1
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202209396. [PMID: 36538739 PMCID: PMC9868116 DOI: 10.1002/anie.202209396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 12/24/2022]
Abstract
We present a supramolecular approach to catalyzing photochemical CO2 reduction through second-sphere porosity and charge effects. An iron porphyrin box (PB) bearing 24 cationic groups, FePB-2(P), was made via post-synthetic modification of an alkyne-functionalized supramolecular synthon. FePB-2(P) promotes the photochemical CO2 reduction reaction (CO2 RR) with 97 % selectivity for CO product, achieving turnover numbers (TON) exceeding 7000 and initial turnover frequencies (TOFmax ) reaching 1400 min-1 . The cooperativity between porosity and charge results in a 41-fold increase in activity relative to the parent Fe tetraphenylporphyrin (FeTPP) catalyst, which is far greater than analogs that augment catalysis through porosity (FePB-3(N), 4-fold increase) or charge (Fe p-tetramethylanilinium porphyrin (Fe-p-TMA), 6-fold increase) alone. This work establishes that synergistic pendants in the secondary coordination sphere can be leveraged as a design element to augment catalysis at primary active sites within confined spaces.
Collapse
Affiliation(s)
- Lun An
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Peter T Smith
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Mina R Narouz
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
| |
Collapse
|
2
|
Lee HG, Dhamija A, Das CK, Park KM, Chang YT, Schäfer LV, Kim K. Synthetic Monosaccharide Channels: Size-Selective Transmembrane Transport of Glucose and Fructose Mediated by Porphyrin Boxes. Angew Chem Int Ed Engl 2023; 62:e202214326. [PMID: 36382990 DOI: 10.1002/anie.202214326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Here we report synthetic monosaccharide channels built with shape-persistent organic cages, porphyrin boxes (PBs), that allow facile transmembrane transport of glucose and fructose through their windows. PBs show a much higher transport rate for glucose and fructose over disaccharides such as sucrose, as evidenced by intravesicular enzyme assays and molecular dynamics simulations. The transport rate can be modulated by changing the length of the alkyl chains decorating the cage windows. Insertion of a linear pillar ligand into the cavity of PBs blocks the monosaccharide transport. In vitro cell experiment shows that PBs transport glucose across the living-cell membrane and enhance cell viability when the natural glucose transporter GLUT1 is blocked. Time-dependent live-cell imaging and MTT assays confirm the cyto-compatibility of PBs. The monosaccharide-selective transport ability of PBs is reminiscent of natural glucose transporters (GLUTs), which are crucial for numerous biological functions.
Collapse
Affiliation(s)
- Hong-Guen Lee
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Chandan K Das
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Daegu, 42472, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO
2
Reduction**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lun An
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Patricia De La Torre
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Peter T. Smith
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Mina R. Narouz
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
- Department of Molecular and Cell Biology University of California, Berkeley 94720-1460 Berkeley, CA USA
| |
Collapse
|
4
|
Pfrunder MC, Marshall DL, Poad BLJ, Stovell EG, Loomans BI, Blinco JP, Blanksby SJ, McMurtrie JC, Mullen KM. Exploring the Gas-Phase Formation and Chemical Reactivity of Highly Reduced M 8 L 6 Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202212710. [PMID: 36102176 PMCID: PMC9827999 DOI: 10.1002/anie.202212710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.
Collapse
Affiliation(s)
- Michael C. Pfrunder
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - David L. Marshall
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Berwyck L. J. Poad
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Ethan G. Stovell
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Benjamin I. Loomans
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - James P. Blinco
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Stephen J. Blanksby
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - John C. McMurtrie
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Kathleen M. Mullen
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| |
Collapse
|
5
|
Thomas CM, Liang W, Preston D, Doonan CJ, White NG. Post-Synthetic Modification of a Porous Hydrocarbon Cage to Give a Discrete Co 24 Organometallic Complex. Chemistry 2022; 28:e202200958. [PMID: 35863888 PMCID: PMC9544953 DOI: 10.1002/chem.202200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Abstract
A new alkyne-based hydrocarbon cage was synthesized in high overall yield using alkyne-alkyne coupling in the cage forming step. The cage is porous and displays a moderately high BET surface area (546 m2 g-1 ). The cage loses crystallinity on activation and thus is porous in its amorphous form, while very similar cages have been either non-porous, or retained crystallinity on activation. Reaction of the cage with Co2 (CO)8 results in exhaustive metalation of its 12 alkyne groups to give the Co24 (CO)72 adduct of the cage in good yield.
Collapse
Affiliation(s)
- Chriso M. Thomas
- Research School of ChemistryThe Australian National UniversityCanberraACTAustralia
| | - Weibin Liang
- Department of Chemistry and Centre for Advanced MaterialsThe University of AdelaideSAAustralia
| | - Dan Preston
- Research School of ChemistryThe Australian National UniversityCanberraACTAustralia
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced MaterialsThe University of AdelaideSAAustralia
| | - Nicholas G. White
- Research School of ChemistryThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
6
|
Chen C, Yan X, Wu Y, Liu S, Zhang X, Sun X, Zhu Q, Wu H, Han B. Boosting the Productivity of Electrochemical CO 2 Reduction to Multi-Carbon Products by Enhancing CO 2 Diffusion through a Porous Organic Cage. Angew Chem Int Ed Engl 2022; 61:e202202607. [PMID: 35302287 DOI: 10.1002/anie.202202607] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 02/02/2023]
Abstract
Electroreduction of CO2 into valuable fuels and feedstocks offers a promising way for CO2 utilization. However, the commercialization is limited by the low productivity. Here, we report a strategy to enhance the productivity of CO2 electroreduction by improving diffusion of CO2 to the surface of catalysts using porous organic cages (POCs) as an additive. It was noted that the Faradaic efficiency (FE) of C2+ products could reach 76.1 % with a current density of 1.7 A cm-2 when Cu-nanorod(nr)/CC3 (one of the POCs) was used, which were much higher than that using Cu-nr. Detailed studies demonstrated that the hydrophobic pores of CC3 can adsorb a large amount of CO2 for the reaction, and the diffusion of CO2 in the CC3 to the nanocatalyst surface is easier than that in the liquid electrolyte. Thus, more CO2 molecules make contact with the nanocatalysts in the presence of CC3, enhancing CO2 reduction and inhibiting generation of H2 .
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, 515063, China
| | - Xiudong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing, 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
7
|
Lei K, Yu Xia B. Electrocatalytic CO
2
Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022; 28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Lei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
8
|
Juthathan M, Chantarojsiri T, Tuntulani T, Leeladee P. Atomic- and Molecular-Level Modulation of Dispersed Active Sites for Electrocatalytic CO2 Reduction. Chem Asian J 2022; 17:e202200237. [PMID: 35417092 DOI: 10.1002/asia.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Indexed: 11/06/2022]
Abstract
Global climate changes have been impacted by the excessive CO 2 emission, which exacerbates the environmental problems. Electrochemical CO 2 reduction (CO 2 RR) offers the solution for utilizing CO 2 as feedstocks for value-added products while potentially mitigating the negative effects. Owing to the extreme stability of CO 2 , selectivity and efficiency are crucial factors in the development of CO 2 RR electrocatalysts. Recently, single-atom catalysts have emerged as potential electrocatalysts for CO 2 reduction. They generally comprise of atomically- and molecularly dispersed active sites over conductive supports, which enable atomic-level and molecular-level modulations. In this minireview, catalyst preparations, principle of modulations, and reaction mechanisms are summarised together with related recent advances. The atomic-level modulations are first discussed, followed by the molecular-level modulations. Finally, the current challenges and future opportunities are provided as guidance for further developments regarding the discussed topics.
Collapse
Affiliation(s)
| | | | | | - Pannee Leeladee
- Chulalongkorn University, Chemistry, 254 Phayathai Road, 10330, Bangkok, THAILAND
| |
Collapse
|
9
|
Chen C, yan X, Wu Y, Liu S, Zhang X, Sun X, Zhu Q, Wu H, Han B. Boosting the Productivity of Electrochemical CO2 Reduction to Multi‐Carbon Products by Enhancing CO2 Diffusion through Porous Organic Cage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunjun Chen
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Zhongguancun North First Street 2,100190 Beijing, PR China 100190 Beijing CHINA
| | - Xupeng yan
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry CHINA
| | - Yahui Wu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry CHINA
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Chemistry and Chemical Engineering of Guangdong Laboratory CHINA
| | - Xiudong Zhang
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry CHINA
| | - Xiaofu Sun
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry CHINA
| | - Qinggong Zhu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry CHINA
| | - Haihong Wu
- East China Normal University Shanghai Key Laboratory of Green Chemistry and Chemical Processes CHINA
| | - Buxing Han
- Chinese Academy of Sciences Institute of Chemistry Beiyijie number 2, Zhongguancun 100190 Beijing CHINA
| |
Collapse
|
10
|
Zhang R, Yang J, Zhao X, Yang H, Li H, Ji B, Zhou G, Ma X, Yang D. Electrochemical deposited zeolitic imidazolate frameworks as an efficient electrocatalyst for CO2 electrocatalytic reduction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Jie Yang
- Zhengzhou University College of Chemistry CHINA
| | - Xinbo Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Han Yang
- Zhengzhou University College of Chemistry CHINA
| | - Hongping Li
- Zhengzhou University College of Chemistry CHINA
| | - Bairun Ji
- Zhengzhou University College of Chemistry CHINA
| | | | - Xiaoxue Ma
- Liaoning University College of Chemistry CHINA
| | - Dexin Yang
- Zhengzhou University College of Chemistry and Molecular Engineering No. 100 Science Avenue, High-tech Development Zone 450001 Zhengzhou CHINA
| |
Collapse
|
11
|
Zhang SY, Miao H, Zhang HM, Zhou JH, Zhuang Q, Zeng YJ, Gao Z, Yuan J, Sun JK. Accelerating Crystallization of Open Organic Materials by Poly(ionic liquid)s. Angew Chem Int Ed Engl 2020; 59:22109-22116. [PMID: 32748542 PMCID: PMC7756458 DOI: 10.1002/anie.202008415] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 11/27/2022]
Abstract
The capability to significantly shorten the synthetic period of a broad spectrum of open organic materials presents an enticing prospect for materials processing and applications. Herein we discovered 1,2,4‐triazolium poly(ionic liquid)s (PILs) could serve as a universal additive to accelerate by at least one order of magnitude the growth rate of representative imine‐linked crystalline open organics, including organic cages, covalent organic frameworks (COFs), and macrocycles. This phenomenon results from the active C5‐protons in poly(1,2,4‐triazolium)s that catalyze the formation of imine bonds, and the simultaneous salting‐out effect (induced precipitation by decreasing solubility) that PILs exert on these crystallizing species.
Collapse
Affiliation(s)
- Su-Yun Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Miao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - He-Min Zhang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Jun-Hao Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Qiang Zhuang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yu-Jia Zeng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhiming Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Jian-Ke Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
12
|
Gayen KS, Das T, Chatterjee N. Recent Advances in Tris‐Primary Amine Based Organic Imine Cages and Related Amine Macrocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Titiksha Das
- Kanchrapara College University of Kalyani Kalyani West Bengal India
| | | |
Collapse
|
13
|
Zhang S, Miao H, Zhang H, Zhou J, Zhuang Q, Zeng Y, Gao Z, Yuan J, Sun J. Accelerating Crystallization of Open Organic Materials by Poly(ionic liquid)s. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Su‐Yun Zhang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Han Miao
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - He‐min Zhang
- School of Energy and Chemical Engineering Ulsan National Institute of Science & Technology (UNIST) Ulsan 689-798 Republic of Korea
| | - Jun‐Hao Zhou
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing P. R. China
| | - Qiang Zhuang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
| | - Yu‐Jia Zeng
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Zhiming Gao
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Jian‐Ke Sun
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing P. R. China
| |
Collapse
|
14
|
Wang J, Huang X, Xi S, Xu H, Wang X. Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiong Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiang Huang
- Department of Physics Southern University of Science and Technology Shenzhen 518055 China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Hu Xu
- Department of Physics Southern University of Science and Technology Shenzhen 518055 China
| | - Xin Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
15
|
Wang J, Huang X, Xi S, Xu H, Wang X. Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2020; 59:19162-19167. [DOI: 10.1002/anie.202008759] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jiong Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiang Huang
- Department of Physics Southern University of Science and Technology Shenzhen 518055 China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Hu Xu
- Department of Physics Southern University of Science and Technology Shenzhen 518055 China
| | - Xin Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
16
|
Li X, Dou S, Wang J, Wang X. Investigation of Structural Evolution of SnO 2 Nanosheets towards Electrocatalytic CO 2 Reduction. Chem Asian J 2020; 15:1558-1561. [PMID: 32237062 DOI: 10.1002/asia.202000252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Indexed: 02/04/2023]
Abstract
In-depth understanding of the catalytic active sites is of paramount importance for the design of efficient electrocatalysts for CO2 conversion. Here we highlight the structural evolution of SnO2 nanosheets for electrocatalytic CO2 reduction. The transformation of SnO2 into metallic Sn would occur on the surface of catalyst during the catalytic process, followed by enhanced selectivity and activity for the conversion of CO2 to HCOOH. Electrocatalytic characterization and structural analysis demonstrate that the metallic Sn derived from structural evolution plays a dominant role in the CO2 reduction to HCOOH. This work deepens the understanding of the catalytic mechanism and provides a new pathway for the rational design of advanced electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Xiaogang Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuo Dou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jiong Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
17
|
Torbensen K, Han C, Boudy B, von Wolff N, Bertail C, Braun W, Robert M. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO 2 to CO in a Flow Cell. Chemistry 2020; 26:3034-3038. [PMID: 31943389 DOI: 10.1002/chem.202000160] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 11/11/2022]
Abstract
Molecular catalysts have been shown to have high selectivity for CO2 electrochemical reduction to CO, but with current densities significantly below those obtained with solid-state materials. By depositing a simple Fe porphyrin mixed with carbon black onto a carbon paper support, it was possible to obtain a catalytic material that could be used in a flow cell for fast and selective conversion of CO2 to CO. At neutral pH (7.3) a current density as high as 83.7 mA cm-2 was obtained with a CO selectivity close to 98 %. In basic solution (pH 14), a current density of 27 mA cm-2 was maintained for 24 h with 99.7 % selectivity for CO at only 50 mV overpotential, leading to a record energy efficiency of 71 %. In addition, a current density for CO production as high as 152 mA cm-2 (>98 % selectivity) was obtained at a low overpotential of 470 mV, outperforming state-of-the-art noble metal based catalysts.
Collapse
Affiliation(s)
- Kristian Torbensen
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, 75013, Paris, France
| | - Cheng Han
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, 75013, Paris, France.,College of Aerospace Science and Engineering, National University of Defense Technology, 109 Deya Road, Changsha, Hunan, 410073, P. R. China
| | - Benjamin Boudy
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, 75013, Paris, France
| | - Niklas von Wolff
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, 75013, Paris, France
| | - Caroline Bertail
- Air Liquide Research&Development Paris Innovation Campus, 78354, Jouy en Josas, France
| | - Waldemar Braun
- Air Liquide Forschung und Entwicklung GmbH, Gwinnerstraße 27-33, 60388, Frankfurt, Germany
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université de Paris, CNRS, 75013, Paris, France
| |
Collapse
|
18
|
Smith PT, Kim Y, Benke BP, Kim K, Chang CJ. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020; 59:4902-4907. [DOI: 10.1002/anie.201916131] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley CA 94720-1460 USA
| |
Collapse
|
19
|
Smith PT, Kim Y, Benke BP, Kim K, Chang CJ. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley CA 94720-1460 USA
| |
Collapse
|
20
|
An enhanced recyclable 3D adsorbent for diverse bio-applications using biocompatible magnetic nanomulberry and cucurbituril composites. Sci Rep 2020; 10:443. [PMID: 31949259 PMCID: PMC6965109 DOI: 10.1038/s41598-019-57336-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Herein, we describe the synthesis of highly water-dispersible and biocompatible 3D adsorbents via a rapid two-step strategy employing a mesoporous magnetic nanomulberry-shaped Fe3O4 (MNM) on diatomaceous earth (DE) and cucurbituril (CB; MNM-DE-CB). Coating of CB on the surface of MNM-DE via hydrogen bonds not only enhanced the dispersibility of CB, but also improved the stability of MNM-DE. The ability of the adsorbent to remove dyes from water was investigated as a function of metal ions, solution pH, temperature, and concentration to determine optimum reaction conditions. Unlike MNM-DE, MNM-DE-CB exhibited highly efficient, rapid dye removal and recyclability in aqueous solution, and low cytotoxicity toward cancer cells in drug delivery tests. MNM-DE-CB is a promising green adsorbent with potential for diverse applications including water remediation, interface catalysis, bio-sample preparation, and drug delivery.
Collapse
|
21
|
Sun N, Wang C, Wang H, Yang L, Jin P, Zhang W, Jiang J. Multifunctional Tubular Organic Cage‐Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angew Chem Int Ed Engl 2019; 58:18011-18016. [DOI: 10.1002/anie.201908703] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/13/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Nana Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| | - Le Yang
- School of Materials Science and EngineeringHebei University of Technology Tianjin 300130 China
| | - Peng Jin
- School of Materials Science and EngineeringHebei University of Technology Tianjin 300130 China
| | - Wei Zhang
- Department of ChemistryUniversity of Colorado Boulder Colorado 80309 USA
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
22
|
Bairagya MD, Bujol RJ, Elgrishi N. Fighting Deactivation: Classical and Emerging Strategies for Efficient Stabilization of Molecular Electrocatalysts. Chemistry 2019; 26:3991-4000. [PMID: 31710129 DOI: 10.1002/chem.201904499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/12/2022]
Abstract
Development of highly active molecular electrocatalysts for fuel-forming reactions has relied heavily on understanding mechanistic aspects of the electrochemical transformations. Careful fine-tuning of the ligand environment oriented mechanistic pathways towards higher activity and optimal product distribution for several catalysts. Unfortunately, many catalysts deactivate in bulk electrolysis conditions, diminishing the impact of the plethora of highly tuned molecular electrocatalytic systems. This Minireview covers classical and emerging methods developed to circumvent catalyst deactivation and degradation, with an emphasis on successes with molecular electrocatalysts.
Collapse
Affiliation(s)
- Monojit Das Bairagya
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Ryan J Bujol
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
23
|
Sun N, Wang C, Wang H, Yang L, Jin P, Zhang W, Jiang J. Multifunctional Tubular Organic Cage‐Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908703] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nana Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| | - Le Yang
- School of Materials Science and EngineeringHebei University of Technology Tianjin 300130 China
| | - Peng Jin
- School of Materials Science and EngineeringHebei University of Technology Tianjin 300130 China
| | - Wei Zhang
- Department of ChemistryUniversity of Colorado Boulder Colorado 80309 USA
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsDepartment of ChemistryUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
24
|
Wang H, Wang H, Si Z, Li Q, Wu Q, Shao Q, Wu L, Liu Y, Wang Y, Song S, Zhang H. A Bipolar and Self‐Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual‐Ion Batteries. Angew Chem Int Ed Engl 2019; 58:10204-10208. [DOI: 10.1002/anie.201904242] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Heng‐guo Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Haidong Wang
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Zhenjun Si
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Qiang Li
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Qiong Wu
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Qi Shao
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Lanlan Wu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Yu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| |
Collapse
|
25
|
Sackler Prize in Physical Sciences Innovation Prize in Medicinal/Pharmaceutical Chemistry. Angew Chem Int Ed Engl 2019; 58:8973. [PMID: 31148347 DOI: 10.1002/anie.201906251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Sackler Prize in Physical Sciences Innovationspreis der GDCh‐Fachgruppe Medizinische Chemie. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Wang H, Wang H, Si Z, Li Q, Wu Q, Shao Q, Wu L, Liu Y, Wang Y, Song S, Zhang H. A Bipolar and Self‐Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual‐Ion Batteries. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Heng‐guo Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Haidong Wang
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Zhenjun Si
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Qiang Li
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Qiong Wu
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Qi Shao
- School of Materials Science and EngineeringChangchun University of Science and Technology Changchun 130022 Jilin China
| | - Lanlan Wu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Yu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin China
| |
Collapse
|
28
|
Lu Z, Lu X, Zhong Y, Hu Y, Li G, Zhang R. Carbon dot-decorated porous organic cage as fluorescent sensor for rapid discrimination of nitrophenol isomers and chiral alcohols. Anal Chim Acta 2018; 1050:146-153. [PMID: 30661582 DOI: 10.1016/j.aca.2018.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Isomers discrimination plays a vital role in modern chemistry, and development of efficient and rapid method to achieve this aim has attracted a great deal of interest. In this work, a novel carbon dot-decorated chiral porous organic cage hybrid nanocomposite (CD@RCC3) was prepared and used to fabricate fluorescent sensor. The resultant CD@RCC3 was characterized by using a range of techniques, finding that CD@RCC3 possesses strong and stable fluorescent property in common organic solvents, especially it exhibits chiral property. The potential application of CD@RCC3 in fluorescence sensing was demonstrated by isomers discrimination. The designed sensor was successfully used to rapid discriminate nitrophenol isomers. Meanwhile, it exhibited differentiation ability towards phenylalaninol and phenylethanol enantiomers. Our work enriches the type of synthetic materials for fluorescence sensing, and provides a simple method for distinguishing structural isomers and chiral isomers.
Collapse
Affiliation(s)
- Zhenyu Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaotian Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Runkun Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
29
|
Miao CC, Yuan GQ. Morphology-Controlled Bi2
O3
Nanoparticles as Catalysts for Selective Electrochemical Reduction of CO2
to Formate. ChemElectroChem 2018. [DOI: 10.1002/celc.201801036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Can-Can Miao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Gao-Qing Yuan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|