390-15395. [PMID: 31397948 DOI: 10.1002/anie.201905687] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Uncontrolled systemic inflammatory immune triggering has hampered the clinical translation of several classes of small-molecule immunomodulators, such as imidazoquinoline TLR7/8 agonists for vaccine design and cancer immunotherapy. By taking advantage of the inherent serum-protein-binding property of lipid motifs and their tendency to accumulate in lymphoid tissue, we designed amphiphilic lipid-polymer conjugates that suppress systemic inflammation but provoke potent lymph-node immune activation. This work provides a rational basis for the design of lipid-polymer amphiphiles for optimized lymphoid targeting.
Collapse
Affiliation(s)
- Jana De Vrieze
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Benoit Louage
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium
| | - Zifu Zhong
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - Ruben De Coen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hanover Medical School, Hannover, Germany
| | - Niek N Sanders
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
7
|
De Vrieze J, Louage B, Deswarte K, Zhong Z, De Coen R, Van Herck S, Nuhn L, Kaas Frich C, Zelikin AN, Lienenklaus S, Sanders NN, Lambrecht BN, David SA, De Geest BG. Amphiphile Polymer‐Lipidkonjugate zur potenten lymphatischen Anreicherung von TLR7/8‐Agonisten ermöglichen eine örtlich begrenzte Aktivierung des angeborenen Immunsystems. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jana De Vrieze
- Faculteit Farmaceutische Wetenschappen Universiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| | - Benoit Louage
- Faculteit Farmaceutische Wetenschappen Universiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University VIB Center for Inflammation Research Technologiepark 71 9052 Gent Belgien
| | - Zifu Zhong
- Vakgroep Voeding, Genetica en Ethologie, Faculteit Diergeneeskunde Universiteit Gent Heidestraat 19 9820 Merelbeke Belgien
| | - Ruben De Coen
- Faculteit Farmaceutische Wetenschappen Universiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| | - Simon Van Herck
- Faculteit Farmaceutische Wetenschappen Universiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| | - Lutz Nuhn
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Camilla Kaas Frich
- Institut for Kemi Aarhus Universitet Langelandsgade 140 8000 Aarhus C Dänemark
| | | | - Stefan Lienenklaus
- Institut für Versuchstierkunde und Zentrales Tierlaboratorium Medizinische Hochschule Hannover Carl-Neuberg-Str.1 30625 Hannover Deutschland
| | - Niek N. Sanders
- Vakgroep Voeding, Genetica en Ethologie, Faculteit Diergeneeskunde Universiteit Gent Heidestraat 19 9820 Merelbeke Belgien
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University VIB Center for Inflammation Research Technologiepark 71 9052 Gent Belgien
- Department of Pulmonary Medicine Erasmus University Medical Center Rotterdam Netherlands
| | - Sunil A. David
- Department of Medicinal Chemistry University of Minnesota 2231 Sixth Street SE Minneapolis MN 55455 USA
| | - Bruno G. De Geest
- Faculteit Farmaceutische Wetenschappen Universiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| |
Collapse
|
8
|
Uvyn A, De Coen R, Gruijs M, Tuk CW, De Vrieze J, van Egmond M, De Geest BG. Efficient Innate Immune Killing of Cancer Cells Triggered by Cell‐Surface Anchoring of Multivalent Antibody‐Recruiting Polymers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annemiek Uvyn
- Department of Pharmaceutics Ghent University Belgium
| | - Ruben De Coen
- Department of Pharmaceutics Ghent University Belgium
| | - Mandy Gruijs
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | - Cees W. Tuk
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | |
Collapse
|
9
|
Uvyn A, De Coen R, Gruijs M, Tuk CW, De Vrieze J, van Egmond M, De Geest BG. Efficient Innate Immune Killing of Cancer Cells Triggered by Cell‐Surface Anchoring of Multivalent Antibody‐Recruiting Polymers. Angew Chem Int Ed Engl 2019; 58:12988-12993. [DOI: 10.1002/anie.201905093] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Annemiek Uvyn
- Department of Pharmaceutics Ghent University Belgium
| | - Ruben De Coen
- Department of Pharmaceutics Ghent University Belgium
| | - Mandy Gruijs
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | - Cees W. Tuk
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | |
Collapse
|
10
|
Zhou MN, Delaveris CS, Kramer JR, Kenkel JA, Engleman EG, Bertozzi CR. N-Carboxyanhydride Polymerization of Glycopolypeptides That Activate Antigen-Presenting Cells through Dectin-1 and Dectin-2. Angew Chem Int Ed Engl 2018; 57:3137-3142. [PMID: 29370452 PMCID: PMC5842139 DOI: 10.1002/anie.201713075] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 12/20/2022]
Abstract
The C-type lectins dectin-1 and dectin-2 contribute to innate immunity against microbial pathogens by recognizing their foreign glycan structures. These receptors are promising targets for vaccine development and cancer immunotherapy. However, currently available agonists are heterogeneous glycoconjugates and polysaccharides from natural sources. Herein, we designed and synthesized the first chemically defined ligands for dectin-1 and dectin-2. They comprised glycopolypeptides bearing mono-, di-, and trisaccharides and were built through polymerization of glycosylated N-carboxyanhydrides. Through this approach, we achieved glycopolypeptides with high molecular weights and low dispersities. We identified structures that elicit a pro-inflammatory response through dectin-1 or dectin-2 in antigen-presenting cells. With their native proteinaceous backbones and natural glycosidic linkages, these agonists are attractive for translational applications.
Collapse
Affiliation(s)
- Matthew N. Zhou
- Department of Chemistry, Stanford University, Stanford, Ca 94305
| | | | - Jessica R. Kramer
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Justin A. Kenkel
- Department of Pathology and Medicine, Stanford University, Stanford, CA 94305
| | - Edgar G. Engleman
- Department of Pathology and Medicine, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, Ca 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
11
|
Zhou MN, Delaveris CS, Kramer JR, Kenkel JA, Engleman EG, Bertozzi CR. N
‐Carboxyanhydride Polymerization of Glycopolypeptides That Activate Antigen‐Presenting Cells through Dectin‐1 and Dectin‐2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew N. Zhou
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Jessica R. Kramer
- Department of Bioengineering University of Utah Salt Lake City UT 84112 USA
| | - Justin A. Kenkel
- Departments of Pathology and Medicine Stanford University Stanford CA 94305 USA
| | - Edgar G. Engleman
- Departments of Pathology and Medicine Stanford University Stanford CA 94305 USA
| | - Carolyn R. Bertozzi
- Department of Chemistry Stanford University Stanford CA 94305 USA
- Howard Hughes Medical Institute Stanford University Stanford CA 94305 USA
| |
Collapse
|
12
|
Stuhr‐Hansen N, Vagianou C, Blixt O. Synthesis of BODIPY‐Labeled Cholesterylated Glycopeptides by Tandem Click Chemistry for Glycocalyxification of Giant Unilamellar Vesicles (GUVs). Chemistry 2017; 23:9472-9476. [DOI: 10.1002/chem.201702104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolai Stuhr‐Hansen
- Department of Chemistry, Chemical BiologyUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Charikleia‐Despoina Vagianou
- Department of Chemistry, Chemical BiologyUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Ola Blixt
- Department of Chemistry, Chemical BiologyUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
13
|
Russo L, Cipolla L. Glycomics: New Challenges and Opportunities in Regenerative Medicine. Chemistry 2016; 22:13380-8. [DOI: 10.1002/chem.201602156] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Russo
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milano Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milano Italy
| |
Collapse
|
14
|
Stuhr-Hansen N, Madl J, Villringer S, Aili U, Römer W, Blixt O. Synthesis of Cholesterol-Substituted Glycopeptides for Tailor-Made Glycocalyxification of Artificial Membrane Systems. Chembiochem 2016; 17:1403-6. [PMID: 27168414 DOI: 10.1002/cbic.201600258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 11/07/2022]
Abstract
Synthetic minimal membrane systems are extremely useful for better understanding of complex cellular structures and cell surface processes. We have developed a facile method for synthesis of cholesterylated peptides, each bearing a carbohydrate moiety and a fluorescent tag. The position of the cholesterol moiety on the peptide can be controlled by using a new Fmoc-protected cholesterol-triazole-lysine group, which we constructed by means of solid-phase peptide synthesis. We succeeded in integrating the glyco modules into giant unilamellar vesicles by electroformation or infusion in buffer solution. The glyco-decorated liposomes were recognized by a lectin and had unique topological membrane features. In conclusion, this work is a proof of principle for the functionalization of artificial membranes with a primitive synthetic glycocalyx useful for studying carbohydrate-protein interactions on a simplified cell-like membrane surface.
Collapse
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Josef Madl
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Sarah Villringer
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Ulrika Aili
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Winfried Römer
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
15
|
Liu Q, Xue H, Gao J, Cao L, Chen G, Chen H. Synthesis of lipo-glycopolymers for cell surface engineering. Polym Chem 2016. [DOI: 10.1039/c6py01788f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel synthetic lipo-glycopolymer was inserted into cell membranes for cell surface engineering.
Collapse
Affiliation(s)
- Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hui Xue
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Jinbo Gao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|