1
|
Moreno D, Omosebi A, Jeon BW, Abad K, Kim YH, Thompson J, Liu K. Electrochemical CO2 conversion to formic acid using engineered enzymatic catalysts in a batch reactor. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
2
|
Wu R, Li F, Cui X, Li Z, Ma C, Jiang H, Zhang L, Zhang YHPJ, Zhao T, Zhang Y, Li Y, Chen H, Zhu Z. Enzymatic Electrosynthesis of Glycine from CO 2 and NH 3. Angew Chem Int Ed Engl 2023; 62:e202218387. [PMID: 36759346 DOI: 10.1002/anie.202218387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Enzymatic electrosynthesis has gained more and more interest as an emerging green synthesis platform, particularly for the fixation of CO2 . However, the simultaneous utilization of CO2 and a nitrogenous molecule for the enzymatic electrosynthesis of value-added products has never been reported. In this study, we constructed an in vitro multienzymatic cascade based on the reductive glycine pathway and demonstrated an enzymatic electrocatalytic system that allowed the simultaneous conversion of CO2 and NH3 as the sole carbon and nitrogen sources to synthesize glycine. Through effective coupling and the optimization of electrochemical cofactor regeneration and the multienzymatic cascade reaction, 0.81 mM glycine was yielded with a highest reaction rate of 8.69 mg L-1 h-1 and faradaic efficiency of 96.8 %. These results imply a promising alternative for enzymatic CO2 electroreduction and expand its products to nitrogenous chemicals.
Collapse
Affiliation(s)
- Ranran Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Fei Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Xinyu Cui
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zehua Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunling Ma
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Tongxin Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Hui Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Zhiguang Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
3
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
4
|
Xing X, Liu Y, Lin RD, Zhang Y, Wu ZL, Yu XQ, Li K, Wang N. Development of an Integrated System for Highly Selective Photoenzymatic Synthesis of Formic Acid from CO 2. CHEMSUSCHEM 2023; 16:e202201956. [PMID: 36482031 DOI: 10.1002/cssc.202201956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Herein, a Zr-based dual-ligand MOFs with pre-installed Rh complex was employed for NADH regeneration in situ and also used for immobilization of formic acid dehydrogenase (FDH) in order to realize a highly efficient CO2 fixation system. Then, based on the detailed investigations into the photochemical and electrochemical properties, it is demonstrated that the introduction of the photosensitive meso-tetra(4-carboxyphenyl) porphin (TCPP) ligands increased the catalytic active sites and improved photoelectric properties. Furthermore, the electron mediator Rh complex, anchored on the zirconium-based dual-ligand MOFs, enhanced the efficiency of electron transfer efficiency and facilitated the separation of photogenerated electrons and holes. Compared with UiO-66-NH2 , Rh-H2 TCPP-UiO-66-NH2 exhibits an optimized valence band structure and significantly improved photocatalytic activity for NAD+ reduction, resulting the synthesis of formic acid from CO2 increased from 150 μg mL-1 (UiO-66-NH2 ) to 254 μg mL-1 (Rh-H2 TCPP-UiO-66-NH2 ). Moreover, the assembled photocatalyst-enzyme coupled system also allows facile recycling of expensive electron mediator, enzyme, and photocatalyst.
Collapse
Affiliation(s)
- Xiu Xing
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Ru-De Lin
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yang Zhang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
5
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
6
|
Lin G, Zhang Y, Hua Y, Zhang C, Jia C, Ju D, Yu C, Li P, Liu J. Bioinspired Metalation of the Metal-Organic Framework MIL-125-NH 2 for Photocatalytic NADH Regeneration and Gas-Liquid-Solid Three-Phase Enzymatic CO 2 Reduction. Angew Chem Int Ed Engl 2022; 61:e202206283. [PMID: 35585038 DOI: 10.1002/anie.202206283] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 01/06/2023]
Abstract
Coenzyme NADH regeneration is crucial for sustained photoenzymatic catalysis of CO2 reduction. However, light-driven NADH regeneration still suffers from the low regeneration efficiency and requires the use of a homogeneous Rh complex. Herein, a Rh complex-based electron transfer unit was chemically attached onto the linker of the MIL-125-NH2 . The coupling between the light-harvesting iminopyridine unit and electron-transferring Rh-complex facilitated the photo-induced electron transfer for the NADH regeneration with the yield of 66.4 % in 60 mins for 5 cycles. The formate dehydrogenase was further deposited onto the hydrophobic layer of the membrane by a reverse filtering technique, which forms the gas-liquid-solid reaction interface around the enzyme site. It gave an enhanced formic acid yield of 9.5 mM in 24 hours coupled with the in situ regenerated NADH. The work could shed light on the construction of integrated inorganic-enzyme hybrid systems for artificial photosynthesis.
Collapse
Affiliation(s)
- Gang Lin
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Yutao Hua
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Changchao Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dianxing Ju
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| |
Collapse
|
7
|
Lin G, Zhang Y, Hua Y, Zhang C, Jia C, Ju D, Yu C, Li P, Liu J. Bioinspired Metalation of the Metal‐Organic Framework MIL‐125‐NH
2
for Photocatalytic NADH Regeneration and Gas‐Liquid‐Solid Three‐Phase Enzymatic CO
2
Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Lin
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Shandong Energy Institute Qingdao 266101 P. R. China
| | - Yutao Hua
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Changchao Jia
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Dianxing Ju
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Jian Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Shandong Energy Institute Qingdao 266101 P. R. China
| |
Collapse
|
8
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
9
|
Han B, Jin Y, Chen B, Zhou W, Yu B, Wei C, Wang H, Wang K, Chen Y, Chen B, Jiang J. Maximizing Electroactive Sites in a Three‐Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Wei Zhou
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chuangyu Wei
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Yanli Chen
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249-0698 USA
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
10
|
Ahmad Rizal Lim FN, Marpani F, Anak Dilol VE, Mohamad Pauzi S, Othman NH, Alias NH, Nik Him NR, Luo J, Abd Rahman N. A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors. MEMBRANES 2021; 12:membranes12010028. [PMID: 35054554 PMCID: PMC8778536 DOI: 10.3390/membranes12010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Multi-enzyme cascade catalysis involved three types of dehydrogenase enzymes, namely, formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), alcohol dehydrogenase (ADH), and an equimolar electron donor, nicotinamide adenine dinucleotide (NADH), assisting the reaction is an interesting pathway to reduce thermodynamically stable molecules of CO2 from the atmosphere. The biocatalytic sequence is interesting because it operates under mild reaction conditions (low temperature and pressure) and all the enzymes are highly selective, which allows the reaction to produce three basic chemicals (formic acid, formaldehyde, and methanol) in just one pot. There are various challenges, however, in applying the enzymatic conversion of CO2, namely, to obtain high productivity, increase reusability of the enzymes and cofactors, and to design a simple, facile, and efficient reactor setup that will sustain the multi-enzymatic cascade catalysis. This review reports on enzyme-aided reactor systems that support the reduction of CO2 to methanol. Such systems include enzyme membrane reactors, electrochemical cells, and photocatalytic reactor systems. Existing reactor setups are described, product yields and biocatalytic productivities are evaluated, and effective enzyme immobilization methods are discussed.
Collapse
Affiliation(s)
- Fatin Nasreen Ahmad Rizal Lim
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Fauziah Marpani
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
- Correspondence: ; Tel.: +60-35543-6510; Fax: +60-35543-6300
| | - Victoria Eliz Anak Dilol
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Syazana Mohamad Pauzi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Nur Hidayati Othman
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Nur Hashimah Alias
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Nik Raikhan Nik Him
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Norazah Abd Rahman
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| |
Collapse
|
11
|
Han B, Jin Y, Chen B, Zhou W, Yu B, Wei C, Wang H, Wang K, Chen Y, Chen B, Jiang J. Maximizing Electroactive Sites in a Three-Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021; 61:e202114244. [PMID: 34716743 DOI: 10.1002/anie.202114244] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/07/2022]
Abstract
Synthesis of functional 3D COFs with irreversible bond is challenging. Herein, 3D imide-bonded COFs were constructed via the imidization reaction between phthalocyanine-based tetraanhydride and 1,3,5,7-tetra(4-aminophenyl)adamantine. These two 3D COFs are made up of interpenetrated pts networks according to powder X-ray diffraction and gas adsorption analyses. CoPc-PI-COF-3 doped with carbon black has been employed to fabricate the electrocatalytic cathode towards CO2 reduction reaction within KHCO3 aqueous solution, displaying the Faradaic efficiency of 88-96 % for the CO2 -to-CO conversion at the voltage range of ca. -0.60 to -1.00 V (vs. RHE). In particular, the 3D porous structure of CoPc-PI-COF-3 enables the active electrocatalytic centers occupying 32.7 % of total cobalt-phthalocyanine subunits, thus giving a large current density (jCO ) of -31.7 mA cm-2 at -0.90 V. These two parameters are significantly improved than the excellent 2D COF analogue (CoPc-PI-COF-1, 5.1 % and -21.2 mA cm-2 ).
Collapse
Affiliation(s)
- Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuangyu Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249-0698, USA
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
12
|
Zhu ZH, Zhao BH, Hou SL, Jiang XL, Liang ZL, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon-Particle-Modified Metal-Organic Framework for Enhancing the Efficiency of CO 2 Electroreduction into Formate. Angew Chem Int Ed Engl 2021; 60:23394-23402. [PMID: 34406687 DOI: 10.1002/anie.202110387] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/11/2022]
Abstract
Electrocatalytic reduction of CO2 by metal-organic frameworks (MOFs) has been widely investigated, but insufficient conductivity limits application. Herein, a porous 3D In-MOF {(Me2 NH2 )[In(BCP)]⋅2 DMF}n (V11) with good stability was constructed with two types of channels (1.6 and 1.2 nm diameter). V11 exhibits moderate catalytic activity in CO2 electroreduction with 76.0 % of Faradaic efficiency for formate (FEHCOO- ). Methylene blue molecules of suitable size and pyrolysis temperature were introduced and transformed into carbon particles (CPs) after calcination. The performance of the obtained CPs@V11 is significantly improved both in FEHCOO- (from 76.0 % to 90.1 %) and current density (2.2 times). Control experiments show that introduced CPs serve as accelerant to promote the charges and mass transfer in framework, and benefit to sufficiently expose active sites. This strategy can also work on other In-MOFs, demonstrating the universality of this method for electroreduction of CO2 .
Collapse
Affiliation(s)
- Zi-Hao Zhu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bo-Hang Zhao
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Ze-Long Liang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Zhu Z, Zhao B, Hou S, Jiang X, Liang Z, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon‐Particle‐Modified Metal–Organic Framework for Enhancing the Efficiency of CO
2
Electroreduction into Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Hao Zhu
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bo‐Hang Zhao
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Sheng‐Li Hou
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Xiao‐Lei Jiang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Ze‐Long Liang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Bin Zhao
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Alpdağtaş S, Turunen O, Valjakka J, Binay B. The challenges of using NAD +-dependent formate dehydrogenases for CO 2 conversion. Crit Rev Biotechnol 2021; 42:953-972. [PMID: 34632901 DOI: 10.1080/07388551.2021.1981820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In recent years, CO2 reduction and utilization have been proposed as an innovative solution for global warming and the ever-growing energy and raw material demands. In contrast to various classical methods, including chemical, electrochemical, and photochemical methods, enzymatic methods offer a green and sustainable option for CO2 conversion. In addition, enzymatic hydrogenation of CO2 into platform chemicals could be used to produce economically useful hydrogen storage materials, making it a win-win strategy. The thermodynamic and kinetic stability of the CO2 molecule makes its utilization a challenging task. However, Nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs), which have high selectivity and specificity, are attractive catalysts to overcome this issue and convert CO2 into fuels and renewable chemicals. It is necessary to improve the stability, cofactor necessity, and CO2 conversion efficiency of these enzymes, such as by combining them with appropriate hybrid systems. However, metal-independent, NAD+-dependent FDHs, and their CO2 reduction activity have received limited attention to date. This review outlines the CO2 reduction ability of these enzymes as well as their properties, reaction mechanisms, immobilization strategies, and integration with electrochemical and photochemical systems for the production of formic acid or formate. The biotechnological applications of FDH, future perspectives, barriers to CO2 reduction with FDH, and aspects that must be further developed are briefly summarized. We propose that constructing hybrid systems that include NAD+-dependent FDHs is a promising approach to convert CO2 and strengthen the sustainable carbon bio-economy.
Collapse
Affiliation(s)
- Saadet Alpdağtaş
- Department of Biology, Van Yuzuncu Yil University, Tusba, Turkey
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jarkko Valjakka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
15
|
Adaptive response of a metal-organic framework through reversible disorder-disorder transitions. Nat Chem 2021; 13:568-574. [PMID: 34045713 DOI: 10.1038/s41557-021-00684-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/17/2021] [Indexed: 11/08/2022]
Abstract
The ultrahigh porosity and varied functionalities of porous metal-organic frameworks make them excellent candidates for applications that range widely from gas storage and separation to catalysis and sensing. An interesting feature of some frameworks is the ability to open their pores to a specific guest, enabling highly selective separation. A prerequisite for this is bistability of the host structure, which enables the framework to breathe, that is, to switch between two stability minima in response to its environment. Here we describe a porous framework DUT-8(Ni)-which consists of nickel paddle wheel clusters and carboxylate linkers-that adopts a configurationally degenerate family of disordered states in the presence of specific guests. This disorder originates from the nonlinear linkers arranging the clusters in closed loops of different local symmetries that in turn propagate as complex tilings. Solvent exchange stimulates the formation of distinct disordered frameworks, as demonstrated by high-resolution transmission electron microscopy and diffraction techniques. Guest exchange was shown to stimulate repeatable switching transitions between distinct disorder states.
Collapse
|
16
|
Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun J. Hierarchically Porous Organic Cages. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mingming Hua
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Shuping Wang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Jian‐Ke Sun
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing P. R. China
| |
Collapse
|
17
|
Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun JK. Hierarchically Porous Organic Cages. Angew Chem Int Ed Engl 2021; 60:12490-12497. [PMID: 33694301 DOI: 10.1002/anie.202100849] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Imparting mesopores to organic cages of an intrinsic microporous nature to build up hierarchically porous cage soft materials is a grand challenge and will reshape the property and application scope of traditional organic cage molecules. Herein, we discovered how to engineer mesopores into microporous organic cages via their host-guest interactions with long chain ionic surfactants. Equally important, the ionic head of surfactants equips the supramolecularly assembled porous structures with charge-selective uptake and release function in solution. Interestingly, such hierarchically porous organic cage can serve as a nanoreactor once trapping enzymes within the cavity, which show 5-fold enhanced activity of enzymatic catalysis when compared with the free enzymes.
Collapse
Affiliation(s)
- Mingming Hua
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Shuping Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
18
|
Guo X, Wang X, Liu Y, Li Q, Wang J, Liu W, Zhao ZK. Structure-Guided Design of Formate Dehydrogenase for Regeneration of a Non-Natural Redox Cofactor. Chemistry 2020; 26:16611-16615. [PMID: 32815230 DOI: 10.1002/chem.202003102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Indexed: 12/22/2022]
Abstract
Formate dehydrogenase (FDH) has been widely used for the regeneration of the reduced nicotinamide adenine dinucleotide (NADH). To utilize nicotinamide cytosine dinucleotide (NCD) as a non-natural redox cofactor, it remains challenging as NCDH, the reduced form of NCD, has to be efficiently regenerated. Here we demonstrate successful engineering of FDH for NCDH regeneration. Guided by the structural information of FDH from Pseudomonas sp. 101 (pseFDH) and the NAD-pseFDH complex, semi-rational strategies were applied to design mutant libraries and screen for NCD-linked activity. The most active mutant reached a cofactor preference switch from NAD to NCD by 3700-fold. Homology modeling analysis showed that these mutants had reduced cofactor binding pockets and dedicated hydrophobic interactions for NCD. Efficient regeneration of NCDH was implemented by powering an NCD-dependent D-lactate dehydrogenase for stoichiometric and stereospecific reduction of pyruvate to D-lactate at the expense of formate.
Collapse
Affiliation(s)
- Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yuxue Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qing Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junting Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wujun Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
19
|
Chen Y, Jiménez-Ángeles F, Qiao B, Krzyaniak MD, Sha F, Kato S, Gong X, Buru CT, Chen Z, Zhang X, Gianneschi NC, Wasielewski MR, Olvera de la Cruz M, Farha OK. Insights into the Enhanced Catalytic Activity of Cytochrome c When Encapsulated in a Metal–Organic Framework. J Am Chem Soc 2020; 142:18576-18582. [DOI: 10.1021/jacs.0c07870] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yijing Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Felipe Jiménez-Ángeles
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Fanrui Sha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Satoshi Kato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xinyi Gong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Cassandra T. Buru
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Nathan C. Gianneschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Simpson Querrey Institute and Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Zhong H, Lo W, Man T, Williams BP, Li D, Chen S, Pei H, Li L, Tsung C. Stabilizing DNAzymes through Encapsulation in a Metal–Organic Framework. Chemistry 2020; 26:12931-12935. [DOI: 10.1002/chem.202002178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Huiye Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Wei‐Shang Lo
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Benjamin P. Williams
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Sheng‐Yu Chen
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Pudong, Shanghai 201210 P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Chia‐Kuang Tsung
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
21
|
Huang S, Kou X, Shen J, Chen G, Ouyang G. "Armor-Plating" Enzymes with Metal-Organic Frameworks (MOFs). Angew Chem Int Ed Engl 2020; 59:8786-8798. [PMID: 31901003 DOI: 10.1002/anie.201916474] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 01/22/2025]
Abstract
Cell-free enzymatic catalysis (CFEC) is an emerging biotechnology that enable the biological transformations in complex natural networks to be imitated. This biomimetic approach allows industrial products such as biofuels and biochemical to be manufactured in a green manner. Nevertheless, the main challenge in CFEC is the poor stability, which restricts the effectiveness and lifetime of enzymes in sophisticated applications. Immobilization of the enzymes within solid carriers is considered an efficient strategy for addressing these obstacles. Specifically, putting an "armor-like" porous metal-organic framework (MOF) exoskeleton tightly around the enzymes not only shields the enzymes against external stimulus, but also allows the selective transport of guests through the accessible porous network. Herein we present the concept of this biotechnology of MOF-entrapped enzymes and its cutting-edge applications.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, China
| |
Collapse
|
22
|
Huang S, Kou X, Shen J, Chen G, Ouyang G. “Panzerung” von Enzymen mit Metall‐organischen Gerüsten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916474] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital Sun Yat-sen University Guangzhou 510120 China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital Sun Yat-sen University Guangzhou 510120 China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing Zhengzhou University, Kexue Avenue 100 Zhengzhou 450001 China
| |
Collapse
|
23
|
Liang S, Wu XL, Xiong J, Zong MH, Lou WY. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213149] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Bairagya MD, Bujol RJ, Elgrishi N. Fighting Deactivation: Classical and Emerging Strategies for Efficient Stabilization of Molecular Electrocatalysts. Chemistry 2019; 26:3991-4000. [PMID: 31710129 DOI: 10.1002/chem.201904499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/12/2022]
Abstract
Development of highly active molecular electrocatalysts for fuel-forming reactions has relied heavily on understanding mechanistic aspects of the electrochemical transformations. Careful fine-tuning of the ligand environment oriented mechanistic pathways towards higher activity and optimal product distribution for several catalysts. Unfortunately, many catalysts deactivate in bulk electrolysis conditions, diminishing the impact of the plethora of highly tuned molecular electrocatalytic systems. This Minireview covers classical and emerging methods developed to circumvent catalyst deactivation and degradation, with an emphasis on successes with molecular electrocatalysts.
Collapse
Affiliation(s)
- Monojit Das Bairagya
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Ryan J Bujol
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
25
|
He K, Li Z, Wang L, Fu Y, Quan H, Li Y, Wang X, Gunasekaran S, Xu X. A Water-Stable Luminescent Metal-Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26250-26260. [PMID: 31251555 DOI: 10.1021/acsami.9b06151] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal-organic frameworks (MOFs) have shown considerable prospects for sensing pesticide residues. However, the low stability of MOFs in water hinders them from testing food and environmental samples. Herein, we report an easy and cost-efficient synthesis of a water-stable zirconium luminescent MOF (Zr-LMOF) and its application for rapid, sensitive, and in situ detection of organophosphorous pesticides (OPPs). The Zr-MOF is prepared using Zr(IV) and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. The synthesized Zr-LMOF rapidly absorbs trace amounts of OPP parathion-methyl and indicates its presence. A low limit of detection of 0.115 μg kg-1 (0.438 nM) with a wide linear range from 70 μg kg-1 to 5.0 mg kg-1 was achieved. Satisfactory recoveries ranging from 78% to 107% were obtained for spiked food and environmental samples. Further, the Zr-LMOF was applied to imitate rapid and in situ imaging detection of pesticide residue on fresh produce nondestructively; visual signals appeared under ultraviolet light within 5 min. These results suggest that the Zr-LMOF has the potential for low-cost, rapid, and in situ imaging detection of OPPs contamination via easy-to-read visual signal.
Collapse
Affiliation(s)
- Kaiyu He
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Liu Wang
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Haoran Quan
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Xinquan Wang
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering , University of Wisconsin-Madison , 460 Henry Mall , Madison , Wisconsin 53706 , United States
| | - Xiahong Xu
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| |
Collapse
|