1
|
Zhang Y, Huang Q, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Wang F. Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404431. [PMID: 39921286 PMCID: PMC11884534 DOI: 10.1002/advs.202404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Bioorthogonal catalysis has revolutionized the field of chemical biology by enabling selective and controlled chemical transformations within living systems. Research has converged on the development of innovative catalyst scaffolds, seeking to broaden the scope of bioorthogonal reactions, boost their efficiency, and surpass the limitations of conventional catalysts. This review provides a comprehensive overview of the latest advancements in bioorthogonal catalyst research based on different scaffold materials. Through an in-depth analysis of fabrication strategies and applications of bioorthogonal catalysts, this review discusses the design principles, mechanisms of action, and applications of these novel catalysts in chemical biology. Current challenges and future directions in exploring the scaffold diversity are also highlighted. The integration of diverse catalyst scaffolds offers exciting prospects for precise manipulation of biomolecules and the development of innovative therapeutic strategies in chemical biology. In addition, the review fills in the gaps in previous reviews, such as in fully summarizing the presented scaffold materials applied in bioorthogonal catalysts, emphasizing the potential impact on advancing bioorthogonal chemistry, and offering prospects for future development in this field.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qizhen Huang
- School of Public HealthNantong UniversityNantong226019China
| | - Fang Lei
- School of Public HealthNantong UniversityNantong226019China
| | - Wanlong Qian
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Chengfeng Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qi Wang
- School of Public HealthNantong UniversityNantong226019China
| | - Chaoqun Liu
- School of PharmacyHenan UniversityKaifeng475004China
| | - Haiwei Ji
- School of Public HealthNantong UniversityNantong226019China
| | - Faming Wang
- School of Public HealthNantong UniversityNantong226019China
| |
Collapse
|
2
|
Jin Z, Jiang L, He Q. Critical learning from industrial catalysis for nanocatalytic medicine. Nat Commun 2024; 15:3857. [PMID: 38719843 PMCID: PMC11079063 DOI: 10.1038/s41467-024-48319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Systematical and critical learning from industrial catalysis will bring inspiration for emerging nanocatalytic medicine, but the relevant knowledge is quite limited so far. In this review, we briefly summarize representative catalytic reactions and corresponding catalysts in industry, and then distinguish the similarities and differences in catalytic reactions between industrial and medical applications in support of critical learning, deep understanding, and rational designing of appropriate catalysts and catalytic reactions for various medical applications. Finally, we summarize/outlook the present and potential translation from industrial catalysis to nanocatalytic medicine. This review is expected to display a clear picture of nanocatalytic medicine evolution.
Collapse
Affiliation(s)
- Zhaokui Jin
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, China
| | - Lingdong Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qianjun He
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Huang R, Hirschbiegel CM, Lehot V, Liu L, Cicek YA, Rotello VM. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300943. [PMID: 37042795 PMCID: PMC11234510 DOI: 10.1002/adma.202300943] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The incorporation of transition metal catalysts (TMCs) into nanoscaffolds generates nanocatalysts that replicate key aspects of enzymatic behavior. The TMCs can access bioorthogonal chemistry unavailable to living systems. These bioorthogonal nanozymes can be employed as in situ "factories" for generating bioactive molecules where needed. The generation of effective bioorthogonal nanozymes requires co-engineering of the TMC and the nanometric scaffold. This review presents an overview of recent advances in the field of bioorthogonal nanozymes, focusing on modular design aspects of both nanomaterial and catalyst and how they synergistically work together for in situ uncaging of imaging and therapeutic agents.
Collapse
Affiliation(s)
- Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Victor Lehot
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
5
|
Keum C, Hirschbiegel CM, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical applications. NANO CONVERGENCE 2023; 10:42. [PMID: 37695365 PMCID: PMC10495311 DOI: 10.1186/s40580-023-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.
Collapse
Affiliation(s)
- Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soham Chakraborty
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Sousa-Castillo A, Mariño-López A, Puértolas B, Correa-Duarte MA. Nanostructured Heterogeneous Catalysts for Bioorthogonal Reactions. Angew Chem Int Ed Engl 2023; 62:e202215427. [PMID: 36479797 DOI: 10.1002/anie.202215427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions. The synthetic strategies of Pd-, Au-, and Cu-based materials, their applicability in the activation of caged fluorophores and prodrugs, and the possibilities of using external stimuli to release therapeutic substances at a specific location in a diseased tissue are discussed. Finally, we highlight frontiers in the field, identifying challenges, and propose directions for future development in this emerging field.
Collapse
|
7
|
Zhang L, Sang Y, Liu Z, Wang W, Liu Z, Deng Q, You Y, Ren J, Qu X. Liquid Metal as Bioinspired and Unusual Modulator in Bioorthogonal Catalysis for Tumor Inhibition Therapy. Angew Chem Int Ed Engl 2023; 62:e202218159. [PMID: 36578232 DOI: 10.1002/anie.202218159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Bioorthogonal catalysis mediated by Pd-based transition metal catalysts has sparked increasing interest in combating diseases. However, the catalytic and therapeutic efficiency of current Pd0 catalysts is unsatisfactory. Herein, inspired by the concept that ligands around metal sites could enable enzymes to catalyze astonishing reactions by changing their electronic environment, a LM-Pd catalyst with liquid metal (LM) as an unusual modulator has been designed to realize efficient bioorthogonal catalysis for tumor inhibition. The LM matrix can serve as a "ligand" to afford an electron-rich environment to stabilize the active Pd0 and promote nucleophilic turnover of the π-allylpalladium species to accelerate the uncaging process. Besides, the photothermal properties of LM can lead to the enhanced removal of tumor cells by photo-enhanced catalysis and photothermal effect. We believe that our work will broaden the application of LM and motivate the design of bioinspired bioorthogonal catalysts.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yanjuan Sang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China
| | - Zhenqi Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Wenjie Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhengwei Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Qingqing Deng
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| |
Collapse
|
8
|
Zhang X, Lin S, Huang R, Gupta A, Fedeli S, Cao-Milán R, Luther DC, Liu Y, Jiang M, Li G, Rondon B, Wei H, Rotello VM. Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics. J Am Chem Soc 2022; 144:12893-12900. [PMID: 35786910 DOI: 10.1021/jacs.2c04571] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bioorthogonal catalysis using transition-metal catalysts (TMCs) provides a toolkit for the in situ generation of imaging and therapeutic agents in biological environments. Integrating TMCs with nanomaterials mimics key properties of natural enzymes, providing bioorthogonal "nanozymes". ZnS nanoparticles provide a platform for bioorthogonal nanozymes using ruthenium catalysts embedded in self-assembled monolayers on the particle surface. These nanozymes uncage allylated profluorophores and prodrugs. The ZnS core combines the non-toxicity and degradability with the enhancement of Ru catalysis through the release of thiolate surface ligands that accelerate the rate-determining step in the Ru-mediated deallylation catalytic cycle. The maximum rate of reaction (Vmax) increases ∼2.5-fold as compared to the non-degradable gold nanoparticle analogue. The therapeutic potential of these bioorthogonal nanozymes is demonstrated by activating a chemotherapy drug from an inactive prodrug with efficient killing of cancer cells.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Shichao Lin
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States.,Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Gengtan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Brayan Rondon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
In Situ Prodrug Activation by an Affibody‐Ruthenium Catalyst Hybrid for HER2‐Targeted Chemotherapy. Angew Chem Int Ed Engl 2022; 61:e202202855. [DOI: 10.1002/anie.202202855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/07/2022]
|
10
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
11
|
In Situ Prodrug Activation by an Affibody–Ruthenium Catalyst Hybrid for HER2‐Targeted Chemotherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev 2021; 179:114032. [PMID: 34736989 DOI: 10.1016/j.addr.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Employing natural cells as drug carriers has been a hotspot in recent years, attributing to their biocompatibility and inherent dynamic properties. In the earlier stage, cells were mainly used as vehicles by virtue of their lipid-delimited compartmentalized structures and native membrane proteins. The scope emphasis was 'what cell displays' instead of 'how cell changes'. More recently, the dynamic behaviours, such as changes in surface protein patterns, morphologies, polarities and in-situ generation of therapeutics, of natural cells have drawn more attention for developing advanced drug delivery systems by fully taking advantage of these processes. In this review, we revolve around the dynamic cellular transformation behaviours which facilitate targeted therapy. Cellular deformation in geometry shape, spitting smaller vesicles, activation of antigen present cells, polarization between distinct phenotypes, local production of therapeutics, and hybridization with synthetic materials are involved. Other than focusing on the traditional delivery of concrete cargoes, more functional 'handles' that are derived from the cells themselves are introduced, such as information exchange, cellular communication and interactions between cell and extracellular environment.
Collapse
|
13
|
Zhen Y, Liu D, Zhou M, Lin Z, Jin S, Chen S, Hu D, Zhu M. Polystyrene Microspheres Decorated with Au
4
Cu
5
Nanoclusters and their Application in Catalytic Reduction of 4‐Nitrophenol. ChemistrySelect 2021. [DOI: 10.1002/slct.202102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yaru Zhen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/ Organic Hybrid Functionalized Materials Anhui University Hefei Anhui People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, Ministry of Education Hefei Anhui People's Republic of China
| | - Danyu Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/ Organic Hybrid Functionalized Materials Anhui University Hefei Anhui People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, Ministry of Education Hefei Anhui People's Republic of China
| | - Manman Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/ Organic Hybrid Functionalized Materials Anhui University Hefei Anhui People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, Ministry of Education Hefei Anhui People's Republic of China
| | - Zhenzhen Lin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/ Organic Hybrid Functionalized Materials Anhui University Hefei Anhui People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, Ministry of Education Hefei Anhui People's Republic of China
| | - Shan Jin
- Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 People's Republic of China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 People's Republic of China
| | - Daqiao Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/ Organic Hybrid Functionalized Materials Anhui University Hefei Anhui People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, Ministry of Education Hefei Anhui People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/ Organic Hybrid Functionalized Materials Anhui University Hefei Anhui People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, Ministry of Education Hefei Anhui People's Republic of China
| |
Collapse
|
14
|
Kim S, Kumari N, Lim J, Dubbu S, Kumar A, Lee IS. Silica Jar‐with‐Lid as Chemo‐Enzymatic Nano‐Compartment for Enantioselective Synthesis inside Living Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seonock Kim
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jongwon Lim
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sateesh Dubbu
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE) Yonsei University Seoul 03722 South Korea
| |
Collapse
|
15
|
Kim S, Kumari N, Lim J, Dubbu S, Kumar A, Lee IS. Silica Jar-with-Lid as Chemo-Enzymatic Nano-Compartment for Enantioselective Synthesis inside Living Cells. Angew Chem Int Ed Engl 2021; 60:16337-16342. [PMID: 34041834 DOI: 10.1002/anie.202103165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Indexed: 12/17/2022]
Abstract
Nanodevices, harvesting the power of synthetic catalysts and enzymes to perform enantioselective synthesis inside cell, have never been reported. Here, we synthesized round bottom jar-like silica nanostructures (SiJARs) with a chemo-responsive metal-silicate lid. This was isolated as an intermediate structure during highly controlled solid-state nanocrystal-conversion at the arc-section of silica shell. Different catalytic noble metals (Pt, Pd, Ru) were selectively modified on the lid-section through galvanic reactions. And, lid aperture-opening was regulated by mild acidic conditions or intracellular environment which accommodated the metal nanocrystals and enzymes, and in turn created an open-mouth nanoreactor. Distinct from the free enzymes, SiJARs performed asymmetric aldol reactions with high activity and enantioselectivity (yield >99 %, ee=95 %) and also functioned as the artificial catalytic organelles inside living cells. This work bridges the enormous potential of sophisticated nanocrystal-conversion chemistry and advanced platforms for new-to-nature catalysis.
Collapse
Affiliation(s)
- Seonock Kim
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jongwon Lim
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sateesh Dubbu
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
16
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
17
|
Nanostructured Palladacycle and its Decorated Ag-NP Composite: Synthesis, Morphological Aspects, Characterization, Quantum Chemical Calculation and Antimicrobial Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Wang Z, Niu J, Zhao C, Wang X, Ren J, Qu X. A Bimetallic Metal–Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self‐Sufficient Gene Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaohui Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
19
|
Wang Z, Niu J, Zhao C, Wang X, Ren J, Qu X. A Bimetallic Metal-Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self-Sufficient Gene Therapy. Angew Chem Int Ed Engl 2021; 60:12431-12437. [PMID: 33739589 DOI: 10.1002/anie.202016442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Although chemotherapy is one of the most widely used cancer treatments, there are serious side effects, drug resistance, and secondary metastasis. To address these problems, herein we designed a bimetallic metal-organic framework (MOF) encapsulated with DNAzyme for co-triggered in situ cancer drug synthesis and DNAzyme-based gene therapy. Once in cancer cells, MOFs would disassemble and liberate copper ions, zinc ions, and DNAzyme under the acidic environment of lysosomes. Copper ions can catalyze the synthesis of the chemotherapeutic drug through copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction after being reduced to CuI ; zinc ions act as the cofactor to activate the cleavage activity of DNAzyme. The anticancer drug is synthesized intracellularly and can kill cancer cells on site to minimize side effects to normal organisms. The activated DNAzyme starts gene therapy to inhibit tumor proliferation and metastasis by targeting and cleaving oncogene substrates.
Collapse
Affiliation(s)
- Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaohui Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
20
|
"One-stitch" bioorthogonal prodrug activation based on cross-linked lipoic acid nanocapsules. Biomaterials 2021; 273:120823. [PMID: 33930738 DOI: 10.1016/j.biomaterials.2021.120823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 01/23/2023]
Abstract
Bioorthogonal prodrug activation is fascinating but suffers from staggered administration of prodrug and trigger, which would not only reduce the therapeutic effect but bring great inconvenience for clinical application. Herein, we report a new cross-linked lipoic acid nanocapsules (cLANCs) based two-component bioorthogonal nanosystem for "one-stitch" prodrug activation. Due to the reversible stability of cLANCs, the loaded prodrug and trigger cannot release in advance while can react upon arrival in the tumor tissue. Moreover, the cLANCs would be degraded into dihydrolipoic acid in tumor cells to potentiate the anticancer effect of the drug synthesized in situ. The data showed that the new bioorthogonal system held a killing effect 1.63 times higher than that of parent drug 3 against human colorectal tumor cells (HT29) and a tumor inhibitory rate 34.2% higher than that of 3 against HT29 tumor xenograft model with negligible side effects. The biodistribution study showed that the "one-stitch" prodrug activation exhibited a selective accumulation of 3 in the tumor tissue compared with free 3 group (34.2 μg vs 3.56 μg of 3/g of tissue). This two-component bioorthogonal nanosystem based on cross-linked lipoic acid nanocapsules constitutes the first example of "one-stitch" bioorthogonal prodrug activation.
Collapse
|
21
|
Destito P, Vidal C, López F, Mascareñas JL. Transition Metal‐Promoted Reactions in Aqueous Media and Biological Settings. Chemistry 2021; 27:4789-4816. [DOI: 10.1002/chem.202003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
22
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
23
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020; 60:4133-4141. [DOI: 10.1002/anie.202013366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
24
|
Zhang X, Liu Y, Gopalakrishnan S, Castellanos-Garcia L, Li G, Malassiné M, Uddin I, Huang R, Luther DC, Vachet RW, Rotello VM. Intracellular Activation of Bioorthogonal Nanozymes through Endosomal Proteolysis of the Protein Corona. ACS NANO 2020; 14:4767-4773. [PMID: 32227914 PMCID: PMC8297610 DOI: 10.1021/acsnano.0c00629] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bioorthogonal activation of prodrugs provides a strategy for on-demand on-site production of therapeutics. Intracellular activation provides a strategy to localize therapeutics, potentially minimizing off-target effects. To this end, nanoparticles embedded with transition metal catalysts (nanozymes) were engineered to generate either "hard" irreversible or "soft" reversible coronas in serum. The hard corona induced nanozyme aggregation, effectively inhibiting nanozyme activity, whereas only modest loss of activity was observed with the nonaggregating soft corona nanozymes. In both cases complete activity was restored by treatment with proteases. Intracellular activity mirrored this reactivation: endogenous proteases in the endosome provided intracellular activation of both nanozymes. The role of intracellular proteases in nanozyme reactivation was verified through treatment of the cells with protease inhibitors, which prevented reactivation. This study demonstrates the use of intracellular proteolysis as a strategy for localization of therapeutic generation to within cells.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Laura Castellanos-Garcia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Gengtan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Morgane Malassiné
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- École Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, Mulhouse 68200, France
| | - Imad Uddin
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- Corresponding Author:
| |
Collapse
|
25
|
Dai N, Zhao H, Qi R, Chen Y, Lv F, Liu L, Wang S. Fluorescent and Biocompatible Ruthenium-Coordinated Oligo(p-phenylenevinylene) Nanocatalysts for Transfer Hydrogenation in the Mitochondria of Living Cells. Chemistry 2020; 26:4489-4495. [PMID: 32073730 DOI: 10.1002/chem.201905448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2020] [Indexed: 12/21/2022]
Abstract
It is challenging to design metal catalysts for in situ transformation of endogenous biomolecules with good performance inside living cells. Herein, we report a multifunctional metal catalyst, ruthenium-coordinated oligo(p-phenylenevinylene) (OPV-Ru), for intracellular catalysis of transfer hydrogenation of nicotinamide adenine dinucleotide (NAD+ ) to its reduced format (NADH). Owing to its amphiphilic characteristic, OPV-Ru possesses good self-assembly capability in water to form nanoparticles through hydrophobic interaction and π-π stacking, and numerous positive charges on the surface of nanoparticles displayed a strong electrostatic interaction with negatively charged substrate molecules, creating a local microenvironment for enhancing the catalysis efficiency in comparison to dispersed catalytic center molecule (TOF value was enhanced by about 15 fold). OPV-Ru could selectively accumulate in the mitochondria of living cells. Benefiting from its inherent fluorescence, the dynamic distribution in cells and uptake behavior of OPV-Ru could be visualized under fluorescence microscopy. This work represents the first demonstration of a multifunctional organometallic complex catalyzing natural hydrogenation transformation in specific subcellular compartments of living cells with excellent performance, fluorescent imaging ability, specific mitochondria targeting and good chemoselectivity with high catalysis efficiency.
Collapse
Affiliation(s)
- Nan Dai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanyan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Mann G, Satish G, Meledin R, Vamisetti GB, Brik A. Palladium-Mediated Cleavage of Proteins with Thiazolidine-Modified Backbone in Live Cells. Angew Chem Int Ed Engl 2019; 58:13540-13549. [PMID: 31402546 DOI: 10.1002/anie.201906545] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Chemical protein synthesis and biorthogonal modification chemistries allow production of unique proteins for a range of biological studies. Bond-forming reactions for site-selective protein labeling are commonly used in these endeavors. Selective bond-cleavage reactions, however, are much less explored and still pose a great challenge. In addition, most of studies with modified proteins prepared by either total synthesis or semisynthesis have been applied mainly for in vitro experiments with very limited extension to live cells. Reported here is an approach for studying uniquely modified proteins containing a traceless cell delivery unit and palladium-based cleavable element for chemical activation, and monitoring the effect of these proteins in live cells. This approach is demonstrated for the synthesis of a caged ubiquitin-aldehyde, which was decaged for the inhibition of deubiquitinases in live cells.
Collapse
Affiliation(s)
- Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Roman Meledin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
27
|
Mann G, Satish G, Meledin R, Vamisetti GB, Brik A. Palladium‐Mediated Cleavage of Proteins with Thiazolidine‐Modified Backbone in Live Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guy Mann
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Gandhesiri Satish
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Roman Meledin
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ganga B. Vamisetti
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
28
|
Wang F, Zhang Y, Liu Z, Du Z, Zhang L, Ren J, Qu X. A Biocompatible Heterogeneous MOF-Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. Angew Chem Int Ed Engl 2019; 58:6987-6992. [PMID: 30888728 DOI: 10.1002/anie.201901760] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 01/05/2023]
Abstract
As a typical bioorthogonal reaction, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been used for drug design and synthesis. However, for localized drug synthesis, it is important to be able to determine where the CuAAC reaction occurs in living cells. In this study, we constructed a heterogeneous copper catalyst on a metal-organic framework that could preferentially accumulate in the mitochondria of living cells. Our system enabled the localized synthesis of drugs through a site-specific CuAAC reaction in mitochondria with good biocompatibility. Importantly, the subcellular catalytic process for localized drug synthesis avoided the problems of the delivery and distribution of toxic molecules. In vivo tumor therapy experiments indicated that the localized synthesis of resveratrol-derived drugs led to greater antitumor efficacy and minimized side effects usually associated with drug delivery and distribution.
Collapse
Affiliation(s)
- Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
29
|
Wang F, Zhang Y, Liu Z, Du Z, Zhang L, Ren J, Qu X. A Biocompatible Heterogeneous MOF–Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
30
|
Das R, Landis RF, Tonga GY, Cao-Milán R, Luther DC, Rotello VM. Control of Intra- versus Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes. ACS NANO 2019; 13:229-235. [PMID: 30516966 PMCID: PMC6779054 DOI: 10.1021/acsnano.8b05370] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bioorthogonal transformation of prodrugs and profluorophores using transition metal catalysts (TMCs) offers a promising strategy for therapeutic and imaging applications. Here, we report the surface engineering of nanoparticles to specifically localize gold nanoparticles (AuNPs) with encapsulated TMCs (nanozymes) to either the inside or outside of cells. The ability to control nanozyme localization and hence activity was demonstrated by the activation of pro-fluorophores and prodrugs intra- and extracellularly, establishing the potential of engineered nanozyme platforms for both diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Riddha Das
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | | | | | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
31
|
Adam C, Pérez‐López AM, Hamilton L, Rubio‐Ruiz B, Bray TL, Sieger D, Brennan PM, Unciti‐Broceta A. Bioorthogonal Uncaging of the Active Metabolite of Irinotecan by Palladium-Functionalized Microdevices. Chemistry 2018; 24:16783-16790. [PMID: 30187973 PMCID: PMC6282958 DOI: 10.1002/chem.201803725] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 12/20/2022]
Abstract
SN-38, the active metabolite of irinotecan, is released upon liver hydrolysis to mediate potent antitumor activity. Systemic exposure to SN-38, however, also leads to serious side effects. To reduce systemic toxicity by controlling where and when SN-38 is generated, a new prodrug was specifically designed to be metabolically stable and undergo rapid palladium-mediated activation. Blocking the phenolic OH of SN-38 with a 2,6-bis(propargyloxy)benzyl group led to significant reduction of cytotoxic activity (up to 44-fold). Anticancer properties were swiftly restored in the presence of heterogeneous palladium (Pd) catalysts to kill colorectal cancer and glioma cells, proving the efficacy of this novel masking strategy for aromatic hydroxyls. Combination with a Pd-activated 5FU prodrug augmented the antiproliferative potency of the treatment, while displaying no activity in the absence of the Pd source, which illustrates the benefit of achieving controlled release of multiple approved therapeutics-sequentially or simultaneously-by the same bioorthogonal catalyst to increase anticancer activity.
Collapse
Affiliation(s)
- Catherine Adam
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Ana M. Pérez‐López
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Lloyd Hamilton
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Belén Rubio‐Ruiz
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Thomas L. Bray
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Dirk Sieger
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Paul M. Brennan
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Asier Unciti‐Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| |
Collapse
|