1
|
Kim H, Song I, Kim J, Seo H, Park N, Choi HJ, Yang W, Sung YE, Lee WB, Lee JC. Synthesis of a Nitrile- and Ether-Rich Covalent Organic Framework as a Filler and Its Application for Proton Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23155-23164. [PMID: 40179333 DOI: 10.1021/acsami.4c22819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the fabrication of proton exchange membranes (PEMs), incorporating nanomaterials into the polymer matrix is a promising strategy for enhancing membrane stability. However, this approach often results in a trade-off with proton conductivity. To address this limitation and develop efficient additives, we synthesized a novel covalent organic framework with a high density of ether and nitrile groups (COF-EN) via nucleophilic substitution as a nanofiller. This nanofiller was specifically designed to enhance both the proton conductivity and the stability of the membranes. The chemical structure of the synthesized COF-EN was confirmed through various analytical techniques, and it was subsequently integrated into a sulfonated poly(ether ether ketone) (SPEEK) matrix to fabricate advanced composite membranes. The resulting membranes demonstrated enhanced dimensional, thermal, and oxidative stability due to strong intermolecular interactions between the SPEEK chains and COF-EN. Additionally, the polar nitrile and ether groups in the COF-EN facilitated water absorption in the membranes, contributing to improved proton conductivity. As a result, SPEEK/COF-EN_3 exhibited a 2.3-fold increase in power density compared to the pristine SPEEK membrane, establishing COF-EN as an effective nanofiller for PEM fabrication.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Inhye Song
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinseok Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Huiran Seo
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Namjun Park
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Ji Choi
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - WooKeon Yang
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yung-Eun Sung
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Chan Lee
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Priyadarshini A, Divya S, Swain J, Das N, Swain S, Hajra S, Panda S, Samantaray R, Belal M, Kaja KR, Kumar N, Kim HJ, Oh TH, Vivekananthan V, Sahu R. Advancements in framework materials for enhanced energy harvesting. NANOSCALE 2025; 17:1790-1811. [PMID: 39666371 DOI: 10.1039/d4nr04570j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Energy harvesting, the process of capturing ambient energy from various sources and converting it into usable electrical power, has attracted a lot of attention due to its potential to provide long-term and self-sufficient energy solutions. This comprehensive review thoroughly explores the use of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) for energy harvesting by piezoelectric and triboelectric nanogenerators (PENGs and TENGs). It begins by classifying and outlining the structural diversity of MOFs and COFs, which is key to understanding their importance in energy applications. Key characterization techniques are focused on emphasizing their importance in optimizing material properties for efficient energy conversion. The working mechanisms of PENGs and TENGs are discussed, focusing on their ability to transform mechanical energy into electrical energy and their advantages in operation. The use of MOFs and COFs in energy harvesting applications is then discussed, including synthesis procedures, unique characteristics relevant to electricity conversion, and various practical applications such as self-powered sensors and wearable electronics. Current challenges such as stability, scalability, and performance improvements are explored, as well as proposed future improvements to help advance current research. Finally, the study highlights the importance of framework materials for the development of energy harvesting systems, providing an invaluable resource for academics and engineers seeking to exploit the potential of these materials for renewable energy sources. The goal of this article is to stimulate further invention and implementation of efficient materials-based energy harvesting framework devices by integrating recent advances and mapping future possibilities.
Collapse
Affiliation(s)
- Anulipsa Priyadarshini
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - S Divya
- Department of School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jaykishon Swain
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Niharika Das
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Subrat Swain
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Raghabendra Samantaray
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mohamed Belal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Kushal Ruthvik Kaja
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Naveen Kumar
- Department Materials Engineering, Indian Institute of Science, CV Raman Avenue, Bangalore, 560012, India
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Tae Hwan Oh
- Department of School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Venkateswaran Vivekananthan
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur 522502, India
- Department of Integrated Research and Discovery, Koneru Lakshmaiah Education Foundation, Guntur 522502, India
| | - Rojalin Sahu
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
3
|
Yin C, Ye X, Tao S, Zhao D, Zhi Y, Jiang D. Helicene Covalent Organic Frameworks for Robust Light Harvesting and Efficient Energy Transfers. Angew Chem Int Ed Engl 2024; 63:e202411558. [PMID: 39024117 DOI: 10.1002/anie.202411558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Helicenes represent a class of fascinating π compounds with fused yet folded backbones. Despite their broad structural diversity, harnessing helicenes to develop well-defined materials is still a formidable challenge. Here we report the synthesis of crystalline porous helicene materials by exploring helicenes to synthesize covalent 2D lattices and layered π frameworks. Topology-directed polymerization of [6]helicenes and porphyrin creates 2D covalent networks with alternate helicene-porphyrin alignment along the x and y directions at a 1.5-nm interval and develops [6]helicene frameworks through reversed anti-AA stack along the z direction to form segregated [6]helicene and porphyrin columnar π arrays. Notably, this π configuration enables the frameworks to be highly red luminescent with benchmark quantum yields. The [6]helicene frameworks trigger effieicnt intra-framework singlet-to-singlet state energy transfer from [6]helicene to porphyrin and facilitate intermolecular triplet-to-triplet state energy transfer from frameworks to molecular oxygen to produce reactive oxygen species, harvesting a wide range of photons from ultraviolet to near-infrared regions for light emitting and photo-to-chemical conversion. This study introduces a new family of extended frameworks, laying the groundwork for exploring well-defined helicene materials with unprecedented structures and functions.
Collapse
Affiliation(s)
- Cong Yin
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, Chinaa
| | - Xingyao Ye
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Dan Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, Chinaa
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Tao S, Jiang D. Accelerating Anhydrous Proton Transport in Covalent Organic Frameworks: Pore Chemistry and its Impacts. Angew Chem Int Ed Engl 2024; 63:e202408296. [PMID: 38843109 DOI: 10.1002/anie.202408296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 07/17/2024]
Abstract
Proton conduction is important in both fundamental research and technological development. Here we report designed synthesis of crystalline porous covalent organic frameworks as a new platform for high-rate anhydrous proton conduction. By developing nanochannels with different topologies as proton pathways and loading neat phosphoric acid to construct robust proton carrier networks in the pores, we found that pore topology is crucial for proton conduction. Its effect on increasing proton conductivity is in an exponential mode other than linear fashion, endowing the materials with exceptional proton conductivities exceeding 10-2 S cm-1 over a broad range of temperature and a low activation energy barrier down to 0.24 eV. Remarkably, the pore size controls conduction mechanism, where mesopores promote proton conduction via a fast-hopping mechanism, while micropores follow a sluggish vehicle process. Notably, decreasing phosphoric acid loading content drastically reduces proton conductivity and greatly increases activation energy barrier, emphasizing the pivotal role of well-developed proton carrier network in proton transport. These findings and insights unveil a new general and transformative guidance for designing porous framework materials and systems for high-rate ion conduction, energy storage, and energy conversion.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Rao Z, Zhu D, Xu Y, Lan M, Jiang L, Wang Z, Tang B, Liu H. Enhanced Proton Transfer in Proton-Exchange Membranes with Interconnected and Zwitterion-Functionalized Covalent Porous Material Structures. CHEMSUSCHEM 2023; 16:e202202279. [PMID: 36811282 DOI: 10.1002/cssc.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Indexed: 06/10/2023]
Abstract
Excellent proton-conductive accelerators are indispensable for efficient proton-exchange membranes (PEMs). Covalent porous materials (CPMs), with adjustable functionalities and well-ordered porosities, show much promise as effective proton-conductive accelerators. In this study, an interconnected and zwitterion-functionalized CPM structure based on carbon nanotubes and a Schiff-base network (CNT@ZSNW-1) is constructed as a highly efficient proton-conducting accelerator by in situ growth of SNW-1 onto carbon nanotubes (CNTs) and subsequent zwitterion functionalization. A composite PEM with enhanced proton conduction is acquired by integrating CNT@ZSNW-1 with Nafion. Zwitterion functionalization offers additional proton-conducting sites and promotes the water retention capacity. Moreover, the interconnected structure of CNT@ZSNW-1 induces a more consecutive arrangement of ionic clusters, which significantly relieves the proton transfer barrier of the composite PEM and increases its proton conductivity to 0.287 S cm-1 under 95 % RH at 90 °C (about 2.2 times that of the recast Nafion, 0.131 S cm-1 ). Furthermore, the composite PEM displays a peak power density of 39.6 mW cm-2 in a direct methanol fuel cell, which is significantly higher than that of the recast Nafion (19.9 mW cm-2 ). This study affords a potential reference for devising and preparing functionalized CPMs with optimized structures to expedite proton transfer in PEMs.
Collapse
Affiliation(s)
- Zhuang Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deyu Zhu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - You Xu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Minqiu Lan
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lipei Jiang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhengyun Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Beibei Tang
- Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Hongfang Liu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Sun YX, Zhao J, Li XZ, Jiang H, Cai YJ, Yang X, Liu Y, Li YB, Yang ZH, Wu YG, Chen LY, Gai JG. Donnan Effect-Engineered Covalent Organic Framework Membranes toward Size- and Charge-Based Precise Molecular Sieving. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18550-18558. [PMID: 37010144 DOI: 10.1021/acsami.3c02556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Covalent organic frameworks (COFs), with ordered pores and well-defined topology, are ideal materials for nanofiltration (NF) membranes because of their capacity of transcending the permeance/selectivity trade-off predicament. However, most reported COF-based membranes are focused on separating molecules with different sizes, resulting in low selectivity to similar molecules with different charges. Here, the negatively charged COF layer was fabricated in situ on a microporous support for the separation of molecules with different sizes and charges. Ultrahigh water permeance (216.56 L m-2 h-1 bar-1) was obtained because of the ordered pores and excellent hydrophilicity, which exceeds that of most membranes with similar rejections. For the first time, we used multifarious dyes with different sizes and charges, for the investigation of the selectivity behavior caused by the Donnan effect and size exclusion. The obtained membranes represent superior rejections to negatively and neutrally charged dyes larger than 1.3 nm, while positively charged dyes with a size of 1.6 nm can pass through the membrane, resulting in the separation of negative/positive mixed dyes with similar molecular sizes. This strategy of combining the Donnan effect and size exclusion in nanoporous materials may evolve into a generic platform for sophisticated separation.
Collapse
Affiliation(s)
- Yi-Xing Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Jing Zhao
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang 111000, Liaoning, China
| | - Xin-Zheng Li
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu 610200, Sichuan, China
| | - Han Jiang
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu 610200, Sichuan, China
| | - Ya-Juan Cai
- Sichuan Guojian Inspection Co., Ltd., No. 17, Section 1, Kangcheng Road, Jiangyang District, Luzhou 646099, Sichuan, China
| | - Xu Yang
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang 111000, Liaoning, China
| | - Yang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Yi-Bo Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Zi-Hao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Ya-Ge Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Li-Ye Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
7
|
Hao L, Jia S, Qiao X, Lin E, Yang Y, Chen Y, Cheng P, Zhang Z. Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction. Angew Chem Int Ed Engl 2023; 62:e202217240. [PMID: 36478518 DOI: 10.1002/anie.202217240] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Developing new materials for anhydrous proton conduction under high-temperature conditions is significant and challenging. Herein, we create a series of highly crystalline covalent organic frameworks (COFs) via a pore engineering approach. We simultaneously engineer the pore geometry (generating concave dodecagonal nanopores) and pore surface (installing multiple functional groups such as -C=N-, -OH, -N=N- and -CF3 ) to improve the utilization efficiency and host-guest interaction of proton carriers, hence benefiting the enhancement of anhydrous proton conduction. Upon loading with H3 PO4 , COFs can realize a proton conductivity of 2.33×10-2 S cm-1 under anhydrous conditions, among the highest values of all COF materials. These materials demonstrate good stability and maintain high proton conductivity over a wide temperature range (80-160 °C). This work paves a new way for designing COFs for anhydrous proton conduction applications, which shows great potential as high-temperature proton exchange membranes.
Collapse
Affiliation(s)
- Liqin Hao
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuping Jia
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xueling Qiao
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - En Lin
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi Yang
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Medicinal Chemical biology, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science, Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Medicinal Chemical biology, Nankai University, Tianjin, 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science, Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Dong W, Qin Z, Wang K, Xiao Y, Liu X, Ren S, Li L. Isomeric Oligo(Phenylenevinylene)-Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. Angew Chem Int Ed Engl 2023; 62:e202216073. [PMID: 36450661 DOI: 10.1002/anie.202216073] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Imine-linked covalent organic frameworks (COFs) have been extensively studied in photocatalysis because of their easy synthesis and excellent crystallinity. The effect of imine-bond orientation on the photocatalytic properties of COFs, however, is still rarely studied. Herein, we report two novel COFs with different orientations of imine bonds using oligo(phenylenevinylene) moieties. The COFs showed similar structures but great differences in their photoelectric properties. COF-932 demonstrated a superior hydrogen evolution performance compared to COF-923 when triethanolamine was used as the sacrificial agent. Interestingly, the use of ascorbic acid led to the protonation of the COFs, further altering the direction of electron transfer. The photocatalytic performances were increased to 23.4 and 0.73 mmol g-1 h-1 for protonated COF-923 and COF-932, respectively. This study provides a clear strategy for the design of imine-linked COF-based photocatalysts and advances the development of COFs.
Collapse
Affiliation(s)
- Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhiying Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kuixing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yueyuan Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Kim SY, Kang M, Kang DW, Kim H, Choe JH, Yun H, Hong CS. Electronic Effect-Modulated Enhancements of Proton Conductivity in Porous Organic Polymers. Angew Chem Int Ed Engl 2023; 62:e202214301. [PMID: 36367202 DOI: 10.1002/anie.202214301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/13/2022]
Abstract
We proposed a new strategy to maximize the density of acidic groups by modulating the electronic effects of the substituents for high-performance proton conductors. The conductivity of the sulfonated 1-MeL40-S with methyl group corresponds to 2.29×10-1 S cm-1 at 80 °C and 90 % relative humidity, remarkably an 22100-fold enhancement over the nonsulfonated 1-MeL40. 1-MeL40-S maintains long-term conductivity for one month. We confirm that this synthetic method is generalized to the extended version POPs, 2-MeL40-S and 3-MeL40-S. In particular, the conductivities of the POPs compete with those of top-level porous organic conductors. Moreover, the activation energy of the POPs is lower than that of the top-performing materials. This study demonstrates that systematic alteration of the electronic effects of substituents is a useful route to improve the conductivity and long-term durability of proton-conducting materials.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Liu M, Deng WH, Wang X, Liu J, Jin S, Xu G, Tan B. Hydrogen Bond Activation by Pyridinic Nitrogen for the High Proton Conductivity of Covalent Triazine Framework Loaded with H 3 PO 4. CHEMSUSCHEM 2022; 15:e202201298. [PMID: 36184870 DOI: 10.1002/cssc.202201298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Under high temperature anhydrous conditions, it is still a formidable challenge to improve the performance of proton-conducting materials based on H3 PO4 and elucidate its proton conduction mechanism. Herein, a highly stable covalent triazine frameworks (CTFs) based on H3 PO4 is reported. The more pyridinic nitrogen CTFs contain, the higher proton conductivity is. Compared with H3 PO4 @CTF-L with less pyridinic nitrogen, H3 PO4 @CTF-H has a higher proton conductivity of 1.6×10-1 S cm-1 at 150 °C under anhydrous conditions, which does not decay after about 18 months exposure in air. The high proton conductivity is associated with the formation and breaking of the activated Ntriazine ⋯H+ ⋯H2 PO4 - pairs by pyridinic nitrogen of CTFs. The outstanding long-term stability is mainly attributed to the ultra-strong triazine skeleton structure of CTFs.
Collapse
Affiliation(s)
- Manying Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan, 461000, P. R. China
| | - Wei-Hua Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueqing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jing Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
11
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022; 61:e202208086. [DOI: 10.1002/anie.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guoxing Jiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wenwu Zou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhaoyuan Ou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Weifeng Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
12
|
Im YK, Lee DG, Noh HJ, Yu SY, Mahmood J, Lee SY, Baek JB. Crystalline Porphyrazine-Linked Fused Aromatic Networks with High Proton Conductivity. Angew Chem Int Ed Engl 2022; 61:e202203250. [PMID: 35445524 DOI: 10.1002/anie.202203250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 02/02/2023]
Abstract
Fused aromatic networks (FANs) have been studied in efforts to overcome the low physicochemical stability of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), while preserving crystallinity. Herein, we describe the synthesis of a highly stable and crystalline FAN (denoted as Pz-FAN) using pyrazine-based building blocks to form porphyrazine (Pz) linkages via an irreversible reaction. Unlike most COFs and FANs, which are synthesized from two different building blocks, the new Pz-FAN is formed using a single building block by self-cyclotetramerization. Controlled and optimized reaction conditions result in a highly crystalline Pz-FAN with physicochemical stability. The newly prepared Pz-FAN displayed a high magnitude (1.16×10-2 S cm-1 ) of proton conductivity compared to other reported FANs and polymers. Finally, the Pz-FAN-based membrane was evaluated for a proton-exchange membrane fuel cell (PEMFC), which showed maximum power and current densities of 192 mW cm-2 and 481 mA cm-2 , respectively.
Collapse
Affiliation(s)
- Yoon-Kwang Im
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| | - Dong-Gue Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| | - Soo-Young Yu
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| | - Javeed Mahmood
- Advanced Membranes & Porous Materials (AMPM) Center, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
13
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoxing Jiang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Wenwu Zou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhaoyuan Ou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Longhai Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Weifeng Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Xiujun Wang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Huiyu Song
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhiming Cui
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhenxing Liang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Li Du
- South China University of Technology 381 Wushan Road Tianhe District Guangzhou CHINA
| |
Collapse
|
14
|
Li H, Xie F, Snyders R, Bittencourt C, Li W. Structural engineering of nitrogen‐doped MoS2 anchored on nitrogen‐doped carbon nanotubes towards enhanced hydrogen evolution reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- He Li
- Hengshui University Department of Chemistry CHINA
| | - Fei Xie
- Tianjin University of Technology School of Materials Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Rony Snyders
- Universite de Mons Chimie des Interactions Plasma-Surface BELGIUM
| | | | - Wenjiang Li
- Tianjin University of Technology Binshuixidao 391Materials Science and EngineeringLiqizhuangXiqing 300384 Tianjin CHINA
| |
Collapse
|
15
|
Im Y, Lee D, Noh H, Yu S, Mahmood J, Lee S, Baek J. Crystalline Porphyrazine‐Linked Fused Aromatic Networks with High Proton Conductivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yoon‐Kwang Im
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Dong‐Gue Lee
- Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Hyuk‐Jun Noh
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Soo‐Young Yu
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Javeed Mahmood
- Advanced Membranes & Porous Materials (AMPM) Center Physical Sciences and Engineering (PSE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Sang‐Young Lee
- Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Jong‐Beom Baek
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| |
Collapse
|
16
|
Zacharias SC, Ramon G, Bourne SA. Solvatochromism and the effect of solvent on properties in a two-dimensional coordination polymer of cobalt-trimesate. CrystEngComm 2022. [DOI: 10.1039/d2ce00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A 2D coordination polymer can exchange guest species from liquid sorption, with accompanying visible colour changes.
Collapse
Affiliation(s)
- Savannah C. Zacharias
- Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Gaëlle Ramon
- Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Susan A. Bourne
- Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
17
|
Li C, Li D, Zhang W, Li H, Yu G. Towards High‐Performance Resistive Switching Behavior through Embedding a D‐A System into 2D Imine‐Linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dong Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
18
|
Li C, Li D, Zhang W, Li H, Yu G. Towards High-Performance Resistive Switching Behavior through Embedding a D-A System into 2D Imine-Linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:27135-27143. [PMID: 34585820 DOI: 10.1002/anie.202112924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/22/2022]
Abstract
Developing new materials for the fabrication of resistive random-access memory is of great significance in this period of big data. Herein, we present a novel design strategy of embedding donor (D) and acceptor (A) fragments into imine-linked frameworks to construct resistive switching covalent organic frameworks (COFs) for high-performance memristors. Two D-A-type two-dimensional COFs, COF-BT-TT and COF-TT-TVT, were designed and synthesized using a conventional solvothermal approach, and high-quality thin films of these materials deposited on ITO substrate exhibited great potential as an active layer for memristors. Rewritable memristors based on 100 nm thick COF-TT-BT and COF-TT-TVT films showed a high ON/OFF current ratio (ca. 105 and 104 ) and low driving voltage (1.30 and 1.60 V). The cycle period and retention time for COF-TT-BT-based rewritable devices were as high as 319 cycles and 3.3×104 s at a constant voltage of 0.1 V (160 cycles and 1.2×104 s for the COF-TT-TVT memristor).
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z. Grotthuss Proton-Conductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Angew Chem Int Ed Engl 2021; 60:21838-21845. [PMID: 34369054 DOI: 10.1002/anie.202105725] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 01/04/2023]
Abstract
Herein, we describe the synthesis of two highly crystalline, robust, hydrophilic covalent organic frameworks (COFs) that display intrinsic proton conduction by the Grotthuss mechanism. The enriched redox-active azo groups in the COFs can undergo a proton-coupled electron transfer reaction for energy storage, making the COFs ideal candidates for pseudocapacitance electrode materials. After in situ hybridization with carbon nanotubes, the composite exhibited a high three-electrode specific capacitance of 440 F g-1 at the current density of 0.5 A g-1 , among the highest for COF-based supercapacitors, and can retain 90 % capacitance even after 10 000 charge-discharge cycles. This is the first example using Grotthuss proton-conductive organic materials to create pseudocapacitors that exhibited both high power density and energy density. The assembled asymmetric two-electrode supercapacitor showed a maximum energy density of 71 Wh kg-1 with a maximum power density of 42 kW kg-1 , surpassing that of all reported COF-based systems.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Penghui Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liqin Hao
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z. Grotthuss Proton‐Conductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Yang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Penghui Zhang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Liqin Hao
- College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Liu L, Yin L, Cheng D, Zhao S, Zang H, Zhang N, Zhu G. Surface‐Mediated Construction of an Ultrathin Free‐Standing Covalent Organic Framework Membrane for Efficient Proton Conduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lin Liu
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Liying Yin
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Dongming Cheng
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Shuai Zhao
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Hong‐Ying Zang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ning Zhang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
22
|
Liu L, Yin L, Cheng D, Zhao S, Zang HY, Zhang N, Zhu G. Surface-Mediated Construction of an Ultrathin Free-Standing Covalent Organic Framework Membrane for Efficient Proton Conduction. Angew Chem Int Ed Engl 2021; 60:14875-14880. [PMID: 33877733 DOI: 10.1002/anie.202104106] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/08/2022]
Abstract
As a new class of crystalline porous organic materials, covalent organic frameworks (COFs) have attracted considerable attention for proton conduction owing to their regular channels and tailored functionality. However, most COFs are insoluble and unprocessable, which makes membrane preparation for practical use a challenge. In this study, we used surface-initiated condensation polymerization of a trialdehyde and a phenylenediamine for the synthesis of sulfonic COF (SCOF) coatings. The COF layer thickness could be finely tuned from 10 to 100 nm by controlling the polymerization time. Moreover, free-standing COF membranes were obtained by sacrificing the bridging layer without any decomposition of the COF structure. Benefiting from the abundant sulfonic acid groups in the COF channels, the proton conductivity of the SCOF membrane reached 0.54 S cm-1 at 80 °C in pure water. To our knowledge, this is one of the highest values for a pristine COF membrane in the absence of additional additives.
Collapse
Affiliation(s)
- Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liying Yin
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Dongming Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shuai Zhao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
23
|
Li J, Wang J, Wu Z, Tao S, Jiang D. Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Jing Wang
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Zhenzhen Wu
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Shanshan Tao
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
24
|
Li J, Wang J, Wu Z, Tao S, Jiang D. Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angew Chem Int Ed Engl 2021; 60:12918-12923. [DOI: 10.1002/anie.202101400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Jing Wang
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Zhenzhen Wu
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Shanshan Tao
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
25
|
Wang SS, Liu YR, Yu X, Zhou Y, Zhong TT, Li YT, Xie LH, Huang W. Supramolecular Non-Helical One-Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol. Angew Chem Int Ed Engl 2021; 60:3979-3983. [PMID: 33185005 DOI: 10.1002/anie.202012548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Indexed: 01/03/2023]
Abstract
The design and assembly of photoelectro-active molecular channel structures is of great importance because of their advantages in charge mobility, photo-induced electron transfer, proton conduction, and exciton transport. Herein, we report the use of racemic 9,9'-diphenyl-[2,2'-bifluorene]-9,9'-diol (DPFOH) enantiomers to produce non-helical 1D channel structures. Although the individual molecule does not present any molecular symmetry, two pairs of racemic DPFOH enantiomers can form a C2 -symmetric closed loop via the stereoscopic herringbone assembly. Thanks to the special symmetry derived from the enantiomer pairs, the multiple supramolecular interactions, and the padding from solvent molecules, this conventionally unstable topological structure is achieved. The etching of solvent in 1D channels leads to the formation of microtubes, which exhibit a significant lithium-ion conductivity of 1.77×10-4 S cm, indicating the potential research value of this novel 1D channel structure.
Collapse
Affiliation(s)
- Sha-Sha Wang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yi-Ran Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiang Yu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yang Zhou
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Tao-Tao Zhong
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yue-Tian Li
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| |
Collapse
|
26
|
Liu B, Hu B, Du J, Cheng D, Zang H, Ge X, Tan H, Wang Y, Duan X, Jin Z, Zhang W, Li Y, Su Z. Precise Molecular‐Level Modification of Nafion with Bismuth Oxide Clusters for High‐performance Proton‐Exchange Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bailing Liu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun University of Science and Technology Changchun Changchun Jilin 130024 P. R. China
| | - Bo Hu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- School of chemistry and pharmaceutical engineering Jilin Institute of Chemical Technology Jinlin 132022 P. R. China
| | - Jing Du
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Dongming Cheng
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Hong‐Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xin Ge
- Electron Microscopy Center Jilin University Changchun 130012 China
| | - Huaqiao Tan
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yonghui Wang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Zhao Jin
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Wei Zhang
- Electron Microscopy Center Jilin University Changchun 130012 China
| | - Yangguang Li
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalys Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun University of Science and Technology Changchun Changchun Jilin 130024 P. R. China
| |
Collapse
|
27
|
Liu B, Hu B, Du J, Cheng D, Zang HY, Ge X, Tan H, Wang Y, Duan X, Jin Z, Zhang W, Li Y, Su Z. Precise Molecular-Level Modification of Nafion with Bismuth Oxide Clusters for High-performance Proton-Exchange Membranes. Angew Chem Int Ed Engl 2021; 60:6076-6085. [PMID: 33296135 DOI: 10.1002/anie.202012079] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 11/07/2022]
Abstract
Fabricating proton exchange membranes (PEMs) with high ionic conductivity and ideal mechanical robustness through regulation of the membrane microstructures achieved by molecular-level hybridization remains essential but challenging for the further development of high-performance PEM fuel cells. In this work, by precisely hybridizing nano-scaled bismuth oxide clusters into Nafion, we have fabricated the high-performance hybrid membrane, Nafion-Bi12 -3 %, which showed a proton conductivity of 386 mS cm-1 at 80 °C in aqueous solution with low methanol permeability, and conserved the ideal mechanical and chemical stabilities as PEMs. Moreover, molecular dynamics (MD) simulation was employed to clarify the structural properties and the assembly mechanisms of the hybrid membrane on the molecular level. The maximum current density and power density of Nafion-Bi12 -3 % for direct methanol fuel cells reached to 432.7 mA cm-2 and 110.2 mW cm-2 , respectively. This work provides new insights into the design of versatile functional polymer electrolyte membranes through polyoxometalate hybridization.
Collapse
Affiliation(s)
- Bailing Liu
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology Changchun, Changchun, Jilin, 130024, P. R. China
| | - Bo Hu
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- School of chemistry and pharmaceutical engineering, Jilin Institute of Chemical Technology, Jinlin, 132022, P. R. China
| | - Jing Du
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Dongming Cheng
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xin Ge
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Huaqiao Tan
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yonghui Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Zhao Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Yangguang Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology Changchun, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
28
|
Guo X, Lin E, Gao J, Mao T, Yan D, Cheng P, Ma S, Chen Y, Zhang Z. Rational Construction of Borromean Linked Crystalline Organic Polymers. Angew Chem Int Ed Engl 2020; 60:2974-2979. [DOI: 10.1002/anie.202012504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Xiuxiu Guo
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - En Lin
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jia Gao
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Tianhui Mao
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Dong Yan
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Yao Chen
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
29
|
Guo X, Lin E, Gao J, Mao T, Yan D, Cheng P, Ma S, Chen Y, Zhang Z. Rational Construction of Borromean Linked Crystalline Organic Polymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiuxiu Guo
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - En Lin
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jia Gao
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Tianhui Mao
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Dong Yan
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Yao Chen
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicine Chemistry Biology College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
30
|
Wang S, Liu Y, Yu X, Zhou Y, Zhong T, Li Y, Xie L, Huang W. Supramolecular Non‐Helical One‐Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sha‐Sha Wang
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Yi‐Ran Liu
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xiang Yu
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Yang Zhou
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Tao‐Tao Zhong
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Yue‐Tian Li
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Ling‐Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD) Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| |
Collapse
|
31
|
Zhao K, He Y, Shan C, Ren J, Wojtas L, Wang L, Li G, Song Z, Shi X. “Orthogonal‐Twisted‐Arm” Ligands for The Construction of Metal–Organic Frameworks (MOFs): New Topology and Catalytic Reactivity. Chemistry 2020; 26:16272-16276. [DOI: 10.1002/chem.202003878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/01/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Ying He
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Junyu Ren
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Li Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Xiaodong Shi
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| |
Collapse
|
32
|
Wang Y, Zhang M, Yang Q, Yin J, Liu D, Shang Y, Kang Z, Wang R, Sun D, Jiang J. Single-crystal-to-single-crystal transformation and proton conductivity of three hydrogen-bonded organic frameworks. Chem Commun (Camb) 2020; 56:15529-15532. [DOI: 10.1039/d0cc05402j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, we report the SCSC transformation and proton conductivity of three H-bonded organic frameworks. The results show that H-bonded systems can improve their proton conductivity by uptaking water molecules based on the adaptability.
Collapse
Affiliation(s)
- Yijie Wang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| | - Minghui Zhang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| | - Qianqian Yang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| | - Jianbo Yin
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| | - Di Liu
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| | - Yanxue Shang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| | - Zixi Kang
- State Key Laboratory of Heavy Oil Processing
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
| | - Rongming Wang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
- State Key Laboratory of Heavy Oil Processing
| | - Daofeng Sun
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
- State Key Laboratory of Heavy Oil Processing
| | - Jianzhuang Jiang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
| |
Collapse
|