1
|
Nawaz I, Khan MN, Shah ST, Hawsawi MB, Saleem RSZ, Chotana GA. Synthesis, Characterization, and DFT Studies of NHC-Derived Amide-Functionalized Organoselenium Compounds. ACS OMEGA 2025; 10:10579-10593. [PMID: 40124061 PMCID: PMC11923851 DOI: 10.1021/acsomega.4c11223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
The NHC-Se scaffold has emerged as an intriguing target, opening new avenues for discovering compounds that could significantly improve public health. Recently, extensive efforts have been made to synthesize NHC-Se-based organic compounds for various biomedical applications. Herein, we disclose a straightforward method to access a series of new N-heterocyclic carbene (NHC)-derived organoselenium molecules functionalized with an amide moiety. The parent NHC-Se adduct with a pendent ester moiety is sufficiently activated to facilitate a base- and additive-free ester-to-amide bond transformation. Furthermore, the use of PEG 3550, a biocompatible solvent, enhances reaction efficiency and simplifies the workup. This approach employs a broad spectrum of aliphatic amines with good functional group tolerance, offering a versatile and ecofriendly method for extending chemical space around organoselenium compounds. Additionally, density functional theory (DFT) calculations provide insights into the electronic properties, stability, and reactivity profiles of the synthesized compounds, suggesting their promising potential for applications in biomedical fields.
Collapse
Affiliation(s)
- Ismat Nawaz
- Department
of Chemistry and Chemical Engineering, Lahore
University of Management Sciences, Sector U, DHA Lahore Cantt, Lahore 54792, Pakistan
| | - Muhammad Naeem Khan
- Department
of Chemistry and Chemical Engineering, Lahore
University of Management Sciences, Sector U, DHA Lahore Cantt, Lahore 54792, Pakistan
| | | | - Mohammed B. Hawsawi
- Department
of Chemistry, Faculty of Science, Umm Al-Qura
University, Makkah 21955, Saudi Arabia
| | - Rahman Shah Zaib Saleem
- Department
of Chemistry and Chemical Engineering, Lahore
University of Management Sciences, Sector U, DHA Lahore Cantt, Lahore 54792, Pakistan
| | - Ghayoor Abbas Chotana
- Department
of Chemistry and Chemical Engineering, Lahore
University of Management Sciences, Sector U, DHA Lahore Cantt, Lahore 54792, Pakistan
| |
Collapse
|
2
|
Alam T, Rakshit A, Dhara HN, Palai A, Patel BK. Electrochemical Amidation: Benzoyl Hydrazine/Carbazate and Amine as Coupling Partners. Org Lett 2022; 24:6619-6624. [PMID: 36069423 DOI: 10.1021/acs.orglett.2c02626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrochemical amidation of benzoyl hydrazine/carbazate and primary/secondary amine as coupling partners via concomitant cleavage and formation of C(sp2)-N bonds has been achieved. This methodology proceeds under metal-free and exogenous oxidant-free conditions producing N2 and H2 as byproducts. Mechanistic studies reveal the in situ generations of both acyl and N-centered radicals from benzoyl hydrazines and amines. The utility of this protocol is demonstrated through a large-scale, and synthesis of bezafibrate, a hyperlipidemic drug.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Angshuman Palai
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
3
|
Mukherjee A, Nad P, Gupta K, Sen A. Mechanistic Understanding of KOtBu-Mediated Direct Amidation of Esters with Anilines: An Experimental Study and Computational Approach. Chem Asian J 2022; 17:e202200800. [PMID: 36048008 DOI: 10.1002/asia.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Indexed: 11/12/2022]
Abstract
A sustainable and cost-effective protocol has been reported for the synthesis of amide bonds from unactivated esters and non-nucleophilic amines promoted by potassium tert -butoxide under aerobic conditions. The reaction proceeds under relatively mild conditions, encompassing wide substrate scope. A combined experimental and quantum chemical study has been performed to shed light on the mechanism, which implied that a radical pathway is operating for the present protocol.
Collapse
Affiliation(s)
- Arup Mukherjee
- Indian Institute of Technology Bhilai, Chemistry, GEC Campus, Raipur, 492015, Raipur, INDIA
| | - Pinaki Nad
- IIT Bhilai: Indian Institute of Technology Bhilai, Chemistry, INDIA
| | - Kriti Gupta
- IIT Bhilai: Indian Institute of Technology Bhilai, Chemistry, INDIA
| | - Anik Sen
- GITAM Institute of Science: Gandhi Institute of Technology and Management Institute of Science, Chemistry, INDIA
| |
Collapse
|
4
|
Sathyendran S, Senadi GC. An Umpolung Route to Amides from α‐Aminonitriles under Metal‐Free Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
6
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
7
|
Zheng YL, Xie PP, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel-Catalyzed Suzuki-Miyaura Coupling. Angew Chem Int Ed Engl 2021; 60:13476-13483. [PMID: 33792138 DOI: 10.1002/anie.202103327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method. Catalyst-controlled chemoselectivity is observed for C(acyl)-O bond activation of multi-functional substrates bearing other bonds prone to cleavage by Ni, including aryl ether, aryl fluoride, and N-Ph amide functional groups. Density functional theory calculations provide mechanistic support for a Ni0 /NiII catalytic cycle and demonstrate how stabilizing non-covalent interactions between the bulky catalyst and substrate are critical for the reaction's success.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
8
|
Zheng Y, Xie P, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel‐Catalyzed Suzuki–Miyaura Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
9
|
Liu W, Xu W, Wang J, Lu H, Xu PF, Wei H. Synthesis of Spirocycles via Ni-Catalyzed Intramolecular Coupling of Thioesters and Olefins. Chemistry 2021; 27:7651-7656. [PMID: 33887079 DOI: 10.1002/chem.202100390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/17/2022]
Abstract
A nickel-catalyzed intramolecular coupling of thioesters and olefins has been developed for the efficient synthesis of spirocycles, a privileged scaffold commonly found in natural products. This transformation is characterized by the simultaneous transfer of both acyl and thiol moieties to the alkene, with the suppression of decarbonylation and β-hydrogen elimination. Initial mechanistic investigations are consistent with an oxidative addition/olefin insertion/reductive elimination mechanism. The incorporated methylene sulfide substituent can undergo a variety of further reactions to increase molecular diversity and complexity. These results demonstrate that thioester derivatives can be used as powerful building blocks for the assembly of complex scaffolds.
Collapse
Affiliation(s)
- Wenfei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Juanjuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Peng-Fei Xu
- Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
10
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel‐Catalyzed Suzuki–Miyaura‐Coupling and Transfer‐Hydrogenation Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy B. Boit
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Milauni M. Mehta
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Emma L. Baker
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
11
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel-Catalyzed Suzuki-Miyaura-Coupling and Transfer-Hydrogenation Cascade. Angew Chem Int Ed Engl 2021; 60:2472-2477. [PMID: 33029868 PMCID: PMC7855255 DOI: 10.1002/anie.202012048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Indexed: 12/11/2022]
Abstract
We report a means to achieve the addition of two disparate nucleophiles to the amide carbonyl carbon in a single operational step. Our method takes advantage of non-precious-metal catalysis and allows for the facile conversion of amides to chiral alcohols via a one-pot Suzuki-Miyaura cross-coupling/transfer-hydrogenation process. This study is anticipated to promote the development of new transformations that allow for the conversion of carboxylic acid derivatives to functional groups bearing stereogenic centers via cascade processes.
Collapse
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Milauni M Mehta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Emma L Baker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
12
|
Song L, Claessen S, Van der Eycken EV. Pyridine-Enabled C-N Bond Activation for the Rapid Construction of Amides and 4-Pyridylglyoxamides by Cooperative Palladium/Copper Catalysis. J Org Chem 2020; 85:8045-8054. [PMID: 32441517 DOI: 10.1021/acs.joc.0c00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A pyridine-enabled C-N bond activation of peptidomimetics employing cooperative palladium/copper catalysis in water is developed. Diverse amides and 4-pyridylglyoxamides are simultaneously synthesized through two steps from commercially available materials in a rapid, environmentally friendly, and high atom-economical manner.
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sander Claessen
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya street 6, Moscow 117198, Russia
| |
Collapse
|
13
|
Li Z, Guo C, Chen J, Yao Y, Luo Y. Facile amidation of esters with aromatic amines promoted by lanthanide tris (amide) complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhao Li
- School of Material Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
- College of Chemistry, Chemical Engineering & Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Chenjun Guo
- School of Material Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Jue Chen
- School of Biological and Chemical Engineering, Ningbo Institute of TechnologyZhejiang University Ningbo 315100 P. R. China
| | - Yingming Yao
- College of Chemistry, Chemical Engineering & Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Yunjie Luo
- School of Material Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
14
|
Zheng Y, Newman SG. Nickel‐Catalyzed Domino Heck‐Type Reactions Using Methyl Esters as Cross‐Coupling Electrophiles. Angew Chem Int Ed Engl 2019; 58:18159-18164. [DOI: 10.1002/anie.201911372] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
15
|
Ni/NHC-catalyzed cross-coupling of methyl sulfinates and amines for direct access to sulfinamides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Zheng Y, Newman SG. Nickel‐Catalyzed Domino Heck‐Type Reactions Using Methyl Esters as Cross‐Coupling Electrophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
17
|
Xu ZW, Xu WY, Pei XJ, Tang F, Feng YS. An efficient method for the N-formylation of amines under catalyst- and additive-free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Qiu X, Wang P, Wang D, Wang M, Yuan Y, Shi Z. PIII
-Chelation-Assisted Indole C7-Arylation, Olefination, Methylation, and Acylation with Carboxylic Acids/Anhydrides by Rhodium Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201813182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaodong Qiu
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
- School of Pharmacy; Nantong University; 19 Qixiu Road Nantong 226001 China
| | - Panpan Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou 225002 China
| | - Dingyi Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou 225002 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| |
Collapse
|
19
|
Qiu X, Wang P, Wang D, Wang M, Yuan Y, Shi Z. PIII
-Chelation-Assisted Indole C7-Arylation, Olefination, Methylation, and Acylation with Carboxylic Acids/Anhydrides by Rhodium Catalysis. Angew Chem Int Ed Engl 2018; 58:1504-1508. [DOI: 10.1002/anie.201813182] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaodong Qiu
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
- School of Pharmacy; Nantong University; 19 Qixiu Road Nantong 226001 China
| | - Panpan Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou 225002 China
| | - Dingyi Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou 225002 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| |
Collapse
|