1
|
Feng C, Alharbi J, Hu M, Zuo S, Luo J, Qahtani HSA, Rueping M, Huang K, Zhang H. Ultrafast Charge Transfer on Ru-Cu Atomic Units for Enhanced Photocatalytic H 2O 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406748. [PMID: 39967361 PMCID: PMC11937988 DOI: 10.1002/adma.202406748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Photosensitizer-assisted photocatalytic systems offer a solution to overcome the limitations of inherent light harvesting capabilities in catalysts. However, achieving efficient charge transfer between the dissociative photosensitizer and catalyst poses a significant challenge. Incorporating photosensitive components into reactive centers to establish well-defined charge transfer channels is expected to effectively address this issue. Herein, the electrostatic-driven self-assembly method is utilized to integrate photosensitizers into metal-organic frameworks, constructing atomically Ru-Cu bi-functional units to promote efficient local electron migration. Within this newly constructed system, the [Ru(bpy)2]2+ component and Cu site serve as photosensitive and catalytic active centers for photocarrier generation and H2O2 production, respectively, and their integration significantly reduces the barriers to charge transfer. Ultrafast spectroscopy and in situ characterization unveil accelerated directional charge transfer over Ru-Cu units, presenting orders of magnitude improvement over dissociative photosensitizer systems. As a result, a 37.2-fold enhancement of the H2O2 generation rate (570.9 µmol g-1 h-1) over that of dissociative photosensitizer system (15.3 µmol g-1 h-1) is achieved. This work presents a promising strategy for integrating atomic-scale photosensitive and catalytic active centers to achieve ultrafast photocarrier transfer and enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Chengyang Feng
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Jumanah Alharbi
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Miao Hu
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Jun Luo
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresMOE Key Laboratory of New Processing Technology for Nonferrous Metals and MaterialsSchool of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | | | - Magnus Rueping
- KAUST Catalysis Center (KCC)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Kuo‐Wei Huang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
2
|
He C, Yang L, Dong C, Peng X, Ibraheem Y, Usoltsev O, Simonelli L, He R, Cabot A, Lu Y. O-O Radical Coupling in Ultrathin Reconstructed Co 6.8Se 8 Nanosheets for Effective Oxygen Evolution and Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202419083. [PMID: 39578967 DOI: 10.1002/anie.202419083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Designing ultrathin transition metal electrocatalysts with optimal surface chemistry state is crucial for oxygen evolution reaction (OER). However, the structure-dependent electrochemical performance and the underlying catalytic mechanisms are still not clearly distinguished. Herein, we synthesize ultrathin Co6.8Se8 nanosheets (NSs) with subnanometer thickness by incorporating catalytically inactive selenium (Se) into ultrathin Co(OH)2, thereby switching the OER reaction pathway from adsorbate evolution mechanism (AEM) to oxide path mechanism (OPM). The prepared ultrathin Co6.8Se8 NSs exhibit an overpotential of 253 mV at 10 mA/cm2, outperforming the mostly reported Co-based electrocatalysts. Advanced operando synchrotron spectroscopies and X-ray absorption spectroscopy reveal the ultrathin Co6.8Se8 NSs, whose surface is reconstructed into Se-doped Co(OH)2 during the OER process, could trigger direct O*-O* radical coupling rather than OOH* intermediates within AEM pathway thus lowering the energy input. Density functional theory calculations confirm that Co6.8Se8 NSs with shorter Co-Co bond length and stable Co-Se bond could optimize the rate-determining step barrier via OPM pathway. Besides, rechargeable zinc-air batteries based on Co6.8Se8 NSs exhibit excellent stability for more than 500 h of continuous charge-discharge cycles at 4 mA/cm2. The present study highlights the structural-dependent switch of OER pathways and provides valuable insights for further development of ultrathin OER catalysts.
Collapse
Affiliation(s)
- Chuansheng He
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Linlin Yang
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Chengyuan Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaohui Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yousef Ibraheem
- MIRAS - ALBA Synchrotron, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Oleg Usoltsev
- CELLS - ALBA Synchrotron, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Laura Simonelli
- CELLS - ALBA Synchrotron, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Ren He
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Catalonia, Spain
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
3
|
Kim K, Kim G, Jeong T, Lee W, Yang Y, Kim BH, Kim B, Lee B, Kang J, Kim M. Activating the Mn Single Atomic Center for an Efficient Actual Active Site of the Oxygen Reduction Reaction by Spin-State Regulation. J Am Chem Soc 2024; 146:34033-34042. [PMID: 39497607 DOI: 10.1021/jacs.4c13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The ligand engineering for single-atom catalysts (SACs) is considered a cutting-edge strategy to tailor their electrocatalytic activity. However, the fundamental reasons underlying the reaction mechanism and the contemplation for which the actual active site for the catalytic reaction depends on the pyrrolic and pyridinic N ligand structure remain to be fully understood. Herein, we first reveal the relationship between the oxygen reduction reaction (ORR) activity and the N ligand structure for the manganese (Mn) single atomic site by the precisely regulated pyrrolic and pyridinic N4 coordination environment. Experimental and theoretical analyses reveal that the long Mn-N distance in Mn-pyrrolic N4 enables a high spin state of the Mn center, which is beneficial to reduce the adsorption strength of oxygen intermediates by the high filling state in antibond orbitals, thereby activating the Mn single atomic site to achieve a half-wave potential of 0.896 V vs RHE with outstanding stability in acidic media. This work provides a new fundamental insight into understanding the ORR catalytic origin of Mn SACs and the rational design strategy of SACs for various electrocatalytic reactions.
Collapse
Affiliation(s)
- Kiwon Kim
- Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Gyuchan Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Taeyoung Jeong
- Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Wonyoung Lee
- Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Yunho Yang
- Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Byung-Hyun Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Bubryur Kim
- Department of Robot and Smart System Engineering, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Byeongyong Lee
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Joonhee Kang
- Department of Nano Fusion Technology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Myeongjin Kim
- Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Peng W, Chen R, Liu X, Tan H, Yin L, Hou F, Yang D, Liang J. Ultra-Rapid Electrocatalytic H 2O 2 Fabrication over Mono-Species and High-Density Polypyrrolic-N Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403261. [PMID: 39031855 DOI: 10.1002/smll.202403261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Indexed: 07/22/2024]
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production via two-electron oxygen reduction reaction (2e--ORR) features energy-saving and eco-friendly characteristics, making it a promising alternative to the anthraquinone oxidation process. However, the common existence of numerous 2e--ORR-inactive sites/species on electrocatalysts tends to catalyze side reactions, especially under low potentials, which compromises energy efficiency and limits H2O2 yield. Addressing this, a high surface density of mono-species pyrrolic nitrogen configurations is formed over a polypyrrole@carbon nanotube composite. Thermodynamic and kinetic calculation and experimental investigation collaboratively confirm that these densely distributed and highly selective active sites effectively promote high-rate 2e--ORR electrocatalysis and inhibit side reactions over a wide potential range. Consequently, an ultra-high and stable H2O2 yield of up to 67.9/51.2 mol g-1 h-1 has been achieved on this material at a current density of 200/120 mA cm-1, corresponding Faradaic efficiency of 72.8/91.5%. A maximum H2O2 concentration of 13.47 g L-1 can be accumulated at a current density of 80 mA cm-1 with satisfactory stability. The strategy of surface active site densification thus provides a promising and universal avenue toward designing highly active and efficient electrocatalysts for 2e--ORR as well as a series of other similar electrochemical processes.
Collapse
Affiliation(s)
- Wei Peng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Rui Chen
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haotian Tan
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - De'an Yang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Chen F, Bai CW, Duan PJ, Zhang ZQ, Sun YJ, Chen XJ, Yang Q, Yu HQ. Merging semi-crystallization and multispecies iodine intercalation at photo-redox interfaces for dual high-value synthesis. Nat Commun 2024; 15:7783. [PMID: 39237589 PMCID: PMC11377564 DOI: 10.1038/s41467-024-52158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
The artificial photocatalytic synthesis based on graphitic carbon nitride (g-C3N4) for H2O2 production is evolving rapidly. However, the simultaneous production of high-value products at electron and hole sites remains a great challenge. Here, we use transformable potassium iodide to obtain semi-crystalline g-C3N4 integrated with the I-/I3- redox shuttle mediators for efficient generation of H2O2 and benzaldehyde. The system demonstrates a prominent catalytic efficiency, with a benzaldehyde yield of 0.78 mol g-1 h-1 and an H2O2 yield of 62.52 mmol g-1 h-1. Such a constructed system can achieve an impressive 96.25% catalytic selectivity for 2e- oxygen reduction, surpassing previously reported systems. The mechanism study reveals that the strong crystal electric field from iodized salt enhances photo-generated charge carrier separation. The I-/I3- redox mediators significantly boost charge migration and continuous electron and proton supply for dual-channel catalytic synthesis. This groundbreaking work in photocatalytic co-production opens neoteric avenues for high-value synthesis.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qi Yang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Qiu Y, Wu Y, Wei X, Luo X, Jiang W, Zheng L, Gu W, Zhu C, Yamauchi Y. Improvement in ORR Durability of Fe Single-Atom Carbon Catalysts Hybridized with CeO 2 Nanozyme. NANO LETTERS 2024; 24:9034-9041. [PMID: 38990087 DOI: 10.1021/acs.nanolett.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
FeNC catalysts are considered one of the most promising alternatives to platinum group metals for the oxygen reduction reaction (ORR). Despite the extensive research on improving ORR activity, the undesirable durability of FeNC is still a critical issue for its practical application. Herein, inspired by the antioxidant mechanism of natural enzymes, CeO2 nanozymes featuring catalase-like and superoxide dismutase-like activities were coupled with FeNC to mitigate the attack of reactive oxygen species (ROS) for improving durability. Benefiting from the multienzyme-like activities of CeO2, ROS generated from FeNC is instantaneously eliminated to alleviate the corrosion of carbon and demetallization of metal sites. Consequently, FeNC/CeO2 exhibits better ORR durability with a decay of only 5 mV compared to FeNC (18 mV) in neutral electrolyte after 10k cycles. The FeNC/CeO2-based zinc-air battery also shows minimal voltage decay over 140 h in galvanostatic discharge-charge cycling tests, outperforming FeNC and commercial Pt/C.
Collapse
Affiliation(s)
- Yiwei Qiu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Xiaoqian Wei
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo, 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Xin Luo
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
7
|
Zheng J, Meng D, Guo J, Liu X, Zhou L, Wang Z. Defect Engineering for Enhanced Electrocatalytic Oxygen Reaction on Transition Metal Oxides: The Role of Metal Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405129. [PMID: 38670162 DOI: 10.1002/adma.202405129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Indexed: 04/28/2024]
Abstract
Metal defect engineering is a highly effective strategy for addressing the prevalent high overpotential issues associated with transition metal oxides functioning as dual-function commercial oxygen reduction reaction/oxygen evolution reaction catalysts for increasing their activity and stability. However, the high formation energy of metal defects poses a challenge to the development of strategies to precisely control the selectivity during metal defect formation. Here, density functional theory calculations are used to demonstrate that altering the pathway of metal defect formation releases metal atoms as metal chlorides, which effectively reduces the formation energy of defects. The metal defects on the monometallic metal oxide surface (Mn, Fe, Co, and Ni) are selectively produced using chlorine plasma. The characterization and density functional theory calculations reveal that catalytic activity is enhanced owing to electronic delocalization induced by metal defects, which reduces the theoretical overpotential. Notably, ab initio molecular dynamics calculations, ex situ XPS, and in situ ATR-SEIRAS suggest that metal defects effectively improve the adsorption of reactive species on active sites and enhance the efficiency of product desorption, thereby boosting catalytic performance.
Collapse
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junxin Guo
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaobin Liu
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Zhou
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
8
|
Lim C, Fairhurst AR, Ransom BJ, Haering D, Stamenkovic VR. Role of Transition Metals in Pt Alloy Catalysts for the Oxygen Reduction Reaction. ACS Catal 2023; 13:14874-14893. [PMID: 38026811 PMCID: PMC10660348 DOI: 10.1021/acscatal.3c03321] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
In pursuit of higher activity and stability of electrocatalysts toward the oxygen reduction reaction, it has become standard practice to alloy platinum in various structural configurations. Transition metals have been extensively studied for their ability to tune catalyst functionality through strain, ligand, and ensemble effects. The origin of these effects and potential for synergistic application in practical materials have been the subject of many theoretical and experimental analyses in recent years. Here, a comprehensive overview of these phenomena is provided regarding the impact on reaction mechanisms and kinetics through combined experimental and theoretical approaches. Experimental approaches to electrocatalysis are discussed.
Collapse
Affiliation(s)
- Chaewon Lim
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Alasdair R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Benjamin J. Ransom
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Dominik Haering
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
9
|
Wu Q, Zou H, Mao X, He J, Shi Y, Chen S, Yan X, Wu L, Lang C, Zhang B, Song L, Wang X, Du A, Li Q, Jia Y, Chen J, Yao X. Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production. Nat Commun 2023; 14:6275. [PMID: 37805502 PMCID: PMC10560253 DOI: 10.1038/s41467-023-41947-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Active sites identification in metal-free carbon materials is crucial for developing practical electrocatalysts, but resolving precise configuration of active site remains a challenge because of the elusive dynamic structural evolution process during reactions. Here, we reveal the dynamic active site identification process of oxygen modified defective graphene. First, the defect density and types of oxygen groups were precisely manipulated on graphene, combined with electrocatalytic performance evaluation, revealing a previously overlooked positive correlation relationship between the defect density and the 2 e- oxygen reduction performance. An electrocatalytic-driven oxygen groups redistribution phenomenon was observed, which narrows the scope of potential configurations of the active site. The dynamic evolution processes are monitored via multiple in-situ technologies and theoretical spectra simulations, resolving the configuration of major active sites (carbonyl on pentagon defect) and key intermediates (*OOH), in-depth understanding the catalytic mechanism and providing a research paradigm for metal-free carbon materials.
Collapse
Affiliation(s)
- Qilong Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Haiyuan Zou
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Mao
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, 4001, Australia
| | - Jinghan He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yanmei Shi
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Shuangming Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xuecheng Yan
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chengguang Lang
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong, 518107, PR China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xin Wang
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, and Zhejiang Moganshan Carbon Neutral Innovation Institute, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310032, PR China
- Zhejiang Carbon Neutral Innovation Institute, Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, PR China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, 4001, Australia
| | - Qin Li
- School of Environmental engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Yi Jia
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, and Zhejiang Moganshan Carbon Neutral Innovation Institute, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310032, PR China.
- Zhejiang Carbon Neutral Innovation Institute, Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, PR China.
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia.
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong, 518107, PR China.
| |
Collapse
|
10
|
Sun Z, Zhang H, Cao L, Liu X, Wu D, Shen X, Zhang X, Chen Z, Ru S, Zhu X, Xia Z, Luo Q, Xu F, Yao T. Understanding Synergistic Catalysis on Cu-Se Dual Atom Sites via Operando X-ray Absorption Spectroscopy in Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202217719. [PMID: 36692894 DOI: 10.1002/anie.202217719] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
The construction and understanding of synergy in well-defined dual-atom active sites is an available avenue to promote multistep tandem catalytic reactions. Herein, we construct a dual-hetero-atom catalyst that comprises adjacent Cu-N4 and Se-C3 active sites for efficient oxygen reduction reaction (ORR) activity. Operando X-ray absorption spectroscopy coupled with theoretical calculations provide in-depth insights into this dual-atom synergy mechanism for ORR under realistic device operation conditions. The heteroatom Se modulator can efficiently polarize the charge distribution around symmetrical Cu-N4 moieties, and serve as synergistic site to facilitate the second oxygen reduction step simultaneously, in which the key OOH*-(Cu1 -N4 ) transforms to O*-(Se1 -C2 ) intermediate on the dual-atom sites. Therefore, this designed catalyst achieves satisfied alkaline ORR activity with a half-wave potential of 0.905 V vs. RHE and a maximum power density of 206.5 mW cm-2 in Zn-air battery.
Collapse
Affiliation(s)
- Zhiguo Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xue Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zihang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Sen Ru
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiangyu Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhiyuan Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Faqiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
11
|
Zhao C, Wang X, Yin Y, Tian W, Zeng G, Li H, Ye S, Wu L, Liu J. Molecular Level Modulation of Anthraquinone-containing Resorcinol-formaldehyde Resin Photocatalysts for H 2 O 2 Production with Exceeding 1.2 % Efficiency. Angew Chem Int Ed Engl 2023; 62:e202218318. [PMID: 36578144 DOI: 10.1002/anie.202218318] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Designing polymeric photocatalysts at the molecular level to modulate the photogenerated charge behavior is a promising and challenging strategy for efficient hydrogen peroxide (H2 O2 ) photosynthesis. Here, we introduce electron-deficient 1,4-dihydroxyanthraquinone (DHAQ) into the framework of resorcinol-formaldehyde (RF) resin, which modulates the donor/acceptor ratio from the perspective of molecular design for promoting the charge separation. Interestingly, H2 O2 can be produced via oxygen reduction and water oxidation pathways, verified by isotopic labeling and in situ characterization techniques. Density functional theory (DFT) calculations elucidate that DHAQ can reduce the energy barrier for H2 O2 production. RF-DHAQ exhibits excellent overall photosynthesis of H2 O2 with a solar-to-chemical conversion (SCC) efficiency exceeding 1.2 %. This work opens a new avenue to design polymeric photocatalysts at the molecular level for high-efficiency artificial photosynthesis.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Sheng Ye
- College of Science & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 200433, Shanghai, China.,Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China.,DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU27XH, UK
| |
Collapse
|
12
|
Wei X, Song S, Cai W, Luo X, Jiao L, Fang Q, Wang X, Wu N, Luo Z, Wang H, Zhu Z, Li J, Zheng L, Gu W, Song W, Guo S, Zhu C. Tuning the spin-state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhang N, Hu Y, An L, Li Q, Yin J, Li J, Yang R, Lu M, Zhang S, Xi P, Yan CH. Surface Activation and Ni-S Stabilization in NiO/NiS 2 for Efficient Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202207217. [PMID: 35730933 DOI: 10.1002/anie.202207217] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 12/15/2022]
Abstract
Manipulating the active species and improving the structural stabilization of sulfur-containing catalysts during the OER process remain a tremendous challenge. Herein, we constructed NiO/NiS2 and Fe-NiO/NiS2 as catalyst models to study the effect of Fe doping. As expected, Fe-NiO/NiS2 exhibits a low overpotential of 270 mV at 10 mA cm-2 . The accumulation of hydroxyl groups on the surface of materials after Fe doping can promote the formation of highly active NiOOH at a lower OER potential. Moreover, we investigated the level of corrosion of M-S bonds and compared the stability variation of M-S bonds with Fe at different locations. Interestingly, Fe bonded with S in the bulk as the sacrificial agent can alleviate the oxidation corrosion of partial Ni-S bonds and thus endow Fe-NiO/NiS2 long-term durability. This work could motivate the community to focus more on resolving the corrosion of sulfur-containing materials.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qingyu Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianyi Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Rui Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Zhang N, Hu Y, An L, Li Q, Yin J, Li J, Yang R, Lu M, Zhang S, Xi P, Yan CH. Surface Activation and Ni‐S Stabilization in NiO/NiS2 for Efficient Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nan Zhang
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Yang Hu
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Li An
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Qingyu Li
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Jie Yin
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Jianyi Li
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Rui Yang
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Min Lu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Sen Zhang
- University of Virginia Department of Chemistry 222 South Tianshui Rd CHINA
| | - Pinxian Xi
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd 730000 Lanzhou CHINA
| | - Chun-Hua Yan
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| |
Collapse
|
15
|
New insights into the hydrogen peroxide reduction reaction and its comparison with the oxygen reduction reaction in alkaline media on well-defined platinum surfaces. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Wang YH, Le JB, Li WQ, Wei J, Radjenovic PM, Zhang H, Zhou XS, Cheng J, Tian ZQ, Li JF. In situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angew Chem Int Ed Engl 2019; 58:16062-16066. [PMID: 31513325 DOI: 10.1002/anie.201908907] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/07/2022]
Abstract
It is vital to understand the oxygen reduction reaction (ORR) mechanism at the molecular level for the rational design and synthesis of high activity fuel-cell catalysts. Surface enhanced Raman spectroscopy (SERS) is a powerful technique capable of detecting the bond vibrations of surface species in the low wavenumber range, however, using it to probe practical nanocatalysts remains extremely challenging. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used to investigate ORR processes on the surface of bimetallic Pt3 Co nanocatalyst structures. Direct spectroscopic evidence of *OOH suggests that ORR undergoes an associative mechanism on Pt3 Co in both acidic and basic environments. Density functional theory (DFT) calculations show that the weak *O adsorption arise from electronic effect on the Pt3 Co surface accounts for enhanced ORR activity. This work shows SHINERS is a promising technique for the real-time observation of catalytic processes.
Collapse
Affiliation(s)
- Ya-Hao Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jia-Bo Le
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei-Qiong Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jie Wei
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Petar M Radjenovic
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hua Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jun Cheng
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhong-Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
18
|
Wang Y, Le J, Li W, Wei J, Radjenovic PM, Zhang H, Zhou X, Cheng J, Tian Z, Li J. In situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908907] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Hao Wang
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Jia‐Bo Le
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Wei‐Qiong Li
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Jie Wei
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Petar M. Radjenovic
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Hua Zhang
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 China
| | - Jun Cheng
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Zhong‐Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
19
|
Yao Y, Hu S, Chen W, Huang ZQ, Wei W, Yao T, Liu R, Zang K, Wang X, Wu G, Yuan W, Yuan T, Zhu B, Liu W, Li Z, He D, Xue Z, Wang Y, Zheng X, Dong J, Chang CR, Chen Y, Hong X, Luo J, Wei S, Li WX, Strasser P, Wu Y, Li Y. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0246-2] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|